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Abstract

We study the problem of recovering the latent
ground truth labeling of a structured instance
with categorical random variables in the pres-
ence of noisy observations. We present a new
approximate algorithm for graphs with cate-
gorical variables that achieves low Hamming
error in the presence of noisy vertex and edge
observations. Our main result shows a logarith-
mic dependency of the Hamming error to the
number of categories of the random variables.
Our approach draws connections to correlation
clustering with a fixed number of clusters. Our
results generalize the works of Globerson et al.
(2015) and Foster et al. (2018), who study the
hardness of structured prediction under binary
labels, to the case of categorical labels.

1 INTRODUCTION

Statistical inference over structured instances of depen-
dent variables (e.g., labeled sequences, trees, or general
graphs) is a fundamental problem in many areas. Ex-
amples include computer vision (Nowozin et al., 2011;
Dollár & Zitnick, 2013; Chen et al., 2018), natural lan-
guage processing (Huang et al., 2015; Hu et al., 2016),
and computational biology (Li et al., 2007). In many prac-
tical setups (Shin et al., 2015; Rekatsinas et al., 2017; Sa
et al., 2019; Heidari et al., 2019b), inference problems
involve noisy observations of discrete labels assigned to
the nodes and edges of a given structured instance and the
goal is to infer a labeling of the vertices that achieves low
disagreement rate between the correct ground truth labels
Y and the predicted labels Ŷ , i.e., low Hamming error.
We refer to this problem as statistical recovery.

Our motivation to study the problem of statistical recovery
stems from our recent work on data cleaning (Rekatsi-

nas et al., 2017; Sa et al., 2019; Heidari et al., 2019b).
This work introduces HoloClean, a state-of-the-art infer-
ence engine for data curation that casts data cleaning as
a structured prediction problem (Sa et al., 2019): Given
a dataset as input, it associates each of its cells with a
random variable, and uses logical integrity constraints
over this dataset (e.g., key constraints or functional de-
pendencies) to introduce dependencies over these random
variables. The labels that each random variable can take
are determined by the domain of the attribute associated
with the corresponding cell. Since we focus on data clean-
ing, the input dataset corresponds to a noisy version of
the latent, clean dataset. Our goal is to recover the lat-
ter. Hence, the initial value of each cell corresponds to a
noisy observation of our target random variables. Holo-
Clean employs approximate inference methods to solve
this structured prediction problem. While its inference
procedure comes with no rigorous guarantees, HoloClean
achieves state-of-the-art results in practice. Our goal in
this paper is to understand this phenomenon.

Recent works have also studied the problem of approxi-
mate inference in the presence of noisy vertex and edge
observations. However, they are limited to the case of
binary labeled variables: Globerson et al. focused on
two-dimensional grid graphs and show that a polynomial
time algorithm based on MaxCut can achieve optimal
Hamming error for planar graphs for which a weak ex-
pansion property holds (Globerson et al., 2015). More
recently, Foster et al. introduced an approximate inference
algorithm based on tree decompositions that achieves low
expected Hamming error for general graphs with bounded
tree-width (Foster et al., 2018). In this paper, we general-
ize these results to the case of categorical labels.

Problem and Challenges We study the problem of sta-
tistical recovery over categorical data. We consider struc-
tured instances where each variable u takes a ground truth
label Yu in the discrete set {1, 2, . . . , k}. We assume that
for all variables u, we observe a noisy version Zu of its
ground truth labeling such that Zu = Yu with probability



1 − q. We also assume that for all variable pairs (u, v),
we observe noisy measurements Xu,v of the indicator
Mu,v = 2 ·1(Yu = Yv)− 1 such that Xu,v = Mu,v with
probability 1− p. Given these noisy measurements, our
goal is to obtain a labeling Ŷ of the variables such that the
expected Hamming error between Y and Ŷ is minimized.
We now provide some intuition on the challenges that
categorical variables pose and why current approximate
inference methods not applicable:

First, in contrast to the binary case, negative edge measure-
ments do not carry the same amount of information: Con-
sider a simple uniform noise model. In the case of binary
labels, observing an edge measurement Xu,v = −1 and a
binary label Zu allows us to estimate that Ŷv = −Zu is
correct with probability (1− q)(1−p) + qp when p and q
are bounded away from 1/2. However, in the categorical
setup, Ŷv can take any of the {1, 2, . . . , k} \ {Zu} labels,
hence the probability of estimate Ŷv being correct is up
to a factor of 1

k smaller than the binary case. Our main in-
sight is that while the binary case leverages edge labels for
inference, approximate inference methods for categorical
instances need to rely on the noisy node measurements
and the positive edge measurements.

Second, existing approximate inference methods for sta-
tistical recovery (Globerson et al., 2015; Foster et al.,
2018) rely on a “Flipping Argument” that is limited to
binary variables to obtain low Hamming error: for binary
node and edge observations, if all nodes in a maximal
connected subgraph S are labeled incorrectly with respect
to the ground truth, then at least half of the edge obser-
vations on the boundary of S are incorrect, or else the
inference method would have flipped all node labels in S
to obtain a better solution with respect to the total Ham-
ming error. As we discuss later, in the categorical case a
naive extension implies that one needs to reason about all
possible label permutations over the k labels.

Contributions We present a new approximate inference
algorithm for statistical recovery with categorical vari-
ables. Our approach is inspired by that of Foster et al.
(2018) but generalizes it to categorical variables.

First, we show that, when a variable u is assigned one
of the k − 1 erroneous labels with uniform probability
q/(k − 1), the optimal Hamming error for trees with n
nodes is Õ(log(k) ·p ·n), when q < 1/2. This is obtained
by solving a linear program using dynamic programming.
Here, we derive a tight upper bound on the number of
erroneous edge measurements, which we use to restrict
the space of solutions explored by the linear program.

Second, we extend our method to general graphs using
a tree decomposition of the structured input. We show
how to combine our tree-based algorithm with correla-

tion clustering over a fixed number of clusters (Giotis &
Guruswami, 2006) to obtain a non-trivial error rate for
graphs with bounded treewidth and a specified number of
k classes. Our method achieves an expected Hamming
error of Õ

(
k ·log(k)·pd∆(G)

2 e ·n
)

where ∆(G) is the max-
imum degree of graph G. We show that local pairwise
label swaps are enough to obtain a globally consistent
labeling with low expected Hamming error.

Finally, we validate our theoretical bounds via experi-
ments on tree graphs and image data. Our empirical study
demonstrates that our approximate inference algorithm
achieve low Hamming error in practical scenarios.

2 PRELIMINARIES

We introduce the problem of statistical recovery, and
describe concepts, definitions, and notation used in the
paper. We consider a structured instance represented
by a graph G = (V,E) with |V | = n and |E| = m.
Each vertex u ∈ V represents a random variable with
ground truth label Yu in the discrete setL = {1, 2, . . . , k}.
Edges in E represent dependencies between random vari-
ables and each edge (u, v) ∈ E has a ground truth mea-
surement Mu,v = ϕ(Yu, Yv) where ϕ(Yu, Yv) = 1 if
1(Yu = Yv) = 1 and ϕ(Yu, Yv) = −1 otherwise.

Uniform Noise Model and Hamming Error We as-
sume access to noisy observations over the nodes and
edges of G. For each variable u ∈ V , we are given a
noisy label observation Zu, and for each edge (u, v) ∈ E
we are given a noisy edge observation Xu,v . These noisy
observations are assumed to be generated from G, Y and
M by the following process: We are given G = (V,E)
and two parameters, edge noise p and node noise q < 1/2
with p < q. For each edge (u, v) ∈ E, the observation
Xu,v is independently sampled to be Xu,v = Mu,v with
probability 1− p (a good edge) and Xu,v = −Mu,v with
probability p (a bad edge). For each node u ∈ V , the node
observation Zu is independently sampled to be Zu = Yu
with probability 1 − q (a good node) and can take any
other label in L \Yu with a uniform probability q

k−1 . The
uniform noise model is a direct extension of that consid-
ered by prior work (Globerson et al., 2015; Foster et al.,
2018), and a first natural step towards studying statistical
recovery for categorical variables.

Given the noisy measurements X and Z over graph
G = (V,E), a labeling algorithm is a function A:
{−1,+1}E × {1, 2, . . . , k}V → {1, 2, . . . , k}V . We fol-
low the setup of Globerson et al. (2015) to measure the
performance of A. We consider the expectation of the
Hamming error (i.e., the number of mispredicted labels)
over the observation distribution induced by Y . We con-
sider as error the worst-case (over the draw of Y ) expected



Hamming error, where the expectation is taken over the
process generating the observations X from Y . Our goal
is to find an algorithm A such that with high probability
it yields bounded worst-case expected Hamming error. In
the remainder of the paper, we will refer to the worst-case
expected Hamming error as simply Hamming error.

Categorical Labels and Edge Measurements When q
is close to 0.5, one needs to leverage the edge measure-
ments to predict the node labels correctly. For binary
labels, the structure of the graph G alone determines if
one can obtain algorithms with a small error for low con-
stant edge noise p (Globerson et al., 2015; Foster et al.,
2018). We argue that this is not the case for categorical
labels. Beyond the structure of the graph G, the number
of labels k also determines when we can obtain labeling
algorithms with non-trivial error bounds.

We use the next example to provide some intuition on how
k affects the amount of information in the edge measure-
ments of G: Let nodes take labels in L = {1, 2, . . . , k}.
We fix a vertex v, and for each vertex u in its neighbor-
hood set the estimate label Ŷu to Zu if Mu,v = 1 and
to one of L \ {Zu} uniformly at random if Mu,v = −1.
For a correct negative edge measurement and a correct
label assignment to v, we are not guaranteed to obtain the
correct label for v as we would be able in the binary case.

Given the above setup, the probability that node u is
labeled correctly is P (Ŷu = Yu) = (1 − b(1 − 1

k−1 )) ·
((1 − p)(1 − q) + pq)) where b is the probability of an
edge being negative in the ground truth labeling of G.
Two observations emerge from this expression: (1) As
the number of colors k increases, the probability P (Ŷu =
Yu) decreases, hence, for a fixed graph G as k increases,
statistical recovery becomes harder; (2) For a fixed graph
G, as k increases the probability b of obtaining a negative
edge in the ground truth labeling of G increases— this
holds for a fixed graph G and under the assumption that
each label should appear at least once in the ground truth—
and the term (1 − b(1 − 1

k−1 )) approaches zero. This
implies that for P (Ŷu = Yu) to be meaningful the term
((1 − p)(1 − q) + pq) should be maximized for fixed q,
and hence, the edge noise p should approach zero as a
function of (1− b(1− 1

k−1 )). In other words, p should be
upper bounded by a function φ(k) such that as k increases
φ(k) goes to zero. We leverage these two observations to
specify when statistical recovery is possible.

Statistical Recovery Statistical recovery is possible for
the family G of structured instances with k categories,
if there exists a function f(p, k) : [0, 1] → [0, 1] with
limp→0 f(p, k) = 0 such that for every p that is upper
bounded by a function φ(k) with limk→V φ(k) = 0, the
Hamming error of a labeling algorithm on graph G ∈ G
with V = n vertices is at most f(p, k) · n.
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Figure 1: A schematic overview of our approach. Given
the noise node labeling Z of a graph with ground truth la-
beling Y , we leverage the noisy side information to obtain
an approximate labeling Ŷ . Labeling Ŷ is an approximate
solution to the information theoretic optimal solution Y ∗.
The goal of our analysis is to find a theoretical bound on
the Hamming error between Ŷ and Y .

3 APPROACH OVERVIEW

We consider a graph G = (V,E) with node labels in
L = {1, 2, . . . , k}. The space of all possible labelings of
V defines a hypothesis space F ′. In this space, we denote
Y the latent, ground truth labeling of G. In the absence
of any information the size of this space is |F ′| = kn.
Access to any side information allows us to identify a
subspace of F ′ that is close to Y .

First, we consider access only to noisy node labels of G
and denote Z the point in F ′ for this labeling. If we have
no side information on the edges of G, the information
theoretic optimal solution to statistical recovery is Z (be-
cause we assume q < 1/2). Second, we assume access
only to edge measurements for G. We denote X the ob-
served edge measurements. If the edge measurements
are accurate (i.e., p = 0) the size of F ′ reduces to k!.
We assume that k is such that one can obtain a labeling
for G that is edge-compatible with X by traversing G.
Under this assumption, the number of edge-compatible
labelings is equal to all possible label permutations, i.e.,
|F ′| = k!. Finally, in the presence of both node and edge
observations the information theoretic optimal solution
to statistical recovery corresponds to a point Y ∗ that is
obtained by running exact marginal inference (Globerson
et al., 2015). However, exact inference can be intractable,
and even when it is efficient, it is not clear what is the
optimal Hamming error that Y ∗ yields with respect to Y .

To address these issues, we propose an approximate in-
ference scheme and obtain a bound on the worst-case
expected Hamming error that it obtains. We start with the
noisy edge observations X and use them to find a sub-
space F ⊂ F ′ that contains node labelings which induce
edge labelings that are close to X (in terms of Hamming
distance). We formalize this in the next two sections. In-



tuitively, we have that noisy edge measurements partition
the space F in a collection of edge classes.

Definition 1. The edge class of a point Y ∈ F is a set
I ∈ 2{1,2,...,k}

|V |
such that for all Yi ∈ I, Yi induces the

same edge measurements as Y . All points in I can be
derived via a label permutation of Y . In general, for any
labeling Y ′, set IY ′ is the set of all labelings that can be
generated by a label permutation of Y ′.

The restricted subspaceF contains those edge classes that
are close to the noisy edge observations X .

Given the restricted subspace F , we design an algorithm
to find a point Ŷ ∈ F such that the Hamming error
between Ŷ and Y ∗ is minimized. We define the Hamming
error with respect to an edge class I as:

Definition 2. The Hamming error of a vector Q ∈
{1, 2, . . . , k}|V | to the edge class IY ′ ∈ 2{1,2,...,k}

|V |
is

Hd(Q, IY ′) = minY∈IY ′ Hd(Y,Q).

Point Y ∗ might not be in F and the distance between Ŷ
and Y ∗ is the approximation error we have due to approx-
imate inference. Finally, we prove that the expected Ham-
ming error between Ŷ and Z is bounded. A schematic
diagram of our approximate inference method is shown
in Figure 1. In the following sections, we study statistical
recovery for trees (in Section 4) and general graphs (in
Section 5). All proofs can be found in the supplementary
material of our paper (Heidari et al., 2019a).

4 RECOVERY IN TREES

We focus on trees and introduce a linear program for
statistical recovery over k-categorical random variables.
We prove that under a uniform noise model the optimal
Hamming error is Õ(log(k) · p · n).

4.1 A Linear Program for Statistical Recovery

We follow the steps described in Section 3. First, we use
the noisy edge observations to restrict the search for Ŷ
to a subspace F . We describe F via a constraint on the
number of edge disagreements between the edge labeling
implied by Ŷ and the noisy edge observations X . Second,
we form an optimization problem to find a point Ŷ with
minimum Hamming distance from Z that satisfies the
aforementioned constraint.

The ground truth edge labeling M (corresponding to the
ground truth node labeling Y ) has bounded Hamming
distance from the observed noisy labeling X . Hence,
we can restrict the space of considered solutions to node
labelings that induce an edge labeling with a bounded
Hamming distance from the observed noisy labeling X .

We have: Under the uniform noise model, edge measure-
ments are flipped independently. Thus, the total number
of bad edges is a sum over independent and identically
distributed (iid) random variables. The expected number
of flipped edges is p · |E| = p(n−1). Using the Bernstein
inequality, we have:
Lemma 1. LetG be a graph with noisy edge observations
with noise parameter p. With probability at least 1 − δ
over the draw of X:∑

(u,v)∈E
1{ϕ(Yu, Yv) 6= Xu,v} ≤ t where

t = (n−1)p+
2

3
ln(

2

δ
)(1−p)+

√
2(n− 1)p(1− p) ln(

2

δ
)

This lemma states that under the uniform noise model
the ground truth edge labeling M for Graph G is in the
neighborhood of X with high probability. Given this
bound, we use the following linear program to find Ŷ :

min
Ŷ ∈ [k]|V |

∑
v∈V

1{Ŷv 6= Zv}

s.t.∑
(u,v)∈E

1{ϕ(Ŷu, Ŷv) 6= Xu,v} ≤ t
(1)

where t is defined as in Lemma 1. This problem can be
solved via a dynamic programming algorithm with cost
O(k · n3 · p). We describe this algorithm in the supple-
mentary material of the paper (Heidari et al., 2019a).

Discussion Our approach is similar to that of Foster et al.
(2018) for binary random variables. However, we use
the Bernstein inequality to obtain a tighter concentration
bound on the number of flipped edge measurements. In
the case of categorical random variables, it is critical to
obtain a tight description of the space F of the possible
labeling solutions as we have a larger hypothesis space.

Let S(n, k) be the size of hypothesis space with k labels
and n nodes. If we increase n by one, the rate of change
for the hypothesis space is rk,n = ∆S/∆n = kn(k− 1),
which is multiplicative with respect to k. Similarly, as we
increase k to k+1 the size of the hypothesis space changes
by sk,n = ∆S/∆k =

∑
i+j=n−1(k + 1)ikj ≥ kn−1,

which is exponential in the size of our input. We need a
tight bound to obtain an efficient dynamic programming
algorithm with respect to n and k.

4.2 Upper Bound on the Hamming Error for Trees

The Hamming error of Ŷ obtained by Linear Program 1
is bounded by Õ(log(k) · p ·n) with high probability. For
our analysis, we draw connections to statistical learning.



We define a hypothesis class F that contains all points
that satisfy the bound in Lemma 1:

F = {Y ′ ∈ [k]|V | :
∑

(u,v)∈E
1{ϕ(Y ′u, Y

′
v) 6= Xu,v} ≤ t}

From Lemma 1, we have that the edge class that corre-
sponds to the ground truth labeling Y is contained in F
with high probability over the draw ofX . Moreover, since
the node noise q is bounded away from 1/2, we can use
the noisy node measurements Z to find a labeling Ŷ that
is in the same edge class as Y and close to Y . Such a
labeling is obtained by solving Linear Program 1. From
a statistical learning perspective, Ŷ corresponds to the
empirical risk minimizer (ERM) over F given Z. Thus,
the Hamming error between Ŷ and Y is associated with
the excess risk over Z for Class F . We have:
Lemma 2. (Foster et al., 2018) Let Ŷ be the empir-
ical risk minimizer over F given Z and let Y ∗ =
arg minY ′∈F

∑
v∈V

P(Y ′v 6= Yv) and c > 0 a constant

number, then with probability 1− δ over the draw of Z,∑
v∈V

P
(
Ŷv 6= Zv

)
− min
Y ′∈F

∑
v∈V

P
(
Y ′v 6= Zv

)
≤(

2

3
+
c

2

)
log

( |F|
δ

)
+

1

c

∑
v∈V

1
{
Ŷv 6= Y ∗v

}

We now analyze how the Hamming error relates to excess
risk for categorical random variables. We have:
Lemma 3. The Hamming error is proportional to the
excess risk: For fixed Ŷ , Y ∼ F ′ and Z distributed ac-
cording to the uniform noise model we have that:

1{Ŷv 6= Yv} =
1

c

[
PZ(Ŷv 6= Zv)− PZ(Yv 6= Zv)

]
where

c = 1− k/(k − 1)q

With k = 2 we have that c = 1− 2q, which recovers the
result of Foster et al. (2018) for binary random variables.

Using Lemma 2, we can bound the excess risk in terms
of the size of the hypothesis class. We have:
Corollary 1. When Y ∈ F and Ŷ =
arg minY∈F

∑
v∈V 1{Yv 6= Zv}, we have that

with probability at least 1− δ over the draw of Z:∑
v∈V

P (Ŷv 6= Zv)− min
Y ′∈F

∑
v∈V

P (Y ′v 6= Zv) ≤(
4

3
+

2
1
4 +

(
1
4 − ε

)(
1− k

k−1

)) log

( |F|
δ

)

We now combine these results with the complexity of
class F to obtain a bound for the Hamming error:

Theorem 1. Let Ŷ be the solution to Problem 1. Then
with probability at least 1− δ over the draw of X and Z∑
v∈V

1{Ŷv 6= Yv} ≤

[t log(2k)− log(δ)](
1− k

k−1q
) (

4

3
+

2
1
4 +

(
1
4 − ε

)(
1− k

k−1

))
= Õ(log(k)np)

Here, t is the same as in Lemma 1. We see that k has a
lower impact on the Hamming error than n and p. Also,
when k = 2 we recover the result of Foster et al. (2018).
Due to the tools we use to prove this result, this is a tight
bound. We validate this bound empirically in Section 6.

5 RECOVERY IN GENERAL GRAPHS

We now show how our tree-based algorithm can be
combined with correlation clustering to obtain a non-
trivial error rate for graphs with bounded treewidth and
k-categorical random variables. We first describe our
approximate inference algorithm and then show that
our algorithm achieves an expected Hamming error of
Õ
(
k · log(k) · pd∆(G)

2 e · n
)

where ∆(G) is the maximum
degree of the structured instance G.

5.1 Approximate Statistical Recovery

We build upon the concept of tree decompositions (Diestel,
2018). Let G be a graph, T be a tree, andW = (Vt)t∈T
be a family of vertex sets Vt ⊆ V (G) indexed by the
nodes t of T . We denote a tree-decomposition with
(T,W). The width of (T,W) is defined as max{|Vt|−1 :
t ∈ T} and the treewidth tw(G) of G is the minimum
width among all possible decompositions of G. We also
denote with F the |W| − 1 edges connecting the bags in
W in (T,W) and represent T as T = (W, F ).

Given a graph G, a tree decomposition of T defines a
series of local subproblems whose solutions can be com-
bined via dynamic programming to obtain a global solu-
tion for the original problem onG. For graphs of bounded
treewidth, this approach allows us to obtain efficient al-
gorithms (Bodlaender, 1988). Our solution proceeds as
follows: Let (T,W) be a tree decomposition of G. We
first find a local labeling ỸW for eachW ∈ W . Then, we
design a dynamic programming algorithm that combines
all local labelings to obtain a global labeling Ŷ .

5.1.1 Finding Local Labelings

We recover the labeling of the nodes in a bag W as fol-
lows: (1) Given W , we consider a superset of W , defined



as W ∗ = EXT (W ) = W ∪
(⋃

v∈GN(v)
)

where N(v)
is the one-hop neighborhood of node v; (2) Given W ∗,
we use the edge observations in the edge subset E′ ⊆ E
induced by W ∗ to find a restricted hypothesis space FW∗ .
We then find a labeling ỸW

∗ ∈ FW∗ that has the mini-
mum Hamming error with respect to Z for the nodes in
W ∗. Let ZW∗ denote this subset of Z; (3) For W , we
assign ỸW to be the restriction of ỸW

∗
on W .

We consider two cases for Step 2 from above: (1) If
|W ∗| = O(log(n)), we can enumerate all kO(log(n))

labelings for W ∗ and choose the one with minimum
Hamming distance from Z. The complexity of this
brute-force algorithm is kO(log(n)) = poly(n); (2) If
|W ∗| = Ω(log(n)), we use the MAXAGREE[k] algo-
rithm of Giotis & Guruswami (2006) over the noisy
edge measurements X to restring the subspace F in the
neighborhood of X . MAXAGREE[k] is a polynomial-
time approximation scheme (PTAS) for solving the Max-
Agreement version of correlation clustering for a fixed
number of k labels. In the worst case, MAXAGREE[k]
obtains an approximation of 0.7666OPT[k]. In our anal-
ysis, we account for the approximation factor 0.7666 by
changing the probability p to p′ = 0.7666p + 0.2334.
A detailed discussion is provided in the supplementary
material of the paper (Heidari et al., 2019a). Given the
output of MAXAGREE[k], let FCC be the restricted sub-
space of solutions for W ∗. We pick an arbitrary labeling
ȲW

∗ ∈ FCC and use Algorithm 1 to get a permutation
that transforms ȲW

∗
to point ỸW

∗
that has minimum

Hamming distance to ZW
∗
.

Algorithm 1 Local Label Permutation

Input: A labeling ȲW
∗

in the subspace FCC identified by
MAXAGREE[k] on W ∗; Node observations ZW

∗
;

ȲW
∗

1 , ȲW
∗

2 , . . . ȲW
∗

k ← Group ȲW
∗

By Label;
ZW

∗
1 , ZW

∗
2 , . . . ZW

∗
k ← Group ZW

∗
By Label;

for i, j ∈ [k]× [k] do
Ii,j ← |ȲW

∗
i ∪ ZW

∗
j |;

end for
Q← A queue that sorts I = {Ii,j}(i,j)∈[k]×[k] in decreasing
order with respect to values Ii,j ;
while Q 6= ∅ do
Ii,j ← Pop(Q);
π(i)← j;
Remove all It,j and Ii,t for all t ∈ [k] from Q;

end while
Return: π

Algorithm 1 greedily permutes the labels in Ȳ w to obtain
a labeling with minimum Hamming distance to ZW . The
complexity of this algorithm is O(n+ k log k).

Lemma 4. Algorithm 1 finds a permutation π such that:

ỸW = π(ȲW ) = min
π∈Γk

∑
v∈W

1{π(ȲW ) 6= ZW }

where Γk is the set of all permutations of the k labels.

We combine all steps in Algorithm 2. The output of this
algorithm is a collection of labelings Ỹ for the local prob-
lems. Lemma 4 states that ỸW

∗
minimizes the Hamming

distance to Z. We also show that ỸW
∗

remains a mini-
mizer with respect to miny

∑
(u,v) 1(ϕ(yu, yv) 6= Xuv)

after the swaps due to π.

Algorithm 2 Find Local Labelings
Input: A tree decomposition T = (W, F ) of G; Noisy node

observations Z; Noisy edge measurements X;
Ỹ → ∅;
for W ∈ W do
W ∗ = EXT (W );
\∗ The next optimization problem can be solved either via
enumeration or correlation clustering. E(W ∗) denotes the
set of edges in W ∗.∗\
ȲW

∗
= arg min

y

∑
(u,v)∈E(W∗)

1{ϕ(yu, yv) 6= Xuv};

ỸW
∗
← Local Label Permutation (ȲW

∗
, ZW

∗
);

Let ỸW be the restriction of ỸW
∗

to W ;
Ỹ → Ỹ ∪ {ỸW };

end for
Return: Ỹ

Definition 3. Given a graph G = (V,E), the
swap(V, c1, c2) function changes all node labels c1 to
c2, and all node labels c2 to c1.

The swap operation enables us to switch between
elements within an edge class. We show that a
swap(V, c1, c2) does not affect the disagreements be-
tween the node labeling and edge labeling of a graph.

Lemma 5. Let L be a set of labels L = {1, 2, . . . , k}.
Consider a graph G = (V,E) for which we are given
a node labeling Y and an edge labeling X . For any
pair (c, c′) ∈ L × L, let Y ′ = swap(V, c, c′) be
the node labeling of G after swapping label c with
c′. We have that:

∑
(u,v)∈E 1{ϕ(Yu, Yv) 6= Xu,v} =∑

(u,v)∈E 1{ϕ(Y ′u, Y
′
v) 6= Xu,v}.

This lemma implies that ỸW
∗

is a minimizer of
miny

∑
(u,v) 1{ϕ(yu, yv) 6= Xuv} since ȲW

∗
mini-

mizes this quantity, and ỸW
∗

is a permutation of ȲW
∗
.

5.1.2 From Local Labelings to a Global Labeling

We now describe how to combine labelings {ỸW }W∈W
into a global labeling Ŷ . For binary random variables,
the following procedure plays a central role in enforc-
ing agreement across local labelings (Foster et al., 2018):
Given a bag W1 and a neighbor W2 with conflicting node
labels with respect to W1, we can maximize the agree-
ment between W1 and W2 by flipping labeling ỸW1 to
its mirror labeling. This operation leads to consistent



solutions since for binary random variables there is only
one mirror labeling. However, for categorical random
variables we have k! possible mirror labelings for ỸW1 .
We show that it suffices to consider only one label swap
per bag instead of k! labelings.

We consider the swap operation (see Section 5.1.1) and
two bags W1 and W2 with labelings ỸW1 and ỸW2 . We
resolve conflicts in W1 ∩W2 as follows: Let Πk ⊂ Γk
be the set of all permutations restricted to one pairwise
color swap. Given a bag W ∈ W with labeling YW , we
define a swap π = swap(W, ci, cj) to be valid if color ci
is present in YW . Given a valid swap π for W , we define
π(YW ) to be the label assignment for all nodes in W
after applying π to YW . Also, let π(YWv ) be the labeling
for a node v ∈W after π. Finally, we define Πk(YW ) as
the set of all labelings for W that can be obtained if we
apply any valid pairwise label swap on YW . To resolve
inconsistencies between ỸW1 and ỸW2 , we consider pairs
in Πk(YW1) × Πk(YW2) such that the labeling in the
intersection of W1 and W2 is consistent and the number
of nodes whose label is swapped is minimum.

The procedure we use is shown in Algorithm 3. The al-
gorithm takes as input a tree decomposition T = (W, F )
of G and the local labelings Ỹ . For each W with label-
ing ỸW , we compute the cost of swapping label ci with
label cj for each (i, j) ∈ [k]× [k]. Then, we iterate over
edges in F to identify incompatibilities between local
node labelings. Finally, we use all the computed costs to
find the single swap πW to be applied locally to each bag
W ∈ W such that global agreement is maximized. To
this end, we solve a linear program similar to program 1.
This program is shown in Algorithm 4.

In Algorithm 4, function ψ(·) is defined as:

ψ(πW , πW ′) =

=

{
1, if πW (ỸWv ) = πW ′(Ỹ

W ′

v ) : ∀v ∈W ∩W ′
−1, if πW (ỸWv ) 6= πW ′(Ỹ

W ′

v ) : ∃v ∈W ∩W ′

Constant Ln is used to restrict the space of solutions
considered. A discussion on Ln is deferred to Section 5.2.

5.1.3 Discussion on Correlation Clustering

We use correlation clustering in our algorithm for prac-
tical reasons. If the cardinality of the bags T = (W, F )
is bounded by O(log(n)), we can find a local labeling
for each W that has minimum Hamming distance to Z
efficiently. Obtaining such a decomposition T is an NP-
complete problem. This challenge is also highlighted
by Foster et al. (2018). To address this issue they assume
a sampling procedure for removing edges from G to ob-
tain a subgraph for which a low-width tree decomposition
is easy to find. This procedure is a graph-specific exer-

Algorithm 3 From Local Labelings to a Global Labeling
Input: A tree decomposition T = (W, F ) of G; Noisy node

observations Z; Noisy edge measurements X; Local label-
ings {ỸW }W∈W ;
Ŷ → ∅;
for W ∈ W do

ΠW
k ← the set of valid pairwise color swaps for W ;

for π ∈ ΠW
k do

\∗ π is associated with a label swap (ci, cj) ∗\;
CostW [π] =

∑
v∈W

1(π(ỸW ) 6= ZW );

end for
end for
for (W1,W2) ∈ F do

Select one node v from W1 ∩W2 randomly;
S(W1,W2) = 2 · 1{ỸW1

v = ỸW2
v } − 1;

end for
Compute constant Ln; \∗ See Section 5.2 ∗\;
{πW }W∈W = Cat. Tree Decoder(T,Cost, S, Ln);
for v ∈ V do

Choose arbitrary W s.t. v ∈W randomly;
Ŷv = πW (ỸWv )

end for
Return: Ŷ

Algorithm 4 Categorical Tree Decoder
Input: A tree T = (W, F ); Matrices {CostW }W∈W ,
{S(W,W ′)}(W,W ′)∈F , Ln ∈ N;

Output: Optimal swaps {πW }W∈W for each W ∈ W;
Solve the linear program:
Π̂ = arg min

{πW }W∈W∈Π
|W|
k

∑
W∈W

CostW [πW ]

s.t.
∑

(W,W ′)∈F
1{ψ(πW , πW ′} 6= S(W,W ′) ≤ Ln

Return: Π̂

cise and not easily generalizable to arbitrary graphs. We
follow a different approach. Instead of using specialized
procedures, we rely on heuristics to obtain a low-width de-
compositions de Givry et al. (2006); Dermaku et al. (2008)
and use correlation clustering for large bags. This scheme
allows us to use our algorithm with arbitrary graphs.

5.2 A Bound for Low Treewidth Graphs

We state our main theorem for statistical recovery over
general graphs. We also provide a proof sketch.

Theorem 2. (Main Theorem) Consider graph G with
T = (W, F ), noisy node observations Y , and noisy edge
observations X . Let Ŷ be the statistical recovery solution
obtained by combining Algorithms 2 and 3. With high
probability over the draw of Z and X:∑

v∈V
1
{
Ŷv 6= Yv

}
≤ Õ

(
k · log k · pd mincut

∗(G)
2 e · n

)
≤ Õ

(
k · log k · pd∆

2 e · n
)



where mincut∗(G) is the min. mincut over all extended
bags inW and ∆(G) is the max. degree in G.

We see that the Hamming error obtained by our approach
goes to zero as p→ 0. Theorem 2 allows us to understand
when statistical recovery over a graph with categorical
random variables is possible (i.e., when we can rely on
edge observations to solve statistical recovery more ac-
curately than the trivial solution of keeping the initially
assigned node labels). Theorem 2 connects the level of
edge-noise with the degree ∆ of the input graph, the num-
ber of labels k, and the noise q on node labels. We have
that for the edge noise p it should be p ≤ d∆

2
e
√

q
k log k ,

where q is the node noise parameter, for the side informa-
tion in X to be useful for statistical recovery. Otherwise,
one should just use the initially observed node labels.

Proof Sketch Let S denote a maximal connected sub-
graph of G. Let δ(S) be the boundary of S, i.e., the set
of edges with exactly one endpoint in S. Let Ỹ S be the
local labeling for nodes in S. We say that S is incorrectly
labeled if for all v ∈ S we have Ỹ Sv 6= Yv . We have:

Lemma 6. (Swapping lemma) Let S be a maximal con-
nected subgraph ofG with every node incorrectly labelled
by Ỹ . Then at least half the edges of δ(S) are bad.

For a bagW , let set S be the largest connected component
in W such that for all nodes v in it ỸWv 6= Yv . It must be
the case that at least half of the δ(S) edges are incorrect
or else there exists a different labeling that agrees with
X better than ỸW . This contradicts the fact that ỸW is
a minimizer of min

y

∑
(u,v) 1{ϕ(yu, yv) 6= Xuv}. This

result extends the Flipping Lemma of Globerson et al.
(2015) from the binary to the categorical case.

We use this result to bound the probability that a local la-
beling ỸW (see Lemma 4) will fail to recover the ground
truth node label for W . The probability of local labelings
having large Hamming error is upper bounded:

Lemma 7. Let Γk be the all label permutations on the
set L = {1, 2, . . . , k}. We have for W :

P

(
min
π∈Γk

1{π(ȲW ) 6= YW } > 0

)
≤ 2|W

∗|pd
mincut∗(W )

2 e

with mincut∗(W ) = min
S⊂W∗,S∩W 6=∅,S̄∩W 6=∅

|δG(W )(S)|.

We now build upon Lemma 7 and leverage the result
introduced by Boucheron et al. (2003) to obtain an upper
bound on the total number of mislabeled nodes across all
bags inW for any labeling permutation π ∈ Γk over the
local labeling ỸW :

Lemma 8. Let Γk be the all label permutations on the
set L = {1, 2, . . . , k}. For all δ > 0, with probability at

least 1− δ
2 over the draw of X we have that:

min
π∈Γk

∑
W∈W

1{π(ỸW ) 6= YW } ≤

2|W |+1pd
mincut(W )

2 e + 6 max
e∈E
|W(e)| max

W∈W
|E(W )| log(

2

δ
)

where W(e) denotes the set of bags in W that contain
edge e and E(W ) denotes the set of edges in bag W .

This lemma can be extended to W ∗ as well. This lemma
combined with Lemma 6 implies that the labeling dis-
agreement across bags in the tree decomposition are
bounded. The analysis continues in a way similar to that
for trees (see Section 4). Given the local bag labelings,
we seek to find the labeling swaps across bags such that
the global labeling has minimum Hamming error with
respect to Y . We use the inequality from Lemma 8 to
restrict the space ([k] × [k])W of all possible pairwise
label swaps over the local bag labelings. Let s∗ be the
optimal point in ([k]× [k])W such that the global labeling
has minimum Hamming error with respect to Y . Given
the tree decomposition T = (W, F ) of G. We define the
hypothesis space:

F , ([k]× [k])W

s.t.
∑

(W,W ′)∈F
1{ψ(πW , πW ′) 6= S(W,W ′)} ≤ Ln

}
with Ln = deg(T )

[
2wid

∗(W )+2
∑
W∈W pd

mincut∗(W )
2 e+

6deg∗E(T ) maxW∈W |E(W ∗)| log( 2
δ )
]
, deg∗E(T ) =

maxe∈E |W(e)|, and πW and S(W,W ′) denote the pair-
wise swaps and labeling disagreements between bags
from Algorithm 3. We show that the optimal permu-
tation Π∗ is a member of F with high probability and also
have that |F(X)| ≤

(
e·n·k!
Ln

)Ln . Combining this with
Lemma 2, we take Π̂ is most correlated with Z, i.e., it
is a minimizer for

∑
W∈W

∑
v∈W 1

{
πW (ỸWv ) 6= Zv

}
.

Directly from statistical learning theory we have that
the Hamming error of this estimator Ŷ is Õ(log(F)) =

Õ
(
k · log k ·pd∆

2 e ·n
)

which establishes our main theorem.

6 EXPERIMENTS

Experimental Setup We evaluate our approach on trees
and grid graphs. For trees, we use Erdős–Rényi random
trees to obtain ground truth instances. For grids, we use
real images to obtain the ground truth. We create noisy
observations via a uniform noise model. We compare our
approach with two approximate inference baselines: (1)
a Majority Vote algorithm, where we leverage the neigh-
borhood of a node to predict its label, and (2) (Loopy)
Belief Propagation. To evaluate performance we use the



normalized Hamming distance
∑
v∈V 1(Yv 6= Ŷv)/|V |.

We provide more details in the Supplementary Material.

Hamming Error of Random Trees Our analysis sug-
gests that Linear Program 1 yields a solution with Ham-
ming error Õ(log(k)np). We evaluate experimentally that
the Hamming error increases at a logarithmic rate with
respect to k. Figure 2 shows the Hamming error for a
fixed tree generative model with p = 0.1 and q = 0.2
as we increase the number of labels k. We fix q away
from 0.5 and generate 10, 000 trees for each k. We report
the average error. As shown, we observe the expected
logarithmic behavior that we proved theoretically. The
graph size is chosen randomly n ∈ [103, 1.5× 103].
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Figure 2: Experimental validation that Hamming error for
trees increases with a logarithmic rate w.r.t. k.

Hamming Error of Grids We have two experiments on
grids. In the first experiment, we select 1, 000 grayscale
images and compute the Hamming error obtained by
our algorithm. We consider a uniform noise model with
p = 0.05 and q = 0.1. Figure 3 shows the Hamming er-
ror as k increases. As expected we see that the Hamming
error increases. This is because as k increases negative
edges carry lower information, and with non-zero edge
error (p), the positive edges also provide low information
observations (i.e., a wrong measurement). In the supple-
mentary material of our paper, we present a qualitative
evaluation of our results on the grey-scale images.
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Figure 3: The Hamming error for different methods on
grids. We show mean the mean error of 1, 000 repetitions.

In the second experiment, we evaluate the effect of edge
noise p on the quality of solution obtained by our methods
for a fixed number of labels k and fixed node noise q.
In Figure 4, we show the effect of p on the average of

Hamming error when other parameters are fixed (n =
6 × 104, k = 128, q = 0.1). We vary p from zero to
0.5. We repeat each experiment 100 times. We find that
our approximate inference algorithm is robust to small
amounts of noise.

This experiment also validates Theorem 2 which states
when the side information from edges X helps with sta-
tistical recovery. For the setups we consider in this exper-
iment, we have k = 128 and vary q in 0.1, 0.15, 0.2. If
we keep the initial node labels the expected normalized
Hamming error will be 0.1, 0.15, and 0.2 respectively.
Theorem 2 states that to obtain a better Hamming error
than the above one, the edge noise p has to be less than√

0.1/(128 log 128) ∼ 0.04,
√

0.15/(128 log 128) ∼
0.05,

√
0.2/(128 log 128) ∼ 0.06 respectively. Figure 4

shows that the normalized Hamming error obtained by our
algorithm reaches the Hamming error of the trivial algo-
rithm (and plateaus around it) at the expected edge-noise
levels of 0.04, 0.05, and 0.06.
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Figure 4: The effect of varying p on the average of nor-
malized Hamming error(Hd) with fixed q.

7 CONCLUSION

We considered the problem of statistical recovery in struc-
tured instances with noisy categorical observations. We
presented a new approximate algorithm for inference over
graphs with categorical random variables. We showed
a logarithmic dependency of the Hamming error to the
number of categories the random variables can obtain.
We also explored the connections between approximate
inference and correlation clustering with a fixed number
of clusters. There are several future directions suggested
by this work. One interesting direction would be to under-
stand under which noise models the problem of statistical
recovery is solvable. Moreover, it is interesting to explore
the direction of correlation clustering further and extend
our analysis beyond small tree width graphs.
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Ré, C. Incremental knowledge base construction using
deepdive. Proceedings of the VLDB Endowment, 8(11):
1310–1321, 2015.


