
Efficient Multitask Feature and Relationship Learning

Han Zhao and Otilia Stretcu
Machine Learning Department

Carnegie Mellon University
{han.zhao, ostretcu}@cs.cmu.edu

Alexander J. Smola
Amazon Web Services
alex@smola.org

Geoffrey J. Gordon
Microsoft Research Montreal
Carnegie Mellon University

geoff.gordon@microsoft.com

Abstract

We consider a multitask learning problem, in
which several predictors are learned jointly.
Prior research has shown that learning the re-
lations between tasks, and between the input
features, together with the predictor, can lead to
better generalization and interpretability, which
proved to be useful for applications in many do-
mains. In this paper, we consider a formulation
of multitask learning that learns the relation-
ships both between tasks and between features,
represented through a task covariance and a
feature covariance matrix, respectively. First,
we demonstrate that existing methods proposed
for this problem present an issue that may lead
to ill-posed optimization. We then propose an
alternative formulation, as well as an efficient
algorithm to optimize it. Using ideas from opti-
mization and graph theory, we propose an effi-
cient coordinate-wise minimization algorithm
that has a closed form solution for each block
subproblem. Our experiments show that the
proposed optimization method is orders of mag-
nitude faster than its competitors. We also pro-
vide a nonlinear extension that is able to achieve
better generalization than existing methods.

1 INTRODUCTION

In machine learning the goal is often to train predictive
models for one or more tasks of interest. Making accurate
predictions relies heavily on the existence of labeled data
for the desired tasks. However, in real-world problems
data is often hard to acquire (e.g., medical domains) or
expensive to label (e.g., image segmentation). For many
tasks, this makes it impractical or impossible to collect
large volumes of labeled data. Multitask learning is a sub-
problem of the general transfer learning paradigm that

aims to improve generalization performance in a learn-
ing task, by learning models for multiple related tasks
simultaneously. It has received considerable interest in
the past decades (Adel et al., 2017, Argyriou et al., 2007,
2008, Caruana, 1997, Chen et al., 2011, 2012, Evgeniou
and Pontil, 2004, Jacob et al., 2009, Jawanpuria et al.,
2015, Kato et al., 2008, Li et al., 2015, Liu et al., 2009,
Zhang and Schneider, 2010, Zhang and Yeung, 2010a,
Zhao et al., 2017, 2018, 2019a,b). One of the underlying
assumptions behind many multitask learning algorithms
is that the tasks are related to each other. Hence, a key
question is how to define the notion of task relatedness,
and how to capture it in the learning formulation. A com-
mon assumption is that tasks can be described by weight
vectors, and that they are sampled from a shared prior
distribution over their space (Liu et al., 2009, Zhang and
Yeung, 2010a,b). Another strand of work assumes com-
mon feature representations to be shared among multiple
tasks, and the goal is to learn the shared representation as
well as task-specific parameters simultaneously (Argyriou
et al., 2008, Caruana, 1997, Evgeniou and Pontil, 2007,
Thrun, 1996). Moreover, when structure about multiple
tasks is available, e.g., task-specific descriptors (Bonilla
et al., 2007) or a task similarity graph (Evgeniou and Pon-
til, 2004), regularizers can often be incorporated into the
learning formulation to penalize hypotheses that are not
consistent with the given structure. Very recently, Sener
and Koltun (2018) tackle the problem of multitask learn-
ing from the perspective of multi-objective optimization.
Specifically, this work aims to find a Pareto-optimal solu-
tion for the multi-objective function defined by multiple
tasks, and proposes to use Frank-Wolfe algorithm to find
gradient update for shared parameters.

There have been several attempts to improve predictions
by either learning the relationships between different
tasks (Zhang and Yeung, 2010a), or by exploiting the
relationships between different features (Argyriou et al.,
2008). In this paper we consider a multiconvex frame-
work for multitask learning that improves predictions over
tabula rasa learning by assuming that all the task vectors

are sampled from a common matrix-variate normal prior.
The framework, known as MTFRL (Zhang and Schnei-
der, 2010), learns the relationships both between tasks
and between features simultaneously via two covariance
matrices, i.e., the feature covariance matrix and the task
covariance matrix. In this context, learning multiple tasks
corresponds to estimating a matrix of model parameters,
and learning feature/task relationships corresponds to es-
timating the row/column covariance matrices of model
parameters, respectively. This property is favorable for
applications where we not only aim for better generaliza-
tion, but also seek to have a clear understanding about the
relationships among different tasks.

The goal of MTFRL is to optimize over both the task vec-
tors, as well as the two covariance matrices in the prior.
When the loss function is convex, the regularized problem
of MTFRL is multiconvex. Previous approaches (Long
et al., 2017, Zhang, 2011, Zhang and Schneider, 2010)
for solving this problem hinge on the classic flip-flop al-
gorithm (Dutilleul, 1999) to estimate the two covariance
matrices. However, as we point out in Section 3, the flip-
flop algorithm cannot be directly applied as the maximum
likelihood estimation (MLE) formulation of the multitask
learning problem under this setting is ill-posed. As a re-
sult, in practice, heuristics have to be invented and applied
in the algorithm to ensure the positive-definiteness of both
covariance matrices. However, it is not clear whether such
a fixed algorithm still converges or not.

In this paper we propose a well-defined variant of the MT-
FRL framework, and design a block coordinate-wise min-
imization algorithm to solve this problem. We term our
new formulation FEaTure and Relation learning (FETR).
By design, FETR is free of the nonpositive-definite prob-
lem in MTFRL. To solve FETR, we propose efficient and
analytic solutions for each of the subproblems, which al-
lows us to get rid of the expensive iterative procedure to
optimize the covariance matrices. Specifically, we achieve
this by reducing an underlying matrix optimization prob-
lem with positive definite constraints into a minimum
weight perfect matching problem on a complete bipar-
tite graph, where we are able to solve analytically using
combinatorial techniques. To solve the weight learning
subproblem, we propose three different strategies, includ-
ing a closed form solution, a gradient descent method
with linear convergence guarantees when the instances
are not shared by multiple tasks, and a numerical solution
based on Sylvester equation when instances are shared.

We demonstrate the efficiency of the proposed optimiza-
tion algorithm by comparing it with an off-the-shelf pro-
jected gradient descent algorithm and the classic flip-flop
algorithm, on both synthetic and real-world data. Exper-
iments show that the proposed optimization method is
orders of magnitude faster than its competitors, and it

often converges to better solutions. Lastly, we extend
FETR to nonlinear setting by combining its regularization
scheme with rich nonlinear transformations using neural
networks. This combined approach is able to achieve
significantly better generalizations than existing methods
on real-world datasets.

To summarize, our contributions are three-fold:

• We point out an ill-posed MLE problem of the ex-
isting multitask learning formulations and propose a
well-defined variant, termed as FETR.

• To optimize FETR, we design an efficient block
coordinate-wise minimization algorithm and derive
analytic solutions for each of the subproblems.

• We extend our FETR formulation to nonlinear set-
tings and empirically demonstrate its better general-
izations on real-world datasets.

2 PRELIMINARY

We start by introducing notations used throughout the pa-
per and briefly discussing the MTFRL framework (Zhang
and Schneider, 2010).

2.1 NOTATION AND SETUP

We use lowercase letters, such as y, to represent scalars,
and lowercase bold letters, such as x, to denote vectors.
Capital letters are reserved for matrices. We use Sm+ and
Sm++ to denote the m-dimensional symmetric positive
semidefinite cone and the m-dimensional symmetric pos-
itive definite cone, respectively. We write tr(A) for the
trace of a matrix A, and N (m,Σ) for the multivariate
normal distribution with mean m and covariance matrix
Σ. Finally, G = (A,B,E;w) is a weighted bipartite
graph with vertex sets A, B, edge set E and weight func-
tion w : E → R+. For a matrix W ∈ Rd×m, we use
vec(W) ∈ Rdm to denote its vectorization. We con-
sider the following setup. Suppose we are given m learn-
ing tasks {Ti}mi=1, where for each learning task Ti we
have access to a training set Di with ni data instances
(xji , y

j
i), j ∈ [ni]. For the simplicity of discussion, here

we focus on the regression setting where xji ∈ Xi ⊆ Rd

and yji ∈ R. Extension to classification setting is straight-
forward. Let fi(wi, ·) : Xi → R be our model with
parameter wi. In what follows, we will assume our
model for each task Ti to be a linear regression, i.e.,
fi(wi,x) = wT

i x.

2.2 MATRIX-VARIATE NORMAL
DISTRIBUTION

A matrix-variate normal distribution (Gupta and Nagar,
1999) W ∼MN d×m(M,A,B) with mean M ∈ Rd×m,

row covariance matrix A ∈ Sd++ and column covariance
matrix B ∈ Sm++ can be understood as a multivariate nor-
mal distribution with vec(W) ∼ N (vec(M), A ⊗ B).1

One advantage of the matrix-variate normal distribu-
tion over its equivalent multivariate counterpart is that
by imposing structure on the row and column covari-
ance matrices, the former admits a much more com-
pact representation than the latter (O(m2 + d2) versus
O(m2d2)). The MLE of the matrix-variate normal dis-
tribution has been well studied in the literature (Du-
tilleul, 1999). Specifically, given an i.i.d. sample
{Wi}ni=1 from MN d×m(M,A,B), the MLE of M is
W =

∑n
i=1Wi/n. The MLE of A and B are solutions

to the following system:{
A = 1

nm

∑n
i=1(Wi −W)B−1(Wi −W)T

B = 1
nd

∑n
i=1(Wi −W)TA−1(Wi −W)

(1)

The above system of equations does not have a closed
form solution as the two covariance estimates depend on
each other. Hence, their estimates must be computed in an
iterative fashion until convergence, which is known as the
“flip-flop” algorithm (Dutilleul, 1999, Glanz and Carvalho,
2013). Furthermore, Dutilleul (1999) showed that the
flip-flop algorithm is guaranteed to converge to positive
definite covariance matrices iff n ≥ max(d/m,m/d)+1.
More properties of the MLE of the matrix-variate normal
distribution can be found in (Roś et al., 2016).

2.3 MULTITASK FEATURE AND
RELATIONSHIP LEARNING

In linear regression, the likelihood function for task
i is given by: yji | xji ,wi, εi ∼ N (wT

i x, ε
2
i). Let

W = (w1, . . . ,wm) ∈ Rd×m be the model parameter
for m different tasks drawn from the matrix-variate nor-
mal distribution MN d×m(W | 0d×m,Σ−1

1 ,Σ−1
2). By

maximizing the joint distribution and optimize over both
the model parameters, as well as the two covariance ma-
trices in the prior, we reach the following optimization
problem:

minimize
W,Σ1,Σ2

m∑
i=1

ni∑
j=1

(yji −wT
i x

j
i)

2 + η tr(Σ1WΣ2W
T)

− η (m log |Σ1|+ d log |Σ2|)
subject to Σ1 � 0,Σ2 � 0 (2)

where Σ1 ∈ Sd++,Σ2 ∈ Sm++ are the row and column
precision matrices of the matrix normal prior distribution,
respectively, and η is a constant that does not depend on
the optimization variables. It is not hard to see that the op-
timization problem in (2) is not convex due to the coupling

1Probability density: p(X) = exp(− 1
2

tr(A−1(X −
M)B−1(X −M)T))/(2π)md/2|A|m/2|B|d/2.

between W,Σ1 and Σ2 in the trace term. On the other
hand, since the log | · | function is concave in the positive
definite cone (Boyd and Vandenberghe, 2004), and the
trace is linear in terms of its components, it follows that
(2) is multiconvex. Zhang and Schneider (2010) propose
to use the flip-flop algorithm to solve the matrix subprob-
lem in (2), and this approach has also been widely applied
in following publications on multitask learning (Li et al.,
2014, Long et al., 2017, Zhang, 2011).

3 ILL-POSED OPTIMIZATION

In this section we first point out an important issue in the
literature on the application of the flip-flop algorithm to
solve the matrix subproblem in (2). We then proceed to
propose a well-defined variant of (2) to fix the problem.
Interestingly, the variant we propose admits a closed form
solution for each block variable that can be computed
efficiently without any iterative procedure, which we will
describe and derive in more detail in Section 4.

As proved by Dutilleul (1999), one sufficient and nec-
essary condition for the flip-flop algorithm to converge
to positive definite matrices is that the number of sam-
ples from the matrix-variate normal distribution should
satisfy n > max(d/m,m/d). However, in the context
of multitask learning, we are essentially dealing with
an inference problem, where the goal is to estimate the
value of W , which is assumed to be an unknown but
unique model parameter from the prior. This means that
in this case we have n = 1, hence the condition for the
convergence of the algorithm is violated. Technically,
for any W ∈ Rd×m where d 6= m, following the itera-
tive update formula of the flip-flop algorithm in (1), for
any feasible initialization of Σ

(0)
1 ∈ Sd++ and Σ

(0)
2 ∈

Sm++, we will have Σ
(1)
1 = W (Σ

(0)
2)−1WT /m,Σ

(1)
2 =

WT (Σ
(0)
1)−1W/d. Now since d 6= m, we know that

rank(W) ≤ min{d,m} < max{d,m}. As a result, after
one iteration, we will have

rank(Σ
(1)
1) ≤ rank(W) < max{d,m}

rank(Σ
(1)
2) ≤ rank(WT) < max{d,m}

i.e., at least one of Σ
(1)
1 and Σ

(1)
2 is going to be rank

deficient, and in the next iteration the inverse operation is
not well-defined on at least one of them. As a fix, Zhang
and Schneider (2010) proposed to use an artificial fudge
factor to ensure that both covariance matrices stay positive
definite after each update:

Σ
(t+1)
1 = W (Σ

(t)
2)−1WT /m+ εId

Σ
(t+1)
2 = WT (Σ

(t)
1)−1W/d+ εIm

where ε > 0 is a fixed, small constant. However, since
the fudge factor ε is a fixed constant which does not de-

crease to 0 in the limit, it introduces extra biases into the
estimation, and thus it is not clear whether or not the fixed
algorithm converges.

Perhaps what is more surprising is that (2) is not even well-
defined as an optimization problem. As a counterexample,
we can fix W = 0d×m and let Σ1,σ = σId, Σ2,σ = σIm
with σ > 0 so that both Σ1,σ and Σ2,σ are feasible. Now
let σ → ∞, and it is easy to verify that in this case
the objective function goes to −∞. Although we only
provide one counterexample, there is no reason to believe
that the one we find is the only case where (2) fails. In
fact, Roś et al. (2016) have recently shown that the MLE
of Σ1 ⊗ Σ2 does not exist if n ≤ max{d/m,m/d}, and
the only nontrivial sufficient condition known so far to
guarantee the existence of the MLE is n > md. However,
in the context of multitask learning, the unknown model
parameter W is unique and hence we have n = 1� md.

Given the wide applications of the above multitask learn-
ing framework in the literature, as well as the flip-flop
algorithm in this setting, we feel it important and urgent
to solve the above ill-posed and nonpositive definite prob-
lem. To this end, for some positive constants 0 < l < u,
we propose a variant of (2) as follows:

minimize
Σ1,Σ2,W

m∑
i=1

ni∑
j=1

(yji −wT
i x

j
i)

2 + η tr(Σ1WΣ2W
T)

− η (m log |Σ1|+ d log |Σ2|)
subject to lId � Σ1 � uId, lIm � Σ2 � uIm (3)

The bounded constraints make the feasible set compact.
Since the objective function is continuous, by the extreme
value theorem, we know that the matrix subproblem of
(3) becomes well-defined and can achieve finite lower
and upper bounds within the feasible set. Alternatively,
one can also understand this constraint as specifying a
truncated matrix normal prior over the compact set. As
we will see shortly, technically the bounded constraint
also allows us to develop an optimization procedure for
W with linear convergence rate, which is an exponential
acceleration over the unbounded case.

4 MULTICONVEX OPTIMIZATION

In this section we propose a block coordinate-wise mini-
mization algorithm to optimize the objective given in (3).
In each iteration, we alternatively minimize over W with
Σ1 and Σ2 fixed, then minimize over Σ1 with W and Σ2

fixed, and lastly minimize Σ2 with W and Σ1 fixed. The
whole procedure is repeated until a stationary point is
found. Due to space limit, we defer all the proofs and
derivations to appendix. To simplify the notation, we as-
sume n = ni,∀i ∈ [m]. Let Y = (y1, . . . ,ym) ∈ Rn×m
be the target matrix and X ∈ Rn×d be the feature matrix

shared by all the tasks. Using this notation, the objective
can be equivalently expressed in matrix form as:

minimize
Σ1,Σ2,W

||Y −XW ||2F + η ||Σ1/2
1 WΣ

1/2
2 ||2F

− η (m log |Σ1|+ d log |Σ2|)
subject to lId � Σ1 � uId, lIm � Σ2 � uIm (4)

4.1 OPTIMIZATION OF W

In order to minimize over W when both Σ1 and Σ2 are
fixed, we solve the following subproblem:

minimize
W

h(W) , ||Y −XW ||2F + η ||Σ1/2
1 WΣ

1/2
2 ||2F

(5)

As shown in the last section, this is an unconstrained
convex optimization problem. We present three different
algorithms to find the optimal solution of this subproblem.
The first one guarantees to find an exact solution in closed
form in O(m3d3) time. The second one does gradient
descent with fixed step size to iteratively refine the solu-
tion, and we show that in our case a linear convergence
rate can be guaranteed. The third one finds the optimal
solution by solving the Sylvester equation (Bartels and
Stewart, 1972) characterized by the first-order optimality
condition, after a proper transformation.

A closed form solution. It is worth noting that it is
not obvious how to obtain a closed form solution di-
rectly from the formulation in (5). An application of
the first order optimality condition to (5) will lead to:
XTXW + η Σ1WΣ2 = XTY . Hence except for the
special case where Σ2 = cIm with c > 0 a constant,
the above equation does not admit an easy closed form
solution in its matrix representation. The workaround is
based on the fact that the d×m dimensional matrix space
is isomorphic to the dm dimensional vector space, with
the vec(·) operator implementing the isomorphism from
Rd×m to Rdm. Using this property, we have:

Proposition 4.1. (5) can be solved in
closed form in O(m3d3 + mnd2) time;
the optimal solution W ∗ is: vec(W ∗) =(
Im ⊗ (XTX) + η Σ2 ⊗ Σ1

)−1
vec(XTY).

The computational bottleneck in the above procedure is
in solving an md×md system of equations, which scales
as O(m3d3) if no further sparsity structure is available.

Gradient descent. The closed form solution shown
above scales cubically in both m and d, and requires
us to explicitly form a matrix of size md × md. This
can be intractable even for moderate m and d. In such
cases, instead of computing an exact solution to (5), we
can use gradient descent with fixed step size to obtain an
approximate solution. The objective function h(W) in

(5) is differentiable and its gradient can be obtained in
O(m2d+md2) time as ∇Wh(W) = XT (Y −XW) +
η Σ1WΣ2. Note that we can compute in advance both
XTY and XTX in O(nd2) time, and cache them so that
we do not need to recompute them in each gradient up-
date step. Let λi(A) be the ith largest eigenvalue of a real
symmetric matrix A. Adapted from Nesterov (2013), we
provide a linear convergence guarantee for the gradient
method in the following proposition:

Proposition 4.2. Let λl = λd(X
TX) + ηl2 and λu =

λ1(XTX) + ηu2. Choose 0 < t ≤ 2
λu+λl

. For all ε > 0,
gradient descent with step size t converges to the optima
within O(log(1/ε)) steps.

The computational complexity to achieve an ε ap-
proximate solution using gradient descent is O(nd2 +
log(1/ε)(m2d+md2)). Compared with the O(m3d3 +
mnd2) complexity for the exact solution, the gradient de-
scent algorithm scales much better provided the condition
number κ , λu/λl is not too large. As a side note, when
the condition number is large, we can effectively reduce
it to
√
κ by using conjugate gradient method (Shewchuk

et al., 1994).

Sylvester equation. In the field of control theory, a
Sylvester equation (Bhatia and Rosenthal, 1997) is a ma-
trix equation of the form AX+XB = C, where the goal
is to find a solution matrix X given A,B and C. For this
problem, there are efficient numerical algorithms with
highly optimized implementations that can obtain a solu-
tion within cubic time. For example, the Bartels-Stewart
algorithm (Bartels and Stewart, 1972) solves the Sylvester
equation by first transforming A and B into Schur forms
by QR factorization, and then solves the resulting trian-
gular system via back-substitution. Our third approach is
based on the observation that we can equivalently trans-
form the first-order optimality equation into a Sylvester
equation by multiplying both sides of the equation by
Σ−1

1 : Σ−1
1 XTXW + η WΣ2 = Σ−1

1 XTY . As a result,
finding the optimal solution of the subproblem amounts
to solving the above Sylvester equation. Specifically, the
solution to the above equation can be obtained using the
Bartels-Stewart algorithm in O(m3 + d3 + nd2).

Remark. Both the gradient descent and the Bartels-
Stewart algorithm find the optimal solution in cubic time.
However, gradient descent is more widely applicable than
the Bartels-Stewart algorithm: the Bartels-Stewart algo-
rithm only applies to the case where all the tasks share
the same instances, so that we can write down the matrix
equation explicitly, while gradient descent can be applied
in the case where each task has different number of inputs
and those inputs are not shared among tasks. On the other
hand, as we will see in the experiments, in practice the
Bartels-Stewart algorithm is faster than gradient descent,
and provides a more numerically stable solution.

4.2 OPTIMIZATION OF Σ1 AND Σ2

Algorithm 1 Minimize Σ1

Input: W , Σ2 and l, u.
1: [V, ν]← SVD(WΣ2W

T).
2: λ← T[l,u](m/ν).
3: Σ1 ← V diag(λ)V T .

Algorithm 2 Minimize Σ2

Input: W , Σ1 and l, u.
1: [V, ν]← SVD(WTΣ1W).
2: λ← T[l,u](d/ν).
3: Σ2 ← V diag(λ)V T .

Before we delve into the detailed analysis below, we first
list the final algorithms used to optimize Σ1 and Σ2 in
Algorithm 1 and Algorithm 2, respectively. The hard-
thresholding function used in Line 2 of Algorithm 1 and
Algorithm 2 is defined as follows:

T[l,u](x) = max{l,min{u, x}} (6)

The hard-thresholding function essentially keeps the value
of its argument x if l ≤ x ≤ u, otherwise it truncates
the value of x to l(u) if x < l(x > u) respectively. Both
algorithms are remarkably simple: each algorithm only
involves one SVD, one truncation and two matrix multipli-
cations. The computational complexities of Algorithm 1
and Algorithm 2 are bounded by O(m2d + md2 + d3)
and O(m2d+md2 +m3), respectively.

In what follows we focus on analyzing the optimization
w.r.t. Σ1. A symmetric analysis can be applied to solve
Σ2 as well. In order to minimize over Σ1 when W and
Σ2 are fixed, we solve the following subproblem:

minimize
lId�Σ1�uId

tr(Σ1WΣ2W
T)−m log |Σ1| (7)

Although (7) is a convex optimization problem, it is com-
putationally expensive to solve using off-the-shelf algo-
rithms, e.g., the interior point method, because of the
constraints, as well as the non-linearity of the objective
function. However, as we will show shortly, we can find a
closed form optimal solution to this problem, using tools
from the theory of doubly stochastic matrices (Dufossé
and Uçar, 2016) and perfect bipartite graph matching.
Due to space limit, we defer the detailed derivation and
proof to appendix, and only show a sketch below.

Without loss of generality, for any feasible Σ1, using
spectral decomposition, we can reparametrize Σ1 as

Σ1 = UΛUT , Λ = diag(λ1, . . . , λd) (8)

where u ≥ λ1 ≥ λ2 · · · ≥ λd ≥ l. Similarly, we can
represent

WΣ2W
T = V NV T , N = diag(ν1, . . . , νd) (9)

where 0 ≤ ν1 ≤ · · · ≤ νd. Let λ = (λ1, · · · , λd)T and
ν = (ν1, · · · , νd)T . Set K = UTV and define P to be
the Hadamard product of K, i.e., P = K ◦ K. Since
both U and V T are orthonormal matrices, it immediately
follows that K is also an orthonormal matrix. As a result,
we have the following two equations hold:

d∑
j=1

Pij =

d∑
j=1

K2
ij = 1, ∀i ∈ [d]

d∑
i=1

Pij =

d∑
i=1

K2
ij = 1, ∀j ∈ [d]

which implies that P is a doubly stochastic matrix. Given
U being an orthonormal matrix, we have log |Σ1| =
log |UΛUT | = log |Λ|. On the other hand, it can be
readily verified that the following equality holds:

tr(ΛKNKT) =

d∑
i=1

d∑
j=1

λiK
2
ijνj = λTPν (10)

By combining all the transformations in (8), (9) and (10)
and plug them in (7), we have the following equivalent
optimization problem:

minimizeP,λ λTPν −m
d∑
i=1

log λi

subject to l1d ≤ λ ≤ u1d (11)

where 1d denotes a vector of all ones with dimension d.
To solve (11), we make the following key observations:

1. The minimization is decomposable in terms of P
and λ. Furthermore, the optimization over P is a
linear program (LP).

2. For any bounded LP, there exists at least one extreme
point that achieves the optimal solution.

3. The set of d × d doubly stochastic matrices, de-
noted as Bd, forms a convex polytope, known as the
Birkhoff polytope.

4. By the Birkhoff-von Neumann theorem, Bd is the
convex hull of the set of permutation matrices, i.e.,
every extreme point of Bd is a permutation matrix.

Combining all the analysis above, it is clear to see that the
optimal solution P must be a permutation matrix. This
motivates us to reduce (11) to a minimum-weight per-
fect matching problem on a weighted complete bipartite
graph as follows: for any λ, ν ∈ Rd+, we can construct
a weighted d× d bipartite graph G = (Vλ, Vν , E;w) as
follows:

• For each λi, construct a vertex vλi ∈ Vλ, ∀i.
• For each νj , construct a vertex vνj ∈ Vν , ∀j.
• For each pair (vλi , vνj), construct an edge
e(vλi , vνj) with weight w(e(vλi , vνj)) = λiνj .

The following theorem relates the solution of the mini-
mum weight matching to the partial solution of (11) w.r.t.
P :

Theorem 4.1. Let λ = (λ1, . . . , λd) and ν =
(ν1, . . . , νd) with λ1 ≥ · · · ≥ λd and ν1 ≤ · · · ≤ νd.
The minimum-weight perfect matching on G is the set
of edges π∗ = {(vλi

, vνi) : 1 ≤ i ≤ d} with the mini-
mum weight w(π∗) =

∑d
i=1 λiνi. Furthermore, it equals

minP λ
TPν.

Proof sketch. The full proof of Theorem 4.1 is deferred
to the appendix, and here we only show a sketch of the
high-level idea. Basically, given any matching in the
graph, if there is an inverse pair (a cross) in the matching,
then we can improve the matching by re-matching the
inverse pair, as shown in Figure 1. Now since there are

λi λj

νk νl

λi λj

νk νl

Figure 1: Re-matching an inverse pair (λi, λj , νk, νl) =
{(vλi

, vνl), (vλj
, vνk)} on the left side to a match with

smaller weight {(vλi
, vνk), (vλj

, vνl)}. Red color is used
to highlight edges in the perfect matching.

only at most finitely many number of inverse pairs, an
inductive argument shows that the optimal matching is
achieved when there is no inverse pair, i.e., vλi

is matched
to vνi ,∀i ∈ [d] (Figure 2).

The optimal matching in Theorem 4.1 suggests that the
optimal doubly stochastic matrix is given by P ∗ = Id,
which also implies K∗ = P ∗ = Id and U∗ = V . Now
plug in the P ∗ = Id into (11). The optimization w.r.t.
λ decomposes into d independent scalar optimization
problems, which can be easily solved. Using the hard-
thresholding function defined in (6), we can express the
optimal solution λ∗i as λ∗i = T[l,u](m/νi). Combine all
the analysis given above, we get the algorithms listed
at the beginning of this section to optimize Σ1 and Σ2.
Interestingly, they have close connection to the proximal
method proposed in the literature to solve matrix comple-
tion (Cai et al., 2010), or Euclidean projection under trace
norm constraint (Chen et al., 2011, 2012). To the best of
our knowledge, this is the first algorithm that solves lin-
ear function over matrices with negative log-determinant
regularization (e.g. (7)) efficiently.

λ1 λ2 · · · λd

ν1 ν2 · · · νd

λ1 λ2 · · · λd

ν1 ν2 · · · νd

λ1 λ2 · · · λd

ν1 ν2 · · · νd

Figure 2: The inductive proof works by recursively removing inverse pairs from (λd, νd) to (λ1, ν1). The process stops
until there is no inverse pair in the matching. Red color is used to highlight edges in the perfect matching.

5 NONLINEAR EXTENSION

So far we discuss our FETR framework under the linear
regression model, but it can be readily extended to any
nonlinear regression/classification settings. One straight-
forward way to do so is to apply the (orthogonal) random
Fourier transformation (Felix et al., 2016, Rahimi and
Recht, 2008) to generate high-dimensional random fea-
tures so that linear FETR in the transformed space corre-
sponds to nonlinear models in the original feature space.
However, depending on the dimension of the random
features, this approach might lead to a huge covariance
matrix Σ1 that is expensive to optimize.

Another more natural and expressive approach is to com-
bine our regularization scheme and optimization method
with parametrized nonlinear feature transformations, such
as neural networks. More specifically, let g(x; θ) : Rd →
Rp be a neural network with learnable parameter θ that
defines a nonlinear transformation of the input features
from Rd to Rp. Essentially we can replace the feature ma-
trix X in (4) with g(x; θ) to create a regularized multitask
neural network (Caruana, 1997) where we add one more
layer defined by the matrix W on top of the nonlinear
mapping given by g(x; θ). To train the model, we can
use backpropagation to optimize W , θ and our proposed
approach to optimize the two covariance matrices. We
will further explore this nonlinear extension in Section 6
to demonstrate its power in statistical modeling.

6 EXPERIMENTS

6.1 CONVERGENCE ANALYSIS AND
COMPUTATIONAL EFFICIENCY

We first investigate the efficiency and scalability of the
three different algorithms for minimizing w.r.t. W on
synthetic data sets. For each experiment, we generate a
synthetic data set which consists of n = 104 instances
that are shared among all the tasks. All the instances are
randomly sampled uniformly from [0, 1]d. We gradually
increase the dimension of features, d, and the number of
tasks, m to test scalability.

The first algorithm implements the closed form solution
by explicitly computing the md×md matrix product and

then solving the linear system. The second one is the pro-
posed gradient descent, and the last one uses the Bartels-
Stewart algorithm to solve the equivalent Sylvester equa-
tion to compute W . We use open source toolkit scipy
whose backend implementation uses highly optimized
Fortran code. For all the synthetic experiments we set
l = 0.01 and u = 100, which corresponds to a condition
number of 104. We fix the coefficients η = 1.0. We re-
peat each experiment for 10 times to show both the mean
and the variance.

The experimental results are shown in Figure 3a. As
expected, the closed form solution does not scale to prob-
lems of even moderate size due to its large memory re-
quirement. In practice the Bartels-Stewart algorithm is
about one order of magnitude faster than the gradient de-
scent method when either m or d is large. It is also worth
pointing out here that the Bartels-Stewart algorithm is the
most numerically stable algorithm among the three based
on our observations.

We compare our proposed coordinate minimization algo-
rithm with an off-the-shelf projected gradient method and
the flip-flop algorithm to solve the optimization problem
(4). Specifically, the projected gradient method updates
W,Σ1 and Σ2 in each iteration and then projects Σ1 and
Σ2 onto the corresponding feasible regions. The flip-
flop algorithm is implemented as suggested in Zhang and
Schneider (2010) and we use a fudge factor of 10−3 to
avoid the nonpositive definite problem. In each iteration,
both covariance matrices are projected onto the feasible
region as well. In the SARCOS dataset all the instances
are shared among all the tasks, so that the Sylvester solver
is used to optimize W in coordinate minimization. We
repeat the experiments 10 times and report the mean and
standard deviation of the log function values versus the
time used by all three algorithms (Figure 3b). It is clear
from Figure 3b that our proposed algorithm not only con-
verges much faster than the other two competitors, but
also achieves better results. In fact, as we observe in our
experiments, the proposed algorithm usually converges in
less than 10 iterations.

6.2 REAL-WORLD DATASETS
In this section we apply FETR to two real-world datasets
to demonstrate its statistical efficiency.

(a) The mean run time (seconds) under each experimental configu-
ration. The closed form solution does not scale when md ≥ 104.

(b) The convergence speed of coordinate minimization versus
projected gradient descent and the flip-flop algorithm on the
SARCOS dataset. All the experiments are repeated 10 times.

Figure 3: Experimental results of the convergence analysis on synthetic data.

Table 1: Mean squared error on the SARCOS data and the mean of normalized mean squared error (NMSE) on the
school dataset across 10-fold cross-validation.

METHOD
DATASETS

SARCOS SCHOOL1ST 2ND 3RD 4TH 5TH 6TH 7TH

STL 31.40 22.90 9.13 10.30 0.14 0.84 0.46 0.9882 ± 0.0196

MTFL 31.41 22.91 9.13 10.33 0.14 0.83 0.45 0.8891 ± 0.0380
MTRL 31.09 22.69 9.08 9.74 0.14 0.83 0.44 0.9007 ± 0.0407
MTFRL 31.13 22.60 9.10 9.74 0.13 0.83 0.45 0.8451 ± 0.0197

FETR 31.08 22.68 9.08 9.73 0.13 0.83 0.43 0.8134 ± 0.0253

STL-NN 24.81 17.20 8.97 8.36 0.13 0.72 0.34 −
MT-NN 12.01 10.54 5.02 7.15 0.09 0.70 0.27 −
MTFRL-NN 11.02 9.51 4.99 7.11 0.08 0.62 0.27 −
FETR-NN 10.77 9.34 4.95 7.01 0.08 0.59 0.24 −

Robot Inverse Dynamics This data relates to an inverse
dynamics problem for a seven degree-of-freedom (DOF)
SARCOS anthropomorphic robot arm (Vijayakumar and
Schaal, 2000). The goal is to map from a 21-dimensional
input space (7 joint positions, 7 joint velocities, 7 joint
accelerations) to the corresponding 7 joint torques. Hence
there are 7 tasks and the inputs are shared among all
the tasks. The training set and test set contain 44,484
and 4,449 examples, respectively. We further partition
the training set into a training set and a validation set,
containing 31,138 and 13,346 instances, respectively.

School Data This dataset consists of the examina-
tion scores of 15,362 students from 139 secondary
schools (Goldstein, 1991). It has 27 input features, and
contains 139 tasks. Since the train/test splits are not pro-
vided, we use a 10-fold cross-validation procedure to
generate the training and test datasets.

6.3 SETUP AND RESULTS

We compare FETR with multitask feature learning (Evge-
niou and Pontil, 2007) (MTFL), multitask relationship
learning (Zhang and Yeung, 2010a) (MTRL), and the
MTFRL framework. We also use ridge regression as our
baseline model, denoted as single task learning (STL).
The results reported for FETR on the SARCOS dataset
are obtained using the Sylvester equation solver, while
for the School dataset the inputs are not shared among dif-
ferent tasks and hence we use our gradient descent solver
for W instead. To evaluate, we compute the mean of
normalized mean squared error (NMSE) over the output
tasks (e.g., 139 tasks for the School data). The NMSE is
defined as the ratio of the MSE and the variance on a task.
For the School dataset, we show the mean NMSE and its
standard deviation across 10 cross-validation folds, since
no train/test splits are provided.

(a) Feature covariance matrix.

(b) Task covariance matrix.

Figure 4: Estimated feature and task covariance matrices
on the SARCOS dataset.

To show the power of the nonlinear extension, we also run
experiments using a single task neural network (STL-NN)
and the multitask neural network (MT-NN), based on
which we propose our FETR-NN, which incorporates the
regularization scheme into the last layer of the MT-NN.
STL-NN is a model where we use a separate network
for each task, while in MT-NN all layers except the last
output layer are shared among different tasks. As another
baseline, we also compare our method with the multilin-
ear relationship network (Long et al., 2017), which can
be understood as an extension of the MTFRL method
using neural networks (MTFRL-NN). In all experiments,
STL-NN, MT-NN, MTFRL-NN and FETR-NN share ex-
actly the same network structure: an input layer with 21
dimensions, followed by two hidden layers with 256 and
100 hidden units. The output of the network in MT-NN,
MTFRL-NN and FETR-NN is a multitask layer that con-
tains 7 output units, while in STL-NN, the output only
contains a single unit. All the methods share the same
experimental setting, including model selection. In all the
experiments we fix l = 10−3 and u = 103. The hyper-
parameters range from η ∈ {10−5, . . . , 103}, and we use
the validation set for model selection. Note that because

the instances are not shared between different tasks for
the School dataset, MT-NN, MTFRL-NN and FETR-NN
cannot be directly applied. For each method, the best
model on the validation set is selected.

The results are summarized in Table 1 (the smaller the bet-
ter). Among all the methods, FETR consistently achieves
lower test set NMSEs. Moreover, we observe a significant
improvement of both MT-NN, MTFRL-NN and FETR-NN
over all the linear baselines and STL-NN. FETR-NN fur-
ther improves over MT-NN and MTFRL-NN on all the
tasks. The experimental results confirm that multitask
learning usually improves over single task learning when
the dataset is small and tasks are related. Furthermore,
among all the competitors, we observe that nonlinear
models combined with our FETR framework give the
overall best results, demonstrating the effectiveness of the
proposed approach in both linear and nonlinear settings.

One by-product of FETR is that we also have access to
the estimated row and column covariance matrices. In
Figure 4 we plot the feature and task covariance matrices
respectively, where we can clearly observe a block diag-
onal structure: the first 4 tasks are negatively correlated
with the rest 3, and the 5th and 6th task are positively cor-
related. Intuitively, these correlations are consistent with
the SARCOS dataset where several joints move jointly.

7 CONCLUSIONS

In this paper we point out a common flaw in the existing
multitask feature and relationship learning frameworks,
and propose a constrained variant to fix it. Our frame-
work admits a multiconvex formulation, which allows us
to design an efficient block coordinate-wise algorithm to
optimize. To solve the weight learning subproblem, we
propose three different strategies that can be used no mat-
ter whether the instances are shared by multiple tasks or
not. To learn the covariance matrices, we reduce the un-
derlying matrix optimization subproblem to a minimum
weight perfect matching problem, and solve it exactly
in closed form. To the best of our knowledge, all the
previous methods have to resort to expensive iterative pro-
cedures to solve this problem. At the end, we also discuss
several possible extensions of the proposed framework
to nonlinear settings. Experimental results show that our
method is orders of magnitude faster than its competi-
tors, and it demonstrates significantly improved statistical
performance on two real-world datasets.

Acknowledgements

HZ and GG would like to acknowledge the support from
DARPA XAI project, contract FA87501720152. OS is
supported by a CMLH Fellowship in Digital Health and
by NIH under grant U01NS098969.

References
T. Adel, H. Zhao, and A. Wong. Unsupervised domain

adaptation with a relaxed covariate shift assumption.
In AAAI, pages 1691–1697, 2017.

A. Argyriou, M. Pontil, Y. Ying, and C. A. Micchelli. A
spectral regularization framework for multi-task struc-
ture learning. In Advances in Neural Information Pro-
cessing Systems, 2007.

A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-
task feature learning. Machine Learning, 73(3):243–
272, 2008.

R. H. Bartels and G. Stewart. Solution of the matrix
equation AX+ XB= C [F4]. Communications of the
ACM, 15(9):820–826, 1972.

R. Bhatia and P. Rosenthal. How and why to solve the
operator equation ax- xb= y. Bulletin of the London
Mathematical Society, 29(01):1–21, 1997.

E. V. Bonilla, F. V. Agakov, and C. Williams. Kernel
multi-task learning using task-specific features. In In-
ternational Conference on Artificial Intelligence and
Statistics, pages 43–50, 2007.

S. Boyd and L. Vandenberghe. Convex optimization.
2004.

J.-F. Cai, E. J. Candès, and Z. Shen. A singular value
thresholding algorithm for matrix completion. SIAM
Journal on Optimization, 20(4):1956–1982, 2010.

R. Caruana. Multitask learning. Machine learning, 28(1):
41–75, 1997.

J. Chen, J. Zhou, and J. Ye. Integrating low-rank and
group-sparse structures for robust multi-task learning.
In Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 42–50. ACM, 2011.

J. Chen, J. Liu, and J. Ye. Learning incoherent sparse and
low-rank patterns from multiple tasks. ACM Transac-
tions on Knowledge Discovery from Data (TKDD), 5
(4):22, 2012.

F. Dufossé and B. Uçar. Notes on birkhoff–von neumann
decomposition of doubly stochastic matrices. Linear
Algebra and its Applications, 497:108–115, 2016.

P. Dutilleul. The MLE algorithm for the matrix normal
distribution. Journal of Statistical Computation and
Simulation, 64(2):105–123, 1999.

A. Evgeniou and M. Pontil. Multi-task feature learning.
Advances in neural information processing systems, 19:
41, 2007.

T. Evgeniou and M. Pontil. Regularized multi–task learn-
ing. In Proceedings of the tenth ACM SIGKDD inter-
national conference on Knowledge discovery and data
mining, pages 109–117. ACM, 2004.

X. Y. Felix, A. T. Suresh, K. M. Choromanski, D. N.
Holtmann-Rice, and S. Kumar. Orthogonal random
features. In Advances in Neural Information Processing
Systems, pages 1975–1983, 2016.

H. Glanz and L. Carvalho. An expectation-maximization
algorithm for the matrix normal distribution. arXiv
preprint arXiv:1309.6609, 2013.

H. Goldstein. Multilevel modelling of survey data. Jour-
nal of the Royal Statistical Society. Series D (The Statis-
tician), 40(2):235–244, 1991.

A. K. Gupta and D. K. Nagar. Matrix variate distributions,
volume 104. CRC Press, 1999.

L. Jacob, J.-p. Vert, and F. R. Bach. Clustered multi-task
learning: A convex formulation. In Advances in neural
information processing systems, pages 745–752, 2009.

P. Jawanpuria, M. Lapin, M. Hein, and B. Schiele. Ef-
ficient output kernel learning for multiple tasks. In
Advances in Neural Information Processing Systems,
pages 1189–1197, 2015.

T. Kato, H. Kashima, M. Sugiyama, and K. Asai. Multi-
task learning via conic programming. In Advances
in Neural Information Processing Systems, pages 737–
744, 2008.

C. Li, J. Zhu, and J. Chen. Bayesian max-margin multi-
task learning with data augmentation. In International
Conference on Machine Learning, pages 415–423,
2014.

Y. Li, X. Tian, T. Liu, and D. Tao. Multi-task model and
feature joint learning. In Proceedings of the 24th In-
ternational Conference on Artificial Intelligence, pages
3643–3649. AAAI Press, 2015.

J. Liu, S. Ji, and J. Ye. Multi-task feature learning via
efficient l 2, 1-norm minimization. In Proceedings of
the twenty-fifth conference on uncertainty in artificial
intelligence, pages 339–348. AUAI Press, 2009.

M. Long, Z. Cao, J. Wang, and S. Y. Philip. Learning
multiple tasks with multilinear relationship networks.
In Advances in Neural Information Processing Systems,
pages 1593–1602, 2017.

Y. Nesterov. Introductory lectures on convex optimiza-
tion: A basic course, volume 87. Springer Science &
Business Media, 2013.

A. Rahimi and B. Recht. Random features for large-scale
kernel machines. In Advances in neural information
processing systems, pages 1177–1184, 2008.

B. Roś, F. Bijma, J. C. de Munck, and M. C. de Gunst.
Existence and uniqueness of the maximum likelihood
estimator for models with a kronecker product covari-
ance structure. Journal of Multivariate Analysis, 143:
345–361, 2016.

O. Sener and V. Koltun. Multi-task learning as multi-
objective optimization. In Advances in Neural Infor-
mation Processing Systems, pages 527–538, 2018.

J. R. Shewchuk et al. An introduction to the conjugate
gradient method without the agonizing pain, 1994.

S. Thrun. Explanation-based neural network learning. In
Explanation-Based Neural Network Learning, pages
19–48. Springer, 1996.

S. Vijayakumar and S. Schaal. Locally weighted projec-
tion regression: Incremental real time learning in high
dimensional space. In Proceedings of the Seventeenth
International Conference on Machine Learning, pages
1079–1086. Morgan Kaufmann Publishers Inc., 2000.

Y. Zhang. Supervision reduction by encoding extra infor-
mation about models, features and labels. 2011.

Y. Zhang and J. G. Schneider. Learning multiple tasks
with a sparse matrix-normal penalty. In Advances in
Neural Information Processing Systems, pages 2550–
2558, 2010.

Y. Zhang and D.-Y. Yeung. A convex formulation
for learning task relationships in multi-task learning.
2010a.

Y. Zhang and D.-Y. Yeung. Multi-task learning using
generalized t process. In AISTATS, pages 964–971,
2010b.

H. Zhao, S. Zhang, G. Wu, J. P. Costeira, J. M. Moura,
and G. J. Gordon. Multiple source domain adaptation
with adversarial training of neural networks. arXiv
preprint arXiv:1705.09684, 2017.

H. Zhao, S. Zhang, G. Wu, J. M. Moura, J. P. Costeira,
and G. J. Gordon. Adversarial multiple source domain
adaptation. In Advances in Neural Information Pro-
cessing Systems, pages 8559–8570, 2018.

H. Zhao, R. T. d. Combes, K. Zhang, and G. J. Gordon. On
learning invariant representation for domain adaptation.
In Proceedings of the 36th International Conference
on Machine Learning. ACM, 2019a.

H. Zhao, J. Hu, Z. Zhu, A. Coates, and G. Gordon. Deep
generative and discriminative domain adaptation. In
Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems, pages
2315–2317. International Foundation for Autonomous
Agents and Multiagent Systems, 2019b.

	INTRODUCTION
	PRELIMINARY
	NOTATION AND SETUP
	MATRIX-VARIATE NORMAL DISTRIBUTION
	MULTITASK FEATURE AND RELATIONSHIP LEARNING

	ILL-POSED OPTIMIZATION
	MULTICONVEX OPTIMIZATION
	OPTIMIZATION OF W
	OPTIMIZATION OF 1 AND 2

	NONLINEAR EXTENSION
	EXPERIMENTS
	CONVERGENCE ANALYSIS AND COMPUTATIONAL EFFICIENCY
	REAL-WORLD DATASETS
	SETUP AND RESULTS

	CONCLUSIONS

