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Abstract

While MCMC methods have become a main
work-horse for Bayesian inference, scaling them
to large distributed datasets is still a challenge.
Embarrassingly parallel MCMC strategies take
a divide-and-conquer stance to achieve this by
writing the target posterior as a product of sub-
posteriors, running MCMC for each of them in
parallel and subsequently combining the results.
The challenge then lies in devising efficient ag-
gregation strategies. Current strategies trade-
off between approximation quality, and costs of
communication and computation. In this work,
we introduce a novel method that addresses these
issues simultaneously. Our key insight is to intro-
duce a deep invertible transformation to approx-
imate each of the subposteriors. These approx-
imations can be made accurate even for com-
plex distributions and serve as intermediate rep-
resentations, keeping the total communication
cost limited. Moreover, they enable us to sam-
ple from the product of the subposteriors us-
ing an efficient and stable importance sampling
scheme. We demonstrate that the approach out-
performs available state-of-the-art methods in a
range of challenging scenarios, including high-
dimensional and heterogeneous subposteriors.

1 INTRODUCTION

Markov Chain Monte Carlo (MCMC) algorithms have ce-
mented themselves as a cornerstone of practical Bayesian
analysis. Nonetheless, accommodating large distributed
datasets is still a challenge. For this purpose, methods have
been proposed to speed up inference either using mini-
batches (e.g. Ma et al., 2015; Quiroz et al., 2018) or ex-
ploiting parallel computing (e.g. Ahn et al., 2014; Johnson
et al., 2013), or combinations thereof. For a comprehen-
sive review about scaling up Bayesian inference, we refer

to Angelino et al. (2016) and Robert et al. (2018).

A particularly efficient class of parallel algorithms are em-
barrassingly parallel MCMC methods, which employ a
divide-and-conquer strategy to obtain samples from the
posterior

p(θ|D) ∝ p(θ)p(D|θ),
where p(θ) is a prior, p(D|θ) is a likelihood function
and the data D are partitioned into K disjoint subsets
D1, . . . ,DK . The general idea is to break the global infer-
ence into smaller tasks and combine their results, requir-
ing coordination only in the final aggregation stage. More
specifically, the target posterior is factorized as

p(θ|D) ∝
K∏

k=1

p(θ)1/Kp(Dk|θ), (1)

and the right-hand-side factors, referred to as subposteri-
ors, are independently sampled from—in parallel—using
an MCMC algorithm of choice. The results are then cen-
tralized in a coordinating server and aggregated. The core
challenge lies in devising strategies which are both accu-
rate and computationally convenient to combine subposte-
rior samples.

The seminal work of Scott et al. (2016) approximates pos-
terior samples as weighted averages of subposterior sam-
ples. Neiswanger et al. (2014) proposed parametric, semi-
parametric and non-parametric strategies, the two former
being based on fitting kernel density estimators to the sub-
posterior samples. Wang et al. (2015) used random par-
tition trees to learn a discrete approximation to the pos-
terior. Nemeth and Sherlock (2018) fitted Gaussian pro-
cess approximations to the log-subposteriors and took the
product of their expected values. Except for the parametric
method, which imposes overly simplistic local approxima-
tions that generally result in poor approximations of the tar-
get posterior, all of the aforementioned approaches require
the subposterior samples to be centralized, incurring exten-
sive communication costs. In fact, communication costs
have been altogether ignored in the literature so far. Fur-
thermore, sampling from the approximate posterior can be-



come difficult, requiring expensive additional MCMC steps
to obtain samples from the combined posterior.

In this work, we propose a novel embarrassingly parallel
MCMC strategy termed non-volume-preserving aggrega-
tion product (NAP), which addresses the aforementioned
issues while providing accurate posterior samples. Our
work builds on the insight that subposteriors of arbitrary
complexity can be mapped to densities of tractable form,
making use of real non-volume preserving trasformations
(real NVP), a recently developed class of neural-network
based invertible transformations (Dinh et al., 2017). This
enables us to accurately evaluate the subposterior densities
and sample from the combined posterior using importance
sampling. We prove that, under mild assumptions, our im-
portance sampling scheme is stable, i.e., estimates for a test
function h have finite variance.

Experimental results show that NAP outperforms state-of-
the art methods in several situations, including heteroge-
neous subposteriors and intricate-shaped, multi-modal or
high-dimensional posteriors. Finally, the proposed strategy
results in communication costs which are constant in the
number of subposterior samples, which is an appealing fea-
ture when communication between machines holding data
shards and the server is expensive or limited.

The remainder of this work proceeds as follows. Section 2
introduces our method, covering the required background
on real NVP transformations. Section 3 presents experi-
mental results. We conclude with a discussion on the re-
sults and possible unfoldings of this work in Section 4.

2 METHOD

In this work, we employ real NVP transformations to ap-
proximate subposteriors using samples obtained from in-
dependent MCMC runs. In the following subsections, we
1) review the basics of real NVP transformations; 2) dis-
cuss how to combine them using importance sampling and
3) how to obtain samples from the approximate posterior
using sampling/importance resampling.

2.1 REAL NVP DENSITY ESTIMATION

Real NVP (Dinh et al., 2017) is a class of deep generative
models in which a D-dimensional real-valued quantity of
interest x is modeled as a composition of bijective transfor-
mations from a base latent variable z, with known density
function pZ , i.e.:

x = gL ◦ gL−1 ◦ . . . ◦ g1(z) = g(z),

such that gl : RD → RD for all 1 ≤ l ≤ L. The den-
sity pX(x) is then obtained using the change-of-variable
formula

pX(x) = pZ
(
f(x)

)∣∣∣∣det
∂f(x)

∂x>

∣∣∣∣, (2)

where

f = f1 ◦ f2 ◦ . . . ◦ fL = g−11 ◦ g−12 ◦ . . . ◦ g−1L = g−1.

To make (2) tractable, it is composed as follows. Let Il ⊂
{1, . . . , D} be a pre-defined proper subset of indices with
cardinality |Il|, and denote its complement by Il. Then,
each transformation v′ = fl(v) is computed as:

v′Il = vIl
v′Il

= vIl � exp{sl(vIl)}+ tl(vIl), (3)

where � is an element-wise product. The functions sl, tl :

R|Il| → R|Il| are deep neural networks, which perform
scale and translation, respectively. In particular, the Jaco-
bian of fl, has the form

∂v′

∂v
=

[
I|Il| 0
∂v′

Il

∂vIl
diag

(
exp{sl(vIl)}

)] ,
which avoids explicit computation of the Jacobian of the
functions sl and tl. For observed data (x1, . . . , xN ), the
weights of the networks sl and tl that implicitly parameter-
ize pX are estimated via maximum likelihood.

Sampling from pX is inexpensive and resumes to sampling
z ∼ pZ , and computing x = g(z). Here, each gl is of the
form

vIl = v′Il
vIl = (v′Il

− tl(v′Il))� exp{−sl(v′Il)}, (4)

where (4) is obtained from (3) by straightforward inversion.

2.2 COMBINING LOCAL INFERENCES

Consider now a factorization of a target posterior den-
sity p(θ|D) into a product of K subposteriors according
to Equation (1). In embarrassingly parallel MCMC, each
worker runs MCMC independently on its respective sub-
posterior,

pk(θ) :=
1

Zk
p(θ)1/Kp(Dk|θ),

to obtain a set of draws {θ(k)s }Ss=1 from pk(θ). The goal is
then to produce draws from an approximate target posterior
p
∧
(θ) ≈ p(θ|D), using theK sets of subposterior samples as

input. This requires estimating the densities pk(θ) from the
subposterior samples, and sampling from the distribution
induced by the product of approximations

p
∧
(θ) ∝ p∧1(θ)p

∧
2(θ) . . . p

∧
K(θ), (5)

typically resulting in a trade-off between accuracy and
computational efficiency.



In this work, we make use of the fact that bijective transfor-
mations using real NVP offers both accurate density esti-
mation and computationally efficient sampling for arbitrar-
ily complex distributions. To this end, we first fit a separate
real NVP network to estimate each pk as p

∧
k. The networks

are then sent to a server that approximates the global pos-
terior as in Equation (5).

In a typical scenario, one would ultimately be interested
in using p

∧
to compute the expectation of some function

h : RD → R, such as a predictive density or a utility func-
tion. In our case, straightforward importance sampling can
be used to weight samples drawn from any of the subpos-
teriors. Thus, given a set of T samples drawn from any p

∧
k,

we obtain the estimate:

h(θ) =

T∑
t=1

wth(θt),

where the importance weights w1, . . . , wT are normalized
to sum to one, and given by

wt ∝
∏K

k′=1 p
∧
k′(θt)

p
∧
k(θt)

. (6)

This strategy capitalizes on the key properties of real NVP
transformations—ease of evaluation and sampling—and
avoids the burden of running still more MCMC chains to
sample from the aggregated posterior p

∧
(θ), which might be

a complicated target due to the underlying neural networks.

While importance sampling estimates can be unreliable if
their variance is very high or infinite, we can provide guar-
antees that h(θ) has finite variance. Geweke (1989) showed
that, for a broad class of test functions, it suffices to prove
that

∏K
k′=1 p

∧
k′(θ)/p

∧
k(θ) ≤ M ∀θ, i.e., the importance

weights are bounded. We first note that the denominator
of the weight in Equation (6) is included as a factor in the
numerator, so that p

∧
k(θ) = 0 ⇒ ∏K

k′=1 p
∧
k′(θ) = 0. The

remaining thing to check is that p
∧
k(θ) is bounded for all k

and all θ.

We begin by making the following assumption on the struc-
ture of the neural networks which define the real NVP
transformations.

Assumption 1. The neural networks s(k)1 , . . . , s(k)L asso-
ciated with the real NVP estimate p

∧
k are equipped with

bounded activation functions in their individual output lay-
ers.

Remark 1. Note that Assumption 1 is satisfied, for exam-
ple, when the activation functions in the last layer of the
scale networks are the hyperbolic tangent or the logistic
function.

We place no further assumption on the structure of the re-
maining layers of s(k)1 , . . . , s

(k)
L or in the overall structure

of the translation networks t(k)1 , . . . , t
(k)
L .

With the additional condition that we choose an appropriate
density for the base variable of the NVP network, we can
prove that p

∧
k itself is bounded.

Lemma 2.1. Given a bounded base density pZ , the distri-
bution resulting from L transformations is bounded.

Proof. As pZ is bounded, there exists some constant M >
0 such that

pZ(z) ≤M ∀z ∈ RD.

Let v1 = g1(z). Applying the change-of-variable formula
we get

log pv1(v1) = log pZ(z) + log

∣∣∣∣ det
∂z

∂v>1

∣∣∣∣
= log pZ(z) +

∣∣∣∣Tr diag
(
sl(vIl)

)∣∣∣∣
Let Bz > 0 be the constant bounding pZ . Using Assump-
tion 1, since all of the outputs of the neural networks sl are
bounded, their sum is bounded by some Bs > 0. Then, it
follows:

log pv1(v1) ≤ Bz + Bs,
i.e., pv1 is bounded. Repeating the argument we get a proof
by induction on the number of transformations L.

As a direct application of Lemma 1, we get the desired
bound the importance weights.

Theorem 2.2. For any 1 ≤ k ≤ K, there exists M > 0
such that for all θ ∈ RD,

∏
k′ p
∧
k′(θ)/p

∧
k(θ) ≤M .

Proof. Using Lemma 2.1, let Uk′ be the upper bound for
p
∧
k′ and let M =

∏
k′ 6=k Uk′ , from which the statement

follows.

This provides the sufficient conditions underlined by
Geweke (1989), so that we achieve the following result re-
garding the overall stability of the importance sampling es-
timates.

Corollary 2.2.1. Suppose θ1, . . . , θT are samples from p
∧
k

for some 1 ≤ k ≤ K. Let wt ∝
∏

k′ p
∧
k′(θt)/p

∧
k(θt),∑

t wt = 1 and Varp
∧[h] <∞. Then, the importance sam-

pling estimate h(θ) =
∑T

t=1 wth(θt) has finite variance.

2.3 SAMPLING FROM THE APPROXIMATE
POSTERIOR

We can also use the samples θ1, . . . , θT from p
∧
k and

their associated importance weights w1, . . . , wT to ob-
tain approximate samples θ?1 , . . . , θ

?
R from p

∧
using sam-

pling/importance resampling (SIR). With this, Ep
∧[h(θ)]

can be directly estimated as a Monte Carlo integral over the



new samples. This procedure easily is done by choosing
θ?r = θt with probability proportional to wt. The required
steps are detailed in Algorithm 1.

Algorithm 1 NAP-SIR

Input: Subposterior approximations p
∧
1, . . . , p

∧
K , number

of candidate samples T , final number of samples R,
chosen subposterior index k ∈ {1, . . . ,K}.

Output: R samples θ?1 , . . . , θ
?
R from p

∧
.

1: for t = 1, . . . , T do
2: Sample θt ∼ p

∧
k

3: wt ←
∏

k′ p
∧
k′(θt)/p

∧
k(θt)

4: c←∑
t wt

5: w ← (w1/c, . . . , wT /c)
6: for r = 1, . . . , R do
7: Draw t from Categorical(w)
8: θ?r ← θt

Note that Algorithm 1 provides, for any single k, a valid
sampler for the approximate posterior p

∧
. However, in prac-

tice it is beneficial to apply the algorithm for many or all k
to provide better exploration of the parameter space.

2.4 TIME COMPLEXITY

We now analyze the time complexity of the proposed
method with respect to the number of subposteriors K, the
number of samples S drawn from each of the subposteriors
p1, . . . , pK , and the number of samples R which we wish
to obtain from the aggregated posterior.

Obtaining R samples from the approximate posterior using
NAP consists of a single pass of the two following steps:

Step 1. In parallel, for k = 1, . . . ,K, fit a real NVP trans-
formation to the samples drawn from the kth subpos-
terior at worker k.

Step 2. Gather the subposterior approximations. Choose a
k ∈ {1, . . . ,K}, choose T ≥ R and use Algorithm 1
to draw R samples from p

∧
.

Step 1 involves the usual costs of learning real NVP net-
works, which can be done using gradient-based methods,
such as ADAM (Kingma and Ba, 2014). Assuming the
number of layers and weights per layer in each network
is fixed, evaluating p

∧
(θ) =

∏
k p
∧
k(θ) takes linear time in

DK. Further taking T = dcRe for some constant c ≥ 1,
we conclude Step 2 can be executed in O(RDK +R2).

2.5 COMMUNICATION COSTS

It is important to note that typically S � |Dk|, i.e., a
worker ouputs a much larger number of subposterior sam-
ples than the size of the data subset Dk it processes. Even

if the dataset is split among workers to improve compu-
tational efficiency through parallel inference, sending sub-
posterior samples back to the server for aggregation can
amount to considerable communication costs. Therefore,
we also examine communication cost of NAP, and contrast
it to currently available methods.

The communication cost of the proposed NAP amounts to
O(KD), corresponding to the cost of communicating the
NVP networks to the server, which does not depend on
S. On the other hand, current methods have their accu-
racy intrinsically tied to the number of subposterior sam-
ples communicated to the server, resulting in O(SKD)
communication costs. For example, the partition tree based
method of Wang et al. (2015) requires recursive pair-wise
aggregation of subposteriors, which calls for centralization
of subposterior samples. The non-parametric and semi-
parametric methods proposed by Neiswanger et al. (2014)
require computing kernel-density estimates defined on each
subposterior individually and centralizing them to subse-
quently execute an MCMC step to sample from their prod-
uct. Similar costs are implied by the strategy of Nemeth
and Sherlock (2018), which fits Gaussian process approxi-
mations and centralizes them to use MCMC to sample from
the product of the expected values of their exponentiated
predictives.

In other words, with NAP, subposteriors can be made arbi-
trarily accurate by drawing more subposterior samples (as
long as local resources allow) with no additional effect on
the cost of communicating the networks to the server.

3 EXPERIMENTAL RESULTS

We evaluated the performance of the proposed method in
four different experiments, comparing it against several ag-
gregation methods1:

• Parametric (PARAM): approximates the posterior as
a product of multivariate normal densities fitted to
each subposterior (Neiswanger et al., 2014).

• Non-parametric (NP): uses kernel density estimates
to approximate the subposteriors, takes their prod-
uct and samples from it using Gibbs sampling
(Neiswanger et al., 2014).

• Semi-parametric (SP): a hybrid between the two for-
mer approaches (Neiswanger et al., 2014).

• Consensus (CON): takes weighted averages of sub-
posterior samples to obtain approximate samples from
the target posterior (Scott et al., 2016).

• Parallel aggregation using random partition trees
(PART): uses partition trees to fit hyper-histograms to

1We have used the implementations available at
https://github.com/richardkwo/random-tree-parallel-MCMC

https://github.com/richardkwo/random-tree-parallel-MCMC


the target posterior using subposterior samples (Wang
et al., 2015).

In the first experiment, we target a uni-modal distribution
of an intricate shape. In the second, we approximate a bi-
variate multi-modal distribution. In the third, we evaluate
the performance of our method when approximating logis-
tic regression posteriors in high dimensions. Finally, in the
last one we analyze the performance of our method when
there is a clear discrepancy among the subposteriors being
merged.

All MCMC simulations were carried out using the python
interface of the Stan probabilistic programming lan-
guage(Carpenter et al., 2017), which implements the no-
U-turn sampler. For each subposterior, we draw 4000 sam-
ples using 16 chains with an equal number of samples as
warm-up. The same holds for the target (ground truth) pos-
terior, computed on centralized data. The real NVP net-
works were implemented with PyTorch2 using three trans-
formations (L = 3) and Gaussian spherical base densities.
The scale and translation networks were all implemented
as multi-layer perceptrons with two hidden-layers compris-
ing 256 nodes each. The layers of these networks were all
equipped with rectified linear units except for the the last
layer of each scale network, which was equipped with the
hyperbolic tangent activation function. The network pa-
rameters were optimized using ADAM (Kingma and Ba,
2014) over 1000 iterations with learning rate 10−4.

3.1 WARPED GAUSSIAN

We first consider inference in a warped Gaussian model
which exhibits a banana-shaped posterior and is described
by the generative model:

y ∼ N (µ1 + µ2
2, σ

2),

where the true values of the parameters µ1 and µ2 are 0.5
and 0, respectively. The variance σ2 is set to 2 and treated
as a known constant. We draw 10000 observations from the
model and distribute them in K = 10 disjoint sets. Gaus-
sian priors with zero mean and variance 25 were placed
both on µ1 and µ0.

For NAP, we used Algorithm 1 to draw 4000 samples from
the approximate posterior, using 16000 samples drawn
from the individual subposterior approximation. To avoid
possible underflow from normalizing a large number of im-
portance weights, we do this in K installments, in each of
which a suposterior approximation is used as a proposal.
The same number of samples was drawn using each of the
competing methods.

Figure 1 shows3 the samples from the approximate pos-
2https://pytorch.org
3The experiment was repeated with multiple random seeds,

yielding similar results.

terior obtained with different aggregation methods, plot-
ted against the posterior obtained using the entire sample
set. Of all the methods, only NAP and PART were flex-
ible enough to mimic the banana shape of the posterior.
PART, however, is overly concentrated when compared to
the ground truth, while NAP more faithfully spreads the
mass of the distribution.

3.2 MIXTURE OF GAMMAS

We now consider performing inference in the shape param-
eters α1 and α2 of the following two-component mixture
of Gammas:

p(y|α1, α2) =
1

2
Gamma(y|α1, β1)+

1

2
Gamma(y|α2, β2),

where the true values of the parameters of interest are
α1 = 0.5 and α2 = 1.0. Furthermore, β1 = β2 = 1 are
known constants, which makes the model clearly bi-modal.
Independent Gamma priors with shape 0.5 and scale 1.0
were placed on α1 and α2.

As before, we drew 10000 observations from the model and
distributed them in K = 10 disjoint sets for parallel infer-
ence. Samples from the approximate posterior for each ag-
gregation algorithm were drawn in the same fashion as in
the previous experiment.

Figure 2 shows4 the samples from the approximate posteri-
ors obtained with each aggregation method plotted against
the target posterior, obtained using the entire sample set.
The proposed method and PART clearly are the only ones
that capture the multi-modality of the posterior. NAP, how-
ever, presented a better fit to the true posterior while PART
placed more mass in low-density regions.

3.3 BAYESIAN LOGISTIC REGRESSION

We now explore how our method behaves in higher dimen-
sions in comparison to its alternatives. For this purpose we
consider inference on the simple logistic regression model
with likelihood

yi ∼ Bernoulli
(
σ(θ1:p · xi + θ0)

)
∀1 ≤ i ≤ N,

where · denotes the dot product, σ(t) = (1 + e−t)−1 is
the logistic function, and θ0, . . . , θp receive independent
N (0,

√
5) priors. The true value θ′0 of θ0 is held at −3 and

the remaining θ′1, . . . , θ
′
p are independently drawn from a

normal distribution with zero-mean and variance 0.25.

To generate a sample pair (xi, yi), we first draw xi from
N (0,Σ), where the covariance matrix Σ is such that

Σi,j = 0.9|i−j| ∀1 ≤ i, j ≤ p.
4The experiment was repeated with multiple random seeds,

yielding similar results.

https://pytorch.org
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Figure 1: MCMC samples for the warped Gaussian model obtained on the centralized dataset (ground truth), in blue,
against samples from posterior approximations using different embarassingly parallel MCMC methods, in green.

Then, yi is computed by rounding σ(θ′1:p · xi + θ′0) to one
if it is at least 0.5, and to zero otherwise.

For each value of p ∈ {25, 50, 100}, we draw N = 10000
sample pairs using the scheme described above and dis-
tribute them in K = 50 disjoint sets for parallel inference.
As in previous experiments, we use NAP and its counter-
parts to merge the subposteriors and draw 4000 samples
from the approximate posterior.

Table 1 presents the results for each of the aggregation
methods in terms of the following performance measures:

• Root mean squared error (RMSE) between the
mean θ of the approximate posterior samples {θ?r}Rr=1

and the mean θ
′

of samples {θ′r}Rr=1 from the ground
truth posterior;

• Posterior concentration ratio (R), computed as:√∑
r

‖θr − θ
′‖22/

∑
r

‖θ′r − θ
′‖22,

comparing the concentration of the two posteriors
around the ground truth mean (values close to one are
desirable);

• KL divergence; (DKL) between a multivariate normal
approximation of the aggregated posterior and a mul-
tivariante normal approximation of the true one, both
computed from samples.

Experiments were repeated ten times for each value of p, in
each of which a new θ′ was drawn. Additionally, average
computing times for each aggregation method are shown in
Table 2.

When compared to the other methods, for all values of p,
NAP presents a mean closer to the one obtained using cen-
tralized inference (smaller RMSE) and has a more accurate
spread around it (R closer to one). In terms of KL diver-
gence, only at p = 25, PARAM outperforms NAP by a
relatively small margin. Besides this case, NAP performs
orders of magnitude better than the other methods, with in-
creasing disparity as p grows.

3.4 RARE CATEGORICAL EVENTS

In the scenarios explored in the previous experiments, there
is no specific reason to believe that the subposteriors differ
drastically from each other. We now consider parallel infer-
ence on the parameters (λ1, λ2, λ3) of a categorical model,



0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.2

0.4

0.6

0.8

1.0

1.2

1.4

(a) Parametric

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.2

0.4

0.6

0.8

1.0

1.2

1.4

(b) Semi-parametric

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.2

0.4

0.6

0.8

1.0

1.2

1.4

(c) Non-parametric

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.2

0.4

0.6

0.8

1.0

1.2

1.4

(d) Consensus

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.2

0.4

0.6

0.8

1.0

1.2

1.4

(e) PART

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.2

0.4

0.6

0.8

1.0

1.2

1.4

(f) NAP

Figure 2: MCMC samples for the mixture of gammas model obtained on the centralized dataset (ground truth), in blue,
against samples from posterior approximations using different embarassingly parallel MCMC methods, in green.

p = 25 p = 50 p = 100
RMSE R DKL RMSE R DKL RMSE R DKL

NAP 1.95 13.95 791.86 1.07 13.08 1539.32 0.63 12.43 3493.35
PART 3.29 24.38 4263.53 2.44 31.27 20159.64 1.51 31.80 75423.10
PARAM 2.56 18.34 589.12 1.99 24.37 2568.57 1.32 26.07 11245.58
SP 2.43 17.36 1586.80 2.02 24.62 7589.26 1.39 27.26 36994.45
NP 2.39 17.07 1343.88 2.01 24.54 7202.50 1.39 27.26 35313.77
CON 3.51 25.43 10654.78 3.08 37.92 56001.25 2.02 39.96 186275.86

Table 1: Comparison of different aggregation methods for embarassingly parallel MCMC inference on the logistic regres-
sion model with p covariates. The values presented are averages over ten repetitions of the experiments. The best results
are in bold.

with respective outcomes A1, A2 and A3, where the prob-
ability of observing one outcome is much higher than the
others, i.e. λ3 � λ1, λ2.

We simulate N = 10000 data points from
Categorical(λ′1, λ

′
2, λ
′
3) with λ′1 = λ′2 = 2K/N .

We then partition the data into K = 10 disjoint subsets,
run MCMC in parallel and apply different aggregation
methods to obtain samples from the approximate posterior.
The aggregated posteriors are then compared with the one
obtained using the complete data.

Since the expected number of A1 and A2 per partition is 2,
it often occurs than some partitions have only A3. Figure 3
illustrates how disparate the subposteriors can be, depend-
ing on the specific partitioning of data.

To compensate for the variability in experimental results
due to the random partitioning of the subsets, we repeated
the experiments one hundred times with different random
seeds, and report average results in Table 3. NAP clearly
outperforms its competitors, with results that are orders of
magnitude better.
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Figure 3: Scatter plots of the marginal for (r1, r2) for each of the K = 10 subposteriors within one of the experiment
rounds.

p = 25 p = 50 p = 100
NAP 337.28 363.88 426.95
PART 117.10 245.85 727.99
PARAM 33.36 62.45 115.40
SP 476.90 749.07 18378.862
NP 43.47 72.28 127.34
CON 32.59 62.01 125.49

Table 2: Average computing times for different aggregation
methods for the logistic regression experiment.

RMSE R DKL
NAP 0.71× 10−3 2.61 106010.45× 100

PART 0.27× 10−2 179.39 623035.37× 101

PARAM 0.11× 10−1 39.73 469483.18× 102

SP 0.51× 10−2 267.30 945558.50× 104

NP 0.19× 10−1 268.97 968806.96× 104

CON 0.16× 100 550.67 276976.28× 103

Table 3: Comparison of different aggregation methods for
embarassingly parallel MCMC inference on the rare cate-
gorical events model. The best results are in bold.

4 DISCUSSION

We proposed an embarrassingly parallel MCMC scheme in
which each subposterior density is mapped to a tractable
form using a deep invertible generative model. We capital-
ized on the ease of sampling from the mapped subposteriors
and evaluating their log density values to build an efficient
importance sampling scheme to merge the subposteriors.
Imposing mild assumptions on the structure of the network,
we proved that our importance sampling scheme is stable.

While in this work we gave special attention to the use of

real NVP networks, our approach could potentially em-
ploy other invertible models, such as the Glow transform
(Kingma and Dhariwal, 2018) or FFJORD (Grathwohl
et al., 2019), without losing theoretical properties, as long
as one can guarantee log densities remain bounded. If the
bounds are difficult to verify, one could still resort to trun-
cated forms of importance sampling (Ionides, 2008; Vehtari
et al., 2015) to control the variance of importance sampling
estimates.

Our experimental results demonstrated that NAP is capable
of capturing intricate posteriors and coping with heterege-
nous subposteriors. In particular, we observed that it signif-
icantly outperformed current methods in high-dimensional
settings. A possible explanation for this is that, unlike
the density estimation techniques underlying the competing
methods, the real NVP transformations used in our method,
are specifically designed for high-dimensional data such as
images.

Finally, the generative models we use serve as a interme-
diate representation to the subposterior, the size of which
does not depend on the number of subposterior samples.
Thus, workers can produce arbitrarily accurate subposte-
rior estimates by drawing additional samples, without af-
fecting the cost of communicating the subposteriors to the
server, or the computational cost of aggregating them into
a final posterior estimate.
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