
Practical Multi-fidelity Bayesian Optimization for Hyperparameter Tuning

Jian Wu
Operations Research
& Information Eng.
Cornell University
Ithaca, NY 14850

Saul Toscano-Palmerin
Operations Research
& Information Eng.
Cornell University
Ithaca, NY 14850

Peter I. Frazier
Operations Research
& Information Eng.
Cornell University
Ithaca, NY 14850

Andrew Gordon Wilson
Courant Institute

of Mathematical Sciences
New York University
New York, NY 10003

Abstract

Bayesian optimization is popular for opti-
mizing time-consuming black-box objectives.
Nonetheless, for hyperparameter tuning in deep
neural networks, the time required to evalu-
ate the validation error for even a few hy-
perparameter settings remains a bottleneck.
Multi-fidelity optimization promises relief us-
ing cheaper proxies to such objectives — for
example, validation error for a network trained
using a subset of the training points or fewer
iterations than required for convergence. We
propose a highly flexible and practical approach
to multi-fidelity Bayesian optimization, focused
on efficiently optimizing hyperparameters for
iteratively trained supervised learning models.
We introduce a new acquisition function, the
trace-aware knowledge-gradient, which effi-
ciently leverages both multiple continuous fi-
delity controls and trace observations — val-
ues of the objective at a sequence of fidelities,
available when varying fidelity using training
iterations. We provide a provably convergent
method for optimizing our acquisition function
and show it outperforms state-of-the-art alterna-
tives for hyperparameter tuning of deep neural
networks and large-scale kernel learning.

1 INTRODUCTION

In hyperparameter tuning of machine learning models, we
seek to find hyperparameters x in some set A ⊆ Rd to
minimize the validation error f(x), i.e., to solve

min
x∈A

f(x) (1.1)

Evaluating f(x) can take substantial time and compu-
tational power (Bergstra and Bengio, 2012) and may

not provide gradient evaluations. Bayesian optimization,
which requires relatively few function evaluations, pro-
vides a compelling approach to such optimization prob-
lems (Jones et al., 1998; Snoek et al., 2012).

As the computational expense of training and testing a
modern deep neural network for a single set of hyperpa-
rameters has grown, researchers have sought to supplant
some evaluations of f(x) with computationally inexpen-
sive low-fidelity approximations. Conceputally, an algo-
rithm can use low-fidelity evaluations to quickly identify
a smaller set of promising hyperparameters, and then later
focus more expensive high-fidelity evaluations within this
set to refine its estimates.

Pioneering multi-fidelity approaches focused on hyper-
parameter tuning for deep neural networks include the
Bayesian optimization methods FaBOLAS (Klein et al.,
2017a, 2015), Freeze-Thaw Bayesian Optimization (Swer-
sky et al., 2014), BOHB (Falkner et al., 2018), BOCA
(Kandasamy et al., 2017), predictive entropy search for
a single continuous fidelity (McLeod et al., 2017), early-
stopping SMAC (Domhan et al., 2015), and the bandit
method Hyperband (Li et al., 2018). This work builds
on earlier multi-fidelity and multi-information source op-
timization approaches (Huang et al., 2006; Lam et al.,
2015; Poloczek et al., 2017) not focused on hyperparame-
ter tuning.

Validation error approximations used by these methods
perform the same training and testing steps as in standard
Bayesian optimization but control fidelity by reducing
training iterations, training data points, or validation data
points. For tuning iteratively trained machine learning
models like deep neural networks, these approximations
present unique opportunities almost entirely unexplored
in the multifidelity literature, even within the portion fo-
cused on hyperparameter tuning. First, we observe a full
trace of performance with respect to training iterations
rather than just a single performance value at the chosen
fidelity: while training with s iterations, we also calcu-

late as a byproduct a sequence of models fitted with fewer
training iterations. Second, by caching state after complet-
ing s iterations, we can significantly reduce computation
time when later training with s′ > s iterations. This al-
lows quickly evaluating low-fidelity approximations to
the validation error using few training iterations for many
hyperparameter settings, then later obtaining more accu-
rate observations for the most promising ones by adding
iterations. Third, we may simultaneously alter fidelity
along several continuous dimensions (iterations, training
data, validation data), rather than modifying one continu-
ous fidelity control or choosing from among a discrete set
of ambiguously related fidelities.

The knowledge-gradient (KG) approach to acquisition
function design (Frazier et al., 2009; Frazier, 2018) is
well-suited to taking advantage of these opportunities
to perform better multi-fidelity optimization. First, KG
overcomes a shortcoming of expected improvement (EI)
(Mockus, 1989). EI considers the predictive distribution
at the sampled hyperparameter and fidelity only, not the
information that sample provides about other fidelities
and hyperparameters. However, the entire value of sam-
pling a low fidelity is the information provided about
the highest fidelity. Thus, EI does not offer clear guid-
ance about which fidelity to sample and may make poor
choices about which hyperparameters to sample with low-
fidelity evaluations. Second, KG overcomes a shortcom-
ing of entropy search (ES) (Hennig and Schuler, 2012)
and predictive entropy search (PES) (Hernández-Lobato
et al., 2014). ES and PES acquisition functions are op-
timized with derivative-free optimization (Klein et al.,
2017a, 2015; Swersky et al., 2014; McLeod et al., 2017)
while KG acquisition functions can often be optimized
using more efficient gradient-based optimization (Wu and
Frazier, 2016).

In this paper, we propose the trace-aware knowledge gra-
dient (taKG) for Bayesian optimization with multiple
fidelities for tuning hyperparameters in iterative machine
learning algorithms. taKG is distinctive in that it lever-
ages both trace information and multiple fidelity controls
at once, efficiently selecting training size, validation size,
number of training iterations, and hyperparameters to
optimize. Moreover, we provide a provably-convergent
method for maximizing this acquisition function. taKG
addresses the challenges presented by trace observations
by considering the reduced cost of adding iterations at a
previously evaluated point, and using an intelligent selec-
tion scheme to choose a subset of the observed training
iterations to include in inference. Additionally, taKG can
be used in batch or sequential settings, and can efficiently
leverage gradient information if it is available.

We present two variants of our trace-aware knowledge-

gradient acquisition function, one for when the cost of
sampling is substantial for any fidelity, and the other for
when the cost vanishes as fidelity decreases to 0. The
first form we refer to simply as taKG, and the second as
0-avoiding taKG (taKG∅) because it avoids the tendency
of other multi-fidelity methods to measure repeatedly at
near-0 fidelities even when these low fidelities provide
almost no useful information. Alternative approaches
(McLeod et al., 2017; Klein et al., 2017a) add and tune
a fixed cost per sample to avoid this issue, while taKG∅

does not require tuning.

Furthermore, we present a novel efficient method to opti-
mize these acquisition functions, even though they cannot
be evaluated in closed form. This method first constructs
a stochastic gradient estimator which it then uses within
multistart stochastic gradient ascent (SGA). We show that
our stochastic gradient estimator is unbiased and thus
asymptotically consistent, and the resulting SGA proce-
dure converges to a local stationary point of the acqui-
sition function. Multi-start SGA can then produce an
approximate global optimum.

Within the literature on KG methods, only Poloczek et al.
(2017) considers multi-fidelity optimization. We go be-
yond that work in supporting multiple continuous fideli-
ties and trace observations and proposing 0-avoidance.
All provide important benefits in hyperparameter tuning.

Our numerical experiments demonstrate significant im-
provement over state-of-the-art alternatives including
FaBOLAS (Klein et al., 2017a, 2015), Hyperband (Li
et al., 2018), and BOCA (Kandasamy et al., 2017). Our
approach also applies to problems without trace observa-
tions that use continuous fidelity controls, and we show
strong performance in this setting. While our presentation
focuses on continuous hyperparameters, our acquisition
functions (though not our SGA approach) can be extended
to categorical and integer-valued hyperparameters using
the method of Garrido-Merchán and Hernández-Lobato
(2018). We discuss this in the supplement.

Efficient and flexible multifidelity optimization is of cru-
cial practical importance, as evidenced by growing mo-
mentum in this research area. Although Bayesian opti-
mization has shown great promise for tuning hyperparam-
eters of machine learning algorithms, computational bot-
tlenecks have remained a major deterrent to mainstream
adoption. With taKG, we leverage crucial trace informa-
tion while simultaneously providing support for several
fidelity controls, providing remarkably efficient optimiza-
tion of expensive objectives. This work is intended as a
step towards the renewed practical adoption of Bayesian
optimization for machine learning.

Below, §2 presents our acquisition function and analysis,

§3 presents numerical experiments, and §4 concludes.

2 THE taKG AND taKG∅ ACQUISTION
FUNCTIONS

In this section we define the trace-aware knowledge-
gradient acquisition function. §2.1 defines our formula-
tion of multi-fidelity optimization with traces and contin-
uous fidelities, along with our inference procedure. §2.2
describes a measure of expected solution quality possible
after observing a collection of fidelities within a trace.
§2.3 uses this measure to define the taKG acquisition
function, and §2.4 defines an improved version, taKG∅,
appropriate for settings in which the the cost vanishes as
fidelity declines to 0. §2.5 then presents a computational
approach for maximizing the taKG and taKG∅ acquisi-
tion functions and theoretical results justifying their use.
§2.6 discusses warm-starting previously stopped traces,
and §2.7 briefly discusses generalizations to batch and
derivative observations.

2.1 Problem Setting

We model our objective function and its inexpensive ap-
proximations by a real-valued function g(x, s) where our
objective is f(x) := g(x, 1) and s ∈ [0, 1]m denotes the
m fidelity-control parameters. (Here, 1 in g(x,1) is a
vector of 1s. Boldface denotes vectors throughout.) We
assume that our fidelity controls have been re-scaled so
that 1 is the highest fidelity and 0 the lowest. g(x, s) can
be evaluated, optionally with noise, at a cost depending
on x and s.

We let T (s) be the additional fidelities observable from
already-collected data when observing fidelity s. (T de-
notes “trace”.) Although our framework can be easily
generalized, we assume that T (s) is a cross product of
sets of the form [0, si] (trace fidelities) or {si} (non-trace
fidelities). We also assume that the cost of evaluation is
non-decreasing in each component of the fidelity.

For example, consider hyperparameter tuning withm = 2
fidelities: first is the number of training iterations; second
is the amount of training data. Each is bounded between
0 and some maximum value: s1 ∈ [0, 1] specifies training
iterations as a fraction of this maximum value, and s2 ∈
[0, 1] specifies the number of training data points similarly.
Then, T (s) = [0, s1]×{s2} because when training up to a
fraction s1 of the maximum number of iterations, it is easy
to simultaneously compute the validation error for fewer
iterations. If the amount of validation data is another trace
fidelity, we would have: T (s) = [0, s1]× {s2} × [0, s3].

We model g using Gaussian process regression jointly
over x and s, assuming that observations are perturbed

by independent normally distributed noise with mean 0
and variance λ2. Each evaluation consists of x, a vec-
tor of fidelities s, and a noisy observation of g(x, s′) for
each fidelity s′ in T (s). For computational tractability, in
our inference, we will choose to retain and incorporate
observations only from a subset S ⊆ T (s) of these fideli-
ties with each observation. After n such evaluations, we
will have a posterior distribution on g that will also be a
Gaussian process, and whose mean and kernel we refer to
by µn and Kn. The supplement describes this inference
framework in more detail.

We model the logarithm of the cost of evaluating g using a
separate Gaussian process, updated after each evaluation,
and let cn(x, s) be the predicted cost after n evaluations.
We assume for now that the cost of evaluation does not
depend on previous evaluations, and then discuss later in
§2.6 an extension to warm-starting evaluation at higher
fidelities using past lower-fidelity evaluations.

2.2 Valuing Trace Observations

KG acquisition functions (Frazier et al., 2009) value an
observation by how it improves expected solution quality.
They are like EI, except that the “improvement” need not
occur at the sampled point. To support defining taKG
and taKG∅, we define a function Ln that quantifies ex-
pected solution quality. Given any x and set of fidelities
S, Ln(x, S) will be the expected loss (with respect to the
posterior after n samples) of our final solution to (1.1) if
we are allowed to first observe x at all fidelities in S.

To define this more formally, let En indicate the expecta-
tion with respect to the posterior Pn after n evaluations.
Let y(x, S) = (g(x, s) + ε(x, s) : s ∈ S) be a random
vector comprised of observations of g(x, s) for all s ∈ S
with additive independent Gaussian noise ε(x, s). Then,
the conditional expected loss from choosing a solution x′

to (1.1) after this observation is En [g(x
′,1) | y(x, S)].

This quantity is a function of x, S, y(x, S), and the first
n evaluations, and can be computed explicitly using for-
mulas from GP regression given in the supplement.

We would choose the solution for which this is
minimized, giving a conditional expected loss of
minx′ En [g(x

′,1) | y(x, S)]. This is a random variable
under Pn whose value depends on y(x, S). We finally
take the expected value under Pn to obtain Ln(x, S):

Ln(x, S) := En

[
min
x′

En [g(x
′,1) | y(x, S)]

]
=

∫
Pn (y(x, S)=y)min

x′
En [g(x

′, 1) |y(x, S)=y] dy,

where the integral is over all y ∈ R|S|.

We compute this quantity using simulation. To cre-

ate one replication of this simulation we first simulate
(g(x, s) : s ∈ S) from Pn. We then add simulated noise
to this quantity to obtain a simulated y(x, S). We then
update our posterior distribution on g using this simulated
data, allowing us to compute En [g(x

′,1) | y(x, S)] for
any given x′ as a predicted value from GP regression. We
then use a continuous optimization method designed for
inexpensive evaluations with gradients (e.g., multi-start
L-BFGS) to optimize this value, giving one replication
of minx′ En [g(x

′,1) | y(x, S)]. We then average many
replications to give an unbiased and asymptotically con-
sistent estimate of Ln(x, S).

We also define Ln(∅) = minx′ En [g(x
′,1)]. This is the

minimum expected loss we could achieve by selecting
a solution without observing any additional information.
This is equal to Ln(x, ∅) for any x.

With these definitions in hand, we now define the taKG
and taKG∅ acqisition functions.

2.3 Trace-aware Knowledge Gradient (taKG)

The taKG acquisition function values an observation of a
point and a collection of fidelities according to the ratio
of the reduction in expected loss (as measured using Ln)
that it induces, to its computational cost.

The reduction in expected loss due to sampling at x and
collection of fidelities S is VOIn(x, S) := Ln(∅) −
Ln(x, S). This is also called the value of information
(Howard, 1966).

We model the cost of observing at all fidelity vectors
in S to be the cost of evaluating g at a single fidelity
vector equal to the elementwise maximum, maxS :=
(maxs∈S si : 1 ≤ i ≤ m). This is the least expensive
fidelity at which we could observe S.

Thus, the taKG acquisition function at a point x and set
of fidelities S is

taKGn(x, S) :=
Ln(∅)− Ln(x, S)

cn(x,maxS)
.

While evaluating x at a fidelity s in principle provides
observations of g(x, s′) at all s′ ∈ T (s), allowing S to
be as large as T (s), we choose to retain and include in
our inference only a strict subset of the observed fidelities
S ⊂ T (s). This reduces computational overhead in GP
regression. In our numerical experiments, we take the
cardinality of S to be either 2 or 3, though the approach
also allows increased cardinality.

The taKG algorithm chooses to sample at the point x,
fidelity s, and additional lower-fidelity point(s) S \ {s} to
retain that jointly maximize the taKG acquisition function,

among all fidelity sets S with limited cardinality `.

max
x,s,S:S⊆T (s),|S|=`,s∈S

taKGn (x, S) . (2.1)

This is a continuous optimization problem whose decision
variable is described by d+`m1+m2 real numbers, where
m1 is the number of trace fidelities and m2 the number of
non-trace fidelities. d describe x, m = m1+m2 describe
s, and (`− 1)m1 describe S \ {s}.

2.4 0-avoiding taKG (taKG∅)

The taKG acquisition function uses the value of infor-
mation per unit cost of sampling. When the value of
information and cost become small simultaneously, as
when we shrink training iterations or training data to 0,
this ratio becomes sensitive to misspecification of the GP
model on g. We first discuss this issue, and then develop
a version of taKG for these settings.

To understand this issue, we first observe in Proposition 1
that the value of information for sampling g(x, s), for any
s, is strictly positive when the kernel has strictly positive
entries. Proofs for all results are in the supplement.

Proposition 1 If the kernel function
Kn((x, s), (x

′, 1)) > 0 for any x,x′ ∈ A, then
for any x ∈ A and any s ∈ [0, 1]m, VOIn(x, {s}) > 0.

Proposition 1 holds even if s has some or all components
set to 0. Thus, if the estimated cost at such extremely low
fidelities is small relative to the (strictly positive) value of
information there, taKG may be drawn to sample them,
even though the value of information is small. We may
even spend a substantial portion of our budget evaluating
g(x,0) at different x. This is usually undesirable.

For example, with training iterations as our single fi-
delity, fidelity 0 corresponds to training a machine learn-
ing model with no training iterations. This would return
the validation error on initial model parameter estimates.
While this likely provides some information about the val-
idation error of a fully trained model, specifying a kernel
over g that productively uses this information from a large
number of hyperparameter sets x would be challenging.

This issue becomes even more substantial when consid-
ering training iterations and training data together: cost
nearly vanishes as either fidelity vanishes, creating many
fidelities at each x that we may be drawn to oversample.
This issue also harms entropy search methods (Klein et al.,
2017a; McLeod et al., 2017; Klein et al., 2017b) using
the ratio of information gain to cost.

To deal with this issue, Klein et al. (2017a); McLeod et al.
(2017) artificially inflate the cost of evaluating at fidelity 0

to penalize low fidelity evaluations. Similarly, Klein et al.
(2017b) recommends adding a fixed cost to all evaluations
motivated by the overhead of optimizing the acquisition
function, but then recommends setting this to the same or-
der of magnitude as a full-fidelity evaluation even though
the overhead associated with optimizing a BO acquisition
function using well-written code and efficient methodol-
ogy will usually be substantially smaller. As a result, any
fixed cost must be tuned to the application setting to avoid
oversampling at excelssively small fidelities while still
allowing sampling at moderate fidelities.

We propose an alternate solution that works well without
tuning when the cost of evaluation becomes small as the
smallest component in s approaches 0.

We first define Z(s) = ∪mi=1{s′ : s′i = 0, s′j = si ∀j 6=
i} to be the set of fidelities obtained by replacing one
component of s by 0. (Z stands for “zero”.) We then
let Z(S) = ∪s∈SZ(s). For example, suppose s1 is a
trace fidelity (say, training iterations), s2 is a non-trace fi-
delity (say, training data size), and S = {(1/2, 1), (1, 1)},
corresponding to an evaluation of g at s = (1, 1) and
retention of the point (1/2, 1) from the trace T ((1, 1)).
Then Z(S) = {(0, 1), (1/2, 0), (1, 0)}.

Fidelities in Z(S) are extremely inexpensive to evaluate
and provide extremely small but strictly positive value of
information. We wish to avoid sampling these fidelities
even when their taKG is large.

To accomplish this, we modify our value of information
VOIn(x, S) = Ln(∅)− Ln(x, S) to suppose free obser-
vations y(x, s′) will be provided of these problematic
low-fidelity s′. Our modified value of information will
suppose these free observations will be provided to both
the benchmark, previously set to Ln(∅), and to the re-
duced expected loss, previously set to Ln(x, S), achieved
through observing x at fidelities S. The resulting modi-
fied value of information is

VOI∅n(x, S) = Ln(x, Z(S))− Ln(x, S ∪ Z(S))

We emphasize our algorithm will not evaluate g at fideli-
ties in Z(S). Instead, it will simulate these evaluations
according to the algorithm in §2.2.

We define the taKG∅ acquisition function using this mod-
ified value of information as

taKG∅n(x, S) =
VOI∅n(x, S)
cn(x,maxS)

. (2.2)

To find the point x and fidelity s to sample, we optimize
taKG∅ over x, fidelity s, and additional lower-fidelity
point(s) S \ {s} as we did in §2.3.

We refer to this VOI and acquisition function as “0-
avoiding,” because they place 0 value on fidelities with

any component equal to 0. This prevents sampling at these
fidelities as long as the sampling cost is strictly positive.

Indeed, suppose s = max(S) has a component equal
to 0. Then each element in S will have one compo-
nent equal to 0, and S ⊆ Z(S). Then VOI∅n(x, S) =
Ln(x, Z(S)) − Ln(x, Z(S) ∪ S) = 0. Moreover, the
following proposition shows that if s = max(S) has all
components strictly positive and additional regularity con-
ditions hold, then VOI∅n(x, S) is also strictly positive.

Proposition 2 If s = max(S) has all components
strictly positive, Kn is positive definite, and the hypoth-
esis of Proposition 1 is satisfied for Kn given {g(x, s) :
s ∈ Z(S)}, then VOI∅n(x, S) is strictly positive.

Thus, taKG∅ will never sample at a fidelity s with a 0
component. Additionally, under other regularity condi-
tions (see Corollary 1 in the supplement), VOI∅n(x, S) is
continuous in S, and so the property that VOI∅n(x, S) = 0
when a component of s = max(S) is 0 also discourages
sampling at s whose smallest component is close to 0.

2.5 Efficiently Maximizing taKG and taKG∅

The taKG and taKG∅ acquisition functions are defined
in terms of a hard-to-calculate function Ln(x, S). Here,
we describe how to efficiently maximize them using SGA
with multiple restarts. The heart of this method is a
simulation-based procedure for simulating a stochastic
gradient of Ln(x, S), i.e., a random variable whose ex-
pectation is the gradient of Ln(x, S) with respect to x
and the elements of S.

To construct this procedure, we first provide a more
explicit expression for Ln(x, S). Because Ln(x, S)
is the expectation of the minimum over x′ of
En [g(x

′,1) | y(x, S)], we begin with the distribution of
this conditional expectation for a fixed x′ under Pn.

This conditional expectation can be calculated with GP
regression from previous observations, the new point x
and fidelities S, and the observations y(x, S). This con-
ditional expectation is linear in y(x, S).

Moreover, y(x, S) is the sum of (g(x, s) : s ∈ S) (which
is multivariate normal under the posterior) and optional
observational noise (which is independent and normally
distributed), and so is itself multivariate normal. As a
multivariate normal random variable, it can be written
as the sum of its mean vector and the product of the
Cholesky decomposition of its covariance matrix with
an independent standard normal random vector, call it
w. (The coefficients of this mean vector and covariance
matrix may depend on x, S, and previously observed
data.) The dimension of w is the number of components

in the observation, |S|.

Thus, the conditional expected value of the objective
En [g(x

′,1) | y(x, S)] is a linear function (through GP
regression) of another linear function (through the distri-
bution of the observation) of w.

We also have that the mean of this conditional expectation
is En[En[g(x,1)|y(x, S)]] = En[g(x,1)] = µn(x) by
iterated conditional expectation.

These arguments imply the existence of a vector-valued
function σ̃n(x

′,x, S) such that En[g(x
′,1)|y(x, S)] =

µn(x
′) + σ̃n(x

′,x, S) · w simultaneously for all
x′. In the supplement, we show σ̃n(x

′,x, S) =
Kn ((x

′, 1), (x, S)) (CT
n)
−1 where (x, S) := {(x, s) :

s ∈ S} (abusing notation), and Cn is the Cholesky factor
of the covariance matrixKn ((x, S), (x, S))+λ

2I . Thus,

Ln (x, S) = En [minx′µn (x
′,1) + σ̃n (x

′,x, S) ·w] .

We now take the gradient of Ln(x, S) with respect to x
and the components of S, keeping the number of these
components fixed. Given regularity conditions stated
below, this gradient∇x,S Ln(x, S) is

∇x,S En

[
min
x′

(µn (x
′,1) + σ̃n (x

′,x, S) ·w)
]

= En

[
∇x,S min

x′
(µn (x

′,1) + σ̃n (x
′,x, S) ·w)

]
= En [∇x,S (µn (x

∗,1) + σ̃n (x
∗,x, S) ·w)]

= En [∇x,S σ̃n (x
∗,x, S) ·w] ,

where x∗ is a global minimum (over x′ ∈ A) of
µn(x

′,1)+ σ̃n(x
′,x, S) ·w, and the gradient in the third

and fourth lines are taken holding x∗ fixed even though
in reality x∗ depends on x. Here, the interchange of ex-
pectation and the gradient is justified using infinitessimal
perturbation analysis (L’Ecuyer, 1990) and ignoring the
dependence of x∗ on x and S when taking the gradient
is justified by the envelope theorem (Milgrom and Segal,
2002). Theorem 1 formalizes this.

Theorem 1 Suppose A is compact, µ0 is constant, K0 is
continuously differentiable, and argminx′∈A µn(x

′, 1) +
σ̃n (x

′,x, S) · w contains a single element x∗ (that de-
pends on w) almost surely. Then ∇x,S Ln(x, S) =
En [∇x,S σ̃(x∗,x, S) ·w].

With this result in place, we can obtain an unbiased es-
timator of ∇x,S Ln(x, S) by simulating w, calculating
x∗, and then returning∇x,S σ̃n(x

∗,x, S) ·w. Using this,
together with the chain rule and an exact gradient calcu-
lation for cn(x,maxS), we can then compute stochastic
gradients for taKG and taKG∅.

We then use this stochastic gradient estimator within
SGA (Kushner and Yin, 2003) to solve the optimization

problem (2.1) (or the equivalent problem for maximiz-
ing taKG∅). The following theorem shows that, under
the right conditions, a SGA algorithm converges almost
surely to a stationary point of taKG∅.

Theorem 2 Assume the conditions of Theorem 1, A is a
compact hyperrectangle, and cn(maxS) is continuously
differentiable and bounded below by a strictly positive
constant. In addition, assume that we optimize taKG∅

using a SGA method with the stochastic gradient from
Theorem 1 whose stepsize sequence {εt : t = 0, 1, . . .}
satisfies εt → 0, εt ≥ 0,

∑
t εt = ∞ and

∑
t ε

2
t <

∞. Then the sequence of points {xt, St}t≥0 from SGA
converges almost surely to a connected set of stationary
points of taKG∅.

Running SGA from multiple starting points and selecting
the best solution produced can then produce an approxi-
mate global optimum.

2.6 Warm-starting from Partial Runs

When tuning hyperparameters using training iterations
as a fidelity, we can cache the state of training after s
iterations and then continue training later up to a larger
number of iterations s′ for less than s′ training iterations
would cost at a new x. We call this a “warm start”.

We assume trace fidelities can be “warm-started” while
non-trace fidelities cannot. We also assume the incremen-
tal cost of evaluting fidelity vector s′ warm-starting from
s is the difference in the “cold-start” evaluation costs. We
model the cost of cold-start evaluation as in §2.1 with a
Gaussian process on log(cost). To obtain training data for
this model, costs observed from warm-started evaluations
are summed with those of the previous evaluations they
continue to approximate what the cold-start cost would be.
We set cn(x, s) to be the difference in estimated cold-start
costs if a previous evaluation would allow warm starting,
and to the estimated cold start cost if not.

While our approach to choosing x and s to evaluate is to
optimize taKG∅ as before, our computational approach
from §2.5 (Theorem 2) required that cn(x, s) be contin-
uously differentiable. This requirement is not met. To
address this, we modify how we optimize taKG∅. This
modified approach also works for taKG.

First, we maintain a basket of size at most b of previ-
ously evaluated point, fidelity pairs, (x(j), s(j)). For
each j ≤ b, we optimize taKG∅n(x(j), S) letting S vary
over those sets satisfying: (1) |S| = `; (2) s′ ≥ s(j)
componentwise for each s′ ∈ S, with equality for non-
trace fidelity components. We can use the method from
§2.5 because, over this set, cn(x(j), S) is continuously
differentiable in S.

We also optimize taKG∅n(x, S) over all S with |S| = `
and all x (not restricting to x to previously evaluated
points), setting cn(x, S) to the cold-start cost.

Among the solutions to these at most b + 1 optimiza-
tion problems, we select the x and S with the largest
taKG∅n(x, S) and evaluate g at x and max(S).

We then update our basket. We first add the x and max(S)
produced by the optimization not constraining x. If the
basket size exceeds b, we then remove the x and s whose
optimization over taKG∅n produced the smallest value. In
practice, we set b = 10.

2.7 Batch and Derivative Evaluations

taKG and taKG∅ generalize naturally following Wu and
Frazier (2016) and Wu et al. (2017) to batch settings
where we can evaluate multiple point, fidelity pairs si-
multaneously and derivative-enabled settings where we
observe gradients. The batch version uses the same ac-
quisition functions taKG and taKG∅ defined above, but
optimizes over a set of values for x and s, each of which
has an associated S ⊂ T (s) of limited cardinality. In
the derivative-enabled setting, we incorporate (optionally
noisy) gradient observations into our posterior distribu-
tion directly through GP regression. We also generalize
the taKG and taKG∅ acquisition functions to allow inclu-
sion of gradients of the objective in the set of quantities
observed y(x, S) in the definition of Ln(x, S).

3 NUMERICAL EXPERIMENTS

We compare sequential, batch, and derivative-enabled
taKG∅ with benchmark algorithms on synthetic optimiza-
tion problems (Sect. 3.1), hyperparameter optimization
of neural networks (Sect. 3.2), and hyperparameter opti-
mization for large-scale kernel learning (Sect. 3.3). The
synthetic and neural network benchmarks use fidelities
with trace observations, while the large-scale kernel learn-
ing benchmark does not. We integrate over GP hyperpa-
rameters by sampling 10 sets of values using the emcee
package (Foreman-Mackey et al., 2013). We run algo-
rithms to a maximum number of iterations, using a smaller
cutoff if an algorithm fails to make progress. A link to
the code is available in the supplementary material.

3.1 Optimizing Synthetic Functions

Here, we compare taKG∅ against both the sequential and
batch versions of the single-fidelity algorithms KG (Wu
and Frazier, 2016; Wu, 2017) and EI (Jones et al., 1998;
Wang et al., 2016), a derivative-enabled single-fidelity
version of KG (Wu et al., 2017), Hyperband (Li et al.,
2018), and the multi-fidelity method BOCA (Kandasamy

et al., 2017). BOCA is the only previous method of which
we are aware that treats multiple continuous fidelities. We
do not compare against FaBOLAS (Klein et al., 2017a,
2015) because the kernel it uses is specialized to neural
network hyperparameter tuning.

Following experiments in Kandasamy et al. (2017), we
augment four synthetic test functions, 2-d Branin, 3-d
Rosenbrock, 3-d Hartmann, and 6-d Hartmann, by adding
one or two fidelity controls, as described in the supple-
ment. We set the cost of an individual evaluation of x
at fidelity s to 0.01 +

∏
i si. Thinking of s1 as mim-

icking training data and s2 training iterations, the term∏
i si mimics a cost of training that is proportional to the

number of times a datapoint is visited in training. The
term 0.01 mimics a fixed cost associated with validating
a trained model. We set the cost of a batch evaluation
to the maximum of the costs of the individual evalua-
tions, to mimic wall-clock time for running evaluations
synchronously in parallel.

Fig. 1 shows results. We run versions of taKG∅ using
|S| set to 2 (taKG 0 2-points) and 3 (taKG 0 3-points).
Hyperband is implemented using values from Li et al.
(2018): R = 1.01 (the maximum resource that can be
consumed by a single evaluation); η = 3 (the default from
Algorithm 1); and smax = 4 (from Table 1).

Sequential taKG∅ outperforms sequential competitors (EI,
KG, BOCA) for both values of |S|. Batch taKG∅ with
batch size 8 outperforms batch competitors (EI, KG, Hy-
perband). We consider Hyperband to be a batch method
although the parallelism it leverages varies during its op-
eration. Using larger |S| improves taKG∅’s performance.

3.2 Optimizing Hyperparameters of Neural Nets

Here, we evaluate on hyperparameter optimization of
neural networks. Benchmarks include the single-fidelity
Bayesian optimization algorithms KG (Wu and Frazier,
2016) and EI (Jones et al., 1998), their batch versions,
and the state-of-art hyperparameter tuning algorithms Hy-
perBand and FaBOLAS.

taKG∅ uses two fidelity controls: the training set size and
the number of training iterations. FaBOLAS is specifi-
cally designed to use the training set size as its fidelity
control. We implement Hyperband also using the train-
ing set size as its fidelity (it can use only one fidelity).
We run Hyperband using the parameters described in
§3.1. Because Hyperband did not perform as well as ex-
pected, we also performed experiments using smax = 2
and smax = 1. smax = 1 is equivalent to random search,
and is labeled so in plots.

Following Li et al. (2018), we set the cost to the number

Figure 1: Optimizing synthetic functions: Plots show simple regret over 40 independent runs for synthetic functions with trace
observations and one or two continuous fidelity controls for 2-d Branin, 3-d Rosenbrock, 3-d Hartmann, and 6-d Hartmann problems.
q indicates batch size for fixed batch-size methods. taKG0 outperforms competitors in both sequential and batch settings.

of training examples used in training, normalized by the
number used in training with full fidelity. For example,
if full fidelity uses 105 training examples per epoch over
100 epochs, then the cost of evaluating a set of hyperpa-
rameters using 104 sub-sampled training examples per
epoch over 10 epochs is 104 × 10/(105 × 100) = 0.01.

Feedforward Neural Nets on MNIST We tune a fully
connected two-layer neural network on MNIST. The max-
imum number of epochs allowed is 20. We optimize 5
hyperparameters: learning rate, dropout rate, batch size
and the number of units at each layer.

Fig. 2 shows that sequential taKG∅ outperforms the se-
quential methods KG, EI and the multi-fidelity hyperpa-
rameter optimization algorithm FaBOLAS. taKG∅ with
batch size 4 substantially improves over batch versions of
KG and EI and the batch method Hyperband.

Convolutional Neural Nets on CIFAR-10 and SVHN
We tune convolution neural networks (CNNs) on CIFAR-
10 and SVHN. Our CNN consists of 3 convolutional
blocks and a softmax classification layer. Each convo-

lutional block consists of two convolutional layers with
the same number of filters followed by a max-pooling
layer. There is no dropout or batch-normalization layer.
We split the CIFAR-10 dataset into 40,000 training sam-
ples, 10,000 validation samples and 10,000 test samples.
We split the SVHN training dataset into 67,235 train-
ing samples and 6,000 validation samples, and use the
standard 26,032 test samples. We apply standard data
augmentation: horizontal and vertical shifts, and horizon-
tal flips. We optimize 5 hyperparameters to minimize
the classification error on the validation set: the learning
rate, batch size, and number of filters in each convolu-
tional block. We set the maximum number of training
epochs for all algorithms to 50 for CIFAR-10 and 40 for
SVHN. Because of the computational expense of train-
ing CNNs, we leave out some benchmarks, dropping
the single-fidelity method EI in favor of the structurally
similar single-fidelity method KG, and performing batch
evaluations for only some methods.

Fig. 2 shows that sequential taKG∅ outperforms its com-
petitors (including the batch method Hyperband) on both
problems. Using batch evaluations with taKG∅ on CIFAR-

Figure 2: We show the validation error for tuning feedforward neural networks on MNIST (each with 20 runs); tuning convolutional
neural networks on CIFAR-10 and SVHN (each with 10 runs); for KISS-GP kernel learning we show -log marginal likelihood
divided by the number of datapoints. q indicates batch size for fixed batch-size methods. taKG∅ outperforms competitors in both
sequential and batch settings.

10 improves performance even further. When we train us-
ing optimized hyperparameters on the full training dataset
for 200 epochs, test data classification error is ∼ 12% for
CIFAR-10 and ∼ 5% for SVHN.

3.3 Optimizing Hyperparameters for Large-scale
Kernel Learning

We test derivative-enabled taKG∅ (ta-dKG∅) in large-
scale kernel learning: the 1-d demo for KISS-GP (Wilson
and Nickisch, 2015) on the GPML website (Rasmussen
and Nickisch, 2016). In this example, we optimize 3
hyperparameters (marginal variance, length scale, and
variance of the noise) of a GP with an RBF kernel on
1 million training points to maximize the log marginal
likelihood. We evaluate both the log marginal likelihood
and its gradient using the KISS-GP framework. We use
two continuous fidelity controls: the number of training
points and the number of inducing points. We set the
maximum number of inducing points to m = 1, 000.

We compare ta-d-KG to the derivative-enabled knowledge
gradient (d-KG) (Wu et al., 2017), using both algorithms

in the sequential setting and with a batch size of 4. We
leave out methods unable to utilize derivatives (including
Hyperband and FaBOLAS), as these are likely to substan-
tially underperform. Fig. 2 shows ta-dKG∅ finds a good
solution faster than d-KG in sequential and batch settings.

4 CONCLUSION

We propose a novel multi-fidelity acquisition function,
the trace-aware knowledge-gradient, that leverages spe-
cial structure provided by trace observations, is able to
handle multiple simultaneous continuous fidelities, and
generalizes to batch and derivative settings. This acqui-
sition function uses traces to outperform state-of-the-art
hyperparameter tuning algorithms.

Acknowledgements

PIF was supported by NSF CAREER CMMI-1254298,
NSF CMMI-1536895, and AFOSR FA9550-15-1-0038.
AGW was supported by NSF IIS-1563887, an Amazon
Research Award and a Facebook Research Award.

References
Bergstra, J. and Bengio, Y. (2012). Random search for

hyper-parameter optimization. Journal of Machine
Learning Research, 13(Feb):281–305.

Domhan, T., Springenberg, J. T., and Hutter, F. (2015).
Speeding up automatic hyperparameter optimization
of deep neural networks by extrapolation of learning
curves. In International Joint Conferences on Artificial
Intelligence.

Falkner, S., Klein, A., and Hutter, F. (2018). BOHB:
Robust and efficient hyperparameter optimization at
scale. In International Conference on Machine Learn-
ing, pages 1436–1445.

Foreman-Mackey, D., Hogg, D. W., Lang, D., and Good-
man, J. (2013). emcee: the MCMC hammer. Pub-
lications of the Astronomical Society of the Pacific,
125(925):306.

Frazier, P., Powell, W., and Dayanik, S. (2009). The
knowledge-gradient policy for correlated normal be-
liefs. INFORMS Journal on Computing, 21(4):599–
613.

Frazier, P. I. (2018). A tutorial on Bayesian optimization.
arXiv preprint arXiv:1807.02811.

Garrido-Merchán, E. C. and Hernández-Lobato, D.
(2018). Dealing with categorical and integer-valued
variables in bayesian optimization with gaussian pro-
cesses. arXiv preprint arXiv:1805.03463.

Hennig, P. and Schuler, C. J. (2012). Entropy search for
information-efficient global optimization. Journal of
Machine Learning Research, 13(Jun):1809–1837.

Hernández-Lobato, J. M., Hoffman, M. W., and Ghahra-
mani, Z. (2014). Predictive entropy search for efficient
global optimization of black-box functions. In Ad-
vances in Neural Information Processing Systems.

Howard, R. (1966). Information Value Theory. IEEE
Transactions on Systems Science and Cybernetics,
2(1):22–26.

Huang, D., Allen, T., Notz, W., and Miller, R. (2006).
Sequential kriging optimization using multiple-fidelity
evaluations. Structural and Multidisciplinary Optimiza-
tion, 32(5):369–382.

Jones, D. R., Schonlau, M., and Welch, W. J. (1998).
Efficient global optimization of expensive black-box
functions. Journal of Global Optimization, 13(4):455–
492.

Kandasamy, K., Dasarathy, G., Schneider, J., and Poczos,
B. (2017). Multi-fidelity Bayesian optimisation with
continuous approximations. In International Confer-
ence on Machine Learning.

Klein, A., Bartels, S., Falkner, S., Hennig, P., and Hutter,
F. (2015). Towards efficient Bayesian optimization
for big data. In NIPS 2015 Bayesian Optimization
Workshop.

Klein, A., Falkner, S., Bartels, S., Hennig, P., and Hutter,
F. (2017a). Fast Bayesian optimization of machine
learning hyperparameters on large datasets. In Artificial
Intelligence and Statistics.

Klein, A., Falkner, S., Mansur, N., and Hutter, F. (2017b).
RoBO: A flexible and robust Bayesian optimization
framework in python. In NIPS 2017 Bayesian Opti-
mization Workshop.

Kushner, H. and Yin, G. G. (2003). Stochastic Approx-
imation and Recursive Algorithms and Applications,
volume 35. Springer Science & Business Media.

Lam, R., Allaire, D., and Willcox, K. (2015). Multifi-
delity optimization using statistical surrogate model-
ing for non-hierarchical information sources. In 56th
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Conference, page 0143.

L’Ecuyer, P. (1990). A unified view of the IPA, SF, and LR
gradient estimation techniques. Management Science,
36(11):1364–1383.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A.,
and Talwalkar, A. (2018). Hyperband: A novel bandit-
based approach to hyperparameter optimization. Jour-
nal of Machine Learning Research.

McLeod, M., Osborne, M. A., and Roberts, S. J. (2017).
Practical Bayesian optimization for variable cost objec-
tives. arXiv preprint arXiv:1703.04335.

Milgrom, P. and Segal, I. (2002). Envelope theorems for
arbitrary choice sets. Econometrica, 70(2):583–601.

Mockus, J. (1989). The Bayesian approach to local opti-
mization. Springer.

Poloczek, M., Wang, J., and Frazier, P. I. (2017). Multi-
information source optimization. In Advances in Neu-
ral Information Processing Systems.

Rasmussen, C. E. and Nickisch, H. (2016). Doc-
umentation for GPML Matlab code version 4.2.
http://www.gaussianprocess.org/gpml/code/matlab/doc/,
accessed 2019-06-30.

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Prac-
tical Bayesian optimization of machine learning algo-
rithms. In Advances in Neural Information Processing
Systems.

Swersky, K., Snoek, J., and Adams, R. P. (2014).
Freeze-thaw Bayesian optimization. arXiv preprint
arXiv:1406.3896.

Wang, J., Clark, S. C., Liu, E., and Frazier, P. I. (2016).
Parallel Bayesian global optimization of expensive
functions. arXiv preprint arXiv:1602.05149.

Wilson, A. G. and Nickisch, H. (2015). Kernel inter-
polation for scalable structured Gaussian processes
(KISS-GP). In International Conference on Machine
Learning.

Wu, J. (2017). Knowledge Gradient Methods for Bayesian
Optimization. PhD thesis, Cornell University.

Wu, J. and Frazier, P. (2016). The parallel knowledge
gradient method for batch Bayesian optimization. In
Advances in Neural Information Processing Systems.

Wu, J., Poloczek, M., Wilson, A. G., and Frazier, P. I.
(2017). Bayesian optimization with gradients. In Ad-
vances in Neural Information Processing Systems.

	INTRODUCTION
	THE taKG AND taKG ACQUISTION FUNCTIONS
	Problem Setting
	Valuing Trace Observations
	Trace-aware Knowledge Gradient (taKG)
	0-avoiding taKG (taKG)
	Efficiently Maximizing taKG and taKG
	Warm-starting from Partial Runs
	Batch and Derivative Evaluations

	NUMERICAL EXPERIMENTS
	Optimizing Synthetic Functions
	Optimizing Hyperparameters of Neural Nets
	Optimizing Hyperparameters for Large-scale Kernel Learning

	CONCLUSION

