UAI 2019 - Program Schedule
Videos of Tutorials, Invited Talks and Plenary presentations are available on the UAI 2019 YouTube Channel
July 22nd: Tutorials
| Time | Event |
|---|---|
| 8:00am - 6:00pm | Registration |
| 8:30am - 10:30am | Tutorial 1: Tractable Probabilistic Models: Representations, Algorithms, Learning, and Applications |
| 10:30am - 12:30pm | Tutorial 2: Mixing Graphical Models and Neural Nets Like Chocolate and Peanut Butter |
| 12:30pm - 2:00pm | Lunch break (on your own) |
| 2:00pm - 4:00pm | Tutorial 3: Causal Reinforcement Learning |
| 4:00pm - 6:00pm | Tutorial 4: Mathematics of Deep Learning |
July 23rd: Main Conference
| Time | Event | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 7:50am - 6:30pm | Registration | ||||||||||
| 8:40am - 9:00am | Opening remarks | ||||||||||
| 9:00am - 10:00am | Invited talk: Rina Dechter | ||||||||||
| 10:00am - 10:20am | Coffee break | ||||||||||
| 10:20am - 12:00pm | Oral session: | ||||||||||
| |||||||||||
| 12:00pm - 2:00pm | Lunch break (on your own) | ||||||||||
| 2:00pm - 2:30pm | Spotlight session 1 | ||||||||||
| 2:30pm - 2:50pm | Oral session: | ||||||||||
| |||||||||||
| 2:50pm - 3:20pm | Spotlight session 2 | ||||||||||
| 3:20pm - 3:40pm | Coffee break | ||||||||||
| 3:40pm - 5:20pm | Oral session: | ||||||||||
| |||||||||||
| 5:20pm - 6:20pm | Invited talk: Suchi Saria | ||||||||||
| 6:20pm - 9:00pm | Poster session | ||||||||||
July 24th: Main Conference
| Time | Event | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 8:00am - 3:30pm | Registration | ||||||||||
| 8:40am - 9:40am | Invited talk: Stefanie Jegelka | ||||||||||
| 9:40am - 10:00am | Oral session: | ||||||||||
| |||||||||||
| 10:00am - 10:20am | Coffee break | ||||||||||
| 10:20am - 12:00pm | Oral session: | ||||||||||
| |||||||||||
| 12:00pm - 1:30pm | Light lunch will be served in the hotel (Azure room) | ||||||||||
| 1:30pm - 2:30pm | Invited talk: Emma Brunskill | ||||||||||
| 2:30pm - 3:10pm | Oral session: | ||||||||||
| |||||||||||
| 3:20pm - 3:40pm | Coffee break | ||||||||||
| 3:40pm - 4:00pm | Oral session: | ||||||||||
| |||||||||||
| 4:00pm - 4:30pm | AUAI Business Meeting | ||||||||||
| 4:30pm - 11:00pm | Banquet in Jerusalem | ||||||||||
July 25th: Main Conference
| Time | Event | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 8:00am - 12:00pm | Registration | ||||||||||
| 8:40am - 9:40am | Invited talk: Yee Whey Teh | ||||||||||
| 9:40am - 10:00am | Oral session: | ||||||||||
| |||||||||||
| 10:00am - 10:20am | Coffee break | ||||||||||
| 10:20am - 12:00pm | Oral session: | ||||||||||
| |||||||||||
| 12:00pm - 1:30pm | Lunch break (on your own) | ||||||||||
| 1:30pm - 2:50pm | Oral session: | ||||||||||
| |||||||||||
| 2:50pm - 3:20pm | Spotlight session 1 | ||||||||||
| 3:20pm - 3:40pm | Coffee break | ||||||||||
| 3:40pm - 5:20pm | Oral session: | ||||||||||
| |||||||||||
| 5:20pm - 5:50pm | Spotlight session 2 | ||||||||||
| 6:15pm - 9:00pm | Poster session | ||||||||||
Spotlight and Poster Session - July 23rd - Tuesday
Spotlight 1 (Tue 2:50pm - 3:20pm) & Poster (Tue 6:15pm - 9:00pm)
| ID: 275 (pdf) | Efficient Multitask Feature and Relationship Learning Han Zhao, Otilia Stretcu, Alexander J. Smola, Geoffrey J. Gordon |
| ID: 174 (pdf) | A Tighter Analysis of Randomised Policy Iteration Meet Taraviya, Shivaram Kalyanakrishnan |
| ID: 427 (pdf) | Markov Logic Networks for Knowledge Base Completion: A Theoretical Analysis Under the MCAR Assumption Ondrej Kuzelka, Jesse Davis |
| ID: 340 (pdf) | End-to-end Training of Deep Probabilistic CCA on Paired Biomedical Observations Gregory Gundersen, Bianca Dumitrascu, Jordan T. Ash, Barbara E. Engelhardt |
| ID: 290 (pdf) | Adaptively Truncating Backpropagation Through Time to Control Gradient Bias Christopher Aicher, Nicholas J. Foti, Emily B. Fox |
| ID: 380 (pdf) | Learnability for the Information Bottleneck Tailin Wu, Ian Fischer, Isaac Chuang, Max Tegmark |
| ID: 35 (pdf) | Efficient Search-Based Weighted Model Integration Zhe Zeng, Guy Van den Broeck |
| ID: 15 (pdf) | Causal Calculus in the Presence of Cycles, Latent Confounders and Selection Bias Patrick Forré, Joris M. Mooij |
| ID: 324 (pdf) | On First-Order Bounds, Variance and Gap-Dependent Bounds for Adversarial Bandits Roman Pogodin, Tor Lattimore |
| ID: 193 (pdf) | Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation Manuel Haußmann, Fred A. Hamprecht, Melih Kandemir |
| ID: 372 (pdf) | Causal Inference Under Interference and Network Uncertainty Rohit Bhattacharya, Daniel Malinsky, Ilya Shpitser |
| ID: 235 (pdf) | Probabilistic Programming for Birth-Death Models of Evolution using an Alive Particle Filter with Delayed Sampling Jan Kudlicka, Lawrence M. Murray, Fredrik Ronquist, Thomas B. Schön |
| ID: 213 (pdf) | The Sensitivity of Counterfactual Fairness to Unmeasured Confounding Niki Kilbertus, Philip J. Ball, Matt J. Kusner, Adrian Weller, Ricardo Silva |
| ID: 24 (pdf) | Learning Factored Markov Decision Processes with Unawareness Craig Innes, Alex Lascarides |
| ID: 296 (pdf) | Sampling-Free Uncertainty Estimation in Gated Recurrent Units with Applications to Normative Modeling in Neuroimaging Seong Jae Hwang, Ronak R. Mehta, Hyunwoo J. Kim, Sterling C. Johnson, Vikas Singh |
| ID: 17 (pdf) | Recommendation from Raw Data with Adaptive Compound Poisson Factorization Olivier Gouvert, Thomas Oberlin, Cédric Févotte |
| ID: 148 (pdf) | Differentiable Probabilistic Models of Scientific Imaging with the Fourier Slice Theorem Karen Ullrich, Rianne van den Berg, Marcus A. Brubaker, David Fleet, Max Welling |
| ID: 1 (pdf) | Personalized Peer Truth Serum for Eliciting Multi-Attribute Personal Data Naman Goel, Boi Faltings |
| ID: 19 (pdf) | One-Shot Inference in Markov Random Fields Hao Xiong, Yuanzhen Guo, Yibo Yang, Nicholas Ruozzi |
| ID: 403 (pdf) | CCMI : Classifier based Conditional Mutual Information Estimation Sudipto Mukherjee, Himanshu Asnani, Sreeram Kannan |
| ID: 245 (pdf) | Active Multi-Information Source Bayesian Quadrature Alexandra Gessner, Javier Gonzalez, Maren Mahsereci |
| ID: 129 (pdf) | Random Search and Reproducibility for Neural Architecture Search Liam Li, Ameet Talwalkar |
Spotlight 2 (Tue 5:20pm - 5:50pm) & Poster (Tue 6:15pm - 9:00pm)
| ID: 435 (pdf) | Subspace Inference for Bayesian Deep Learning Pavel Izmailov, Wesley J. Maddox, Polina Kirichenko, Timur Garipov, Dmitry Vetrov, Andrew Gordon Wilson |
| ID: 33 (pdf) | Comparing EM with GD in Mixture Models of Two Components Guojun Zhang, Pascal Poupart, George Trimponias |
| ID: 25 (pdf) | Expressive Priors in Bayesian Neural Networks: Kernel Combinations and Periodic Functions Tim Pearce, Russell Tsuchida, Mohamed Zaki, Alexandra Brintrup, Andy Neely |
| ID: 352 (pdf) | Intervening on Network Ties Eli Sherman, Ilya Shpitser |
| ID: 162 (pdf) | Epsilon-BMC: A Bayesian Ensemble Approach to Epsilon-Greedy Exploration in Model-Free Reinforcement Learning Michael Gimelfarb, Scott Sanner, Chi-Guhn Lee |
| ID: 53 (pdf) | The Incomplete Rosetta Stone problem: Identifiability Results for Multi-View Nonlinear ICA Luigi Gresele, Paul Rubenstein, Arash Mehrjou, Francesco Locatello, Bernhard Schoelkopf |
| ID: 101 (pdf) | Domain Generalization via Multidomain Discriminant Analysis Shoubo Hu, Kun Zhang, Zhitang Chen, Laiwan Chan |
| ID: 55 (pdf) | Random Clique Covers for Graphs with Local Density and Global Sparsity Sinead A. Williamson, Mauricio Tec |
| ID: 45 (pdf) | Causal Discovery with General Non-Linear Relationships using Non-Linear ICA Ricardo Pio Monti, Kun Zhang, Aapo Hyvarinen |
| ID: 172 (pdf) | Augmenting and Tuning Knowledge Graph Embeddings Robert Bamler, Farnood Salehi, Stephan Mandt |
| ID: 156 (pdf) | Randomized Value Functions via Multiplicative Normalizing Flows Ahmed Touati, Harsh Satija, Joshua Romoff, Joelle Pineau, Pascal Vincent |
| ID: 319 (pdf) | Guaranteed Scalable Learning of Latent Tree Models Furong Huang, Niranjan UN, Ioakeim Perros, Robert Chen, Jimeng Sun, Anima Anandkumar |
| ID: 127 (pdf) | Towards Robust Relational Causal Discovery Sanghack Lee, Vasant Honavar |
| ID: 443 (pdf) | Variational Inference of Penalized Regression with Submodular Functions Koh Takeuchi, Yuichi Yoshida, Yoshinobu Kawahara |
| ID: 496 (pdf) | Embarrassingly Parallel MCMC using Deep Invertible Transformations Diego Mesquita, Paul Blomstedt, Samuel Kaski |
| ID: 511 (pdf) | Block Neural Autoregressive Flow Nicola De Cao, Wilker Aziz, Ivan Titov |
| ID: 508 (pdf) | Fast Proximal Gradient Descent for A Class of Non-convex and Non-smooth Sparse Learning Problems Yingzhen Yang, Jiahui Yu |
| ID: 410 (pdf) | Interpretable Almost Matching Exactly With Instrumental Variables M.Usaid Awan, Yameng Liu, Marco Morucci, Sudeepa Roy, Cynthia Rudin, Alexander Volfovsky |
| ID: 7 (pdf) | A Sparse Representation-Based Approach to Linear Regression with Partially Shuffled Labels Martin Slawski, Mostafa Rahmani, Ping Li |
| ID: 332 (pdf) | Noise Contrastive Priors for Functional Uncertainty Danijar Hafner, Dustin Tran, Timothy Lillicrap, Alex Irpan, James Davidson |
| ID: 411 (pdf) | Low Frequency Adversarial Perturbation Chuan Guo, Jared S. Frank, Kilian Q. Weinberger |
| ID: 383 (pdf) | Learning Belief Representations for Imitation Learning in POMDPs Tanmay Gangwani, Joel Lehman, Qiang Liu, Jian Peng |
Banquet in Jerusalem - July 24th - Wednesday
|
Spotlight and Poster Session - July 25th - Thursday
Spotlight 1 (Thu 2:50pm - 3:20pm) & Poster (Thu 6:15pm - 9:00pm)
| ID: 312 (pdf) | Problem-dependent Regret Bounds for Online Learning with Feedback Graphs Bingshan Hu, Nishant A. Mehta, Jianping Pan |
| ID: 317 (pdf) | Variational Training for Large-Scale Noisy-OR Bayesian Networks Geng Ji, Dehua Cheng, Huazhong Ning, Changhe Yuan, Hanning Zhou, Liang Xiong, Erik Sudderth |
| ID: 32 (pdf) | Reducing Exploration of Dying Arms in Mortal Bandits Stefano Tracà, Weiyu Yan, Cynthia Rudin |
| ID: 239 (pdf) | Variational Sparse Coding Francesco Tonolini, Bjørn Sand Jensen, Roderick Murray-Smith |
| ID: 86 (pdf) | Adaptive Hashing for Model Counting Jonathan Kuck, Tri Dao, Shenjia Zhao, Burak Bartan, Ashish Sabharwal, Stefano Ermon |
| ID: 152 (pdf) | Approximate Inference in Structured Instances with Noisy Categorical Observations Alireza Heidari, Ihab F. Ilyas, Theodoros Rekatsinas |
| ID: 47 (pdf) | BubbleRank: Safe Online Learning to Re-Rank via Implicit Click Feedback Chang Li, Branislav Kveton, Tor Lattimore, Ilya Markov, Maarten de Rijke, Csaba Szepesvari, Masrour Zoghi |
| ID: 13 (pdf) | On Fast Convergence of Proximal Algorithms for SQRT-Lasso Optimization: Don’t Worry About its Nonsmooth Loss Function Xingguo Li, Haoming Jiang, Jarvis Haupt, Raman Arora, Han Liu, Mingyi Hong, Tuo Zhao |
| ID: 78 (pdf) | Dynamic Trip-Vehicle Dispatch with Scheduled and On-Demand Requests Taoan Huang, Bohui Fang, Xiaohui Bei, Fei Fang |
| ID: 192 (pdf) | Deep Mixture of Experts via Shallow Embedding Xin Wang, Fisher Yu, Lisa Dunlap, Yi-An Ma, Ruth Wang, Azalia Mirhoseini, Trevor Darrell, Joseph E. Gonzalez |
| ID: 371 (pdf) | P3O: Policy-on Policy-off Policy Optimization Rasool Fakoor, Pratik Chaudhari, Alexander J. Smola |
| ID: 262 (pdf) | How to Exploit Structure while Solving Weighted Model Integration Problems Samuel Kolb, Pedro Zuidberg Dos Martires, Luc De Raedt |
| ID: 122 (pdf) | Stability of Linear Structural Equation Models of Causal Inference Karthik Abinav Sankararaman, Anand Louis, Navin Goyal |
| ID: 339 (pdf) | Convergence Analysis of Gradient-Based Learning in Continuous Games Benjamin Chasnov, Lillian J. Ratliff, Eric Mazumdar, Sam Burden |
| ID: 310 (pdf) | N-GCN: Multi-scale Graph Convolution for Semi-Supervised Node Classification Sami Abu-El-Haija, Amol Kapoor, Bryan Perozzi, Joonseok Lee |
| ID: 284 (pdf) | Practical Multi-Fidelity Bayesian Optimization for Hyperparameter Tuning Jian Wu, Saul Toscano-Palmerin, Peter I. Frazier, Andrew Gordon Wilson |
| ID: 118 (pdf) | Cubic Regularization with Momentum for Nonconvex Optimization Zhe Wang, Yi Zhou, Yingbin Liang, Guanghui Lan |
| ID: 112 (pdf) | Efficient Planning Under Uncertainty with Incremental Refinement Juan Carlos Saborío, Joachim Hertzberg |
| ID: 368 (pdf) | Real-Time Robotic Search using Structural Spatial Point Processes Olov Andersson, Per Sidén, Johan Dahlin, Patrick Doherty, Mattias Villani |
| ID: 83 (pdf) | Fall of Empires: Breaking Byzantine-tolerant SGD by Inner Product Manipulation Cong Xie, Oluwasanmi Koyejo, Indranil Gupta |
Spotlight 2 (Thu 5:20pm - 5:50pm) & Poster (Thu 6:15pm - 9:00pm)
| ID: 161 (pdf) | Fisher-Bures Adversary Graph Convolutional Networks Ke Sun, Piotr Koniusz, Zhen Wang |
| ID: 138 (pdf) | Joint Nonparametric Precision Matrix Estimation with Confounding Sinong Geng, Mladen Kolar, Oluwasanmi Koyejo |
| ID: 373 (pdf) | Revisiting Reweighted Wake-Sleep for Models with Stochastic Control Flow Tuan Anh Le, Adam R. Kosiorek, N. Siddharth, Yee Whye Teh, Frank Wood |
| ID: 234 (pdf) | Evacuate or Not? A POMDP Model of the Decision Making of Individuals in Hurricane Evacuation Zones Adithya Raam Sankar, Prashant Doshi, Adam Goodie |
| ID: 206 (pdf) | Be Greedy: How Chromatic Number meets Regret Minimization in Graph Bandits Aadirupa Saha, Shreyas Sheshadri, Chiranjib Bhattacharyya |
| ID: 370 (pdf) | Social Reinforcement Learning to Combat Fake News Spread Mahak Goindani, Jennifer Neville |
| ID: 302 (pdf) | On Densification for Minwise Hashing Tung Mai, Anup Rao, Matt Kapilevich, Ryan Rossi, Yasin Abbsi Yadkori, Ritwik Sinha |
| ID: 128 (pdf) | The Role of Memory in Stochastic Optimization Antonio Orvieto, Jonas Kohler, Aurelien Lucchi |
| ID: 163 (pdf) | Periodic Kernel Approximation by Index Set Fourier Series Features Anthony Tompkins, Fabio Ramos |
| ID: 334 (pdf) | Fake It Till You Make It: Learning-Compatible Performance Support Jonathan Bragg, Emma Brunskill |
| ID: 232 (pdf) | Adaptivity and Optimality: A Universal Algorithm for Online Convex Optimization Guanghui Wang, Shiyin Lu, Lijun Zhang |
| ID: 299 (pdf) | Online Factorization and Partition of Complex Networks by Random Walk Lin F. Yang, Zheng Yu, Vladimir Braverman, Tuo Zhao, Mengdi Wang |
| ID: 406 (pdf) | Empirical Mechanism Design: Designing Mechanisms from Data Enrique Areyan Viqueira, Cyrus Cousins, Yasser Mohammad, Amy Greenwald |
| ID: 428 (pdf) | Identification In Missing Data Models Represented By Directed Acyclic Graphs Rohit Bhattacharya, Razieh Nabi, Ilya Shpitser, James M. Robins |
| ID: 450 (pdf) | Probability Distillation: A Caveat and Alternatives Chin-Wei Huang, Faruk Ahmed, Kundan Kumar, Alexandre Lacoste, Aaron Courville |
| ID: 16 (pdf) | Variational Regret Bounds for Reinforcement Learning Ronald Ortner, Pratik Gajane, Peter Auer |
| ID: 341 (pdf) | Approximate Relative Value Learning for Average-Reward Continuous state MDPs Hiteshi Sharma, Mehdi Jafarnia-Jahromi, Rahul Jain |
| ID: 432 (pdf) | A Weighted Mini-Bucket Bound for Solving Influence Diagram Junkyu Lee, Radu Marinescu, Alexander Iher, Rina Dechter |
| ID: 393 (pdf) | Object Conditioning for Causal Inference David Jensen, Javier Burroni, Matthew Rattigan |