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Abstract

We study the following question. We are given
a knowledge base in which some facts are miss-
ing. We learn the weights of a Markov logic
network using maximum likelihood estimation
on this knowledge base and then use the learned
Markov logic network to predict the missing
facts. Assuming that the facts are missing in-
dependently and with the same probability, can
we say that this approach is consistent in some
precise sense? This is a non-trivial question
because we are learning from only one training
example. In this paper we show that the answer
to this question is positive.

1 INTRODUCTION

Automatically constructed knowledge bases (KBs) such
as YAGO [22] and NELL [4] contain facts, in the form
of relational tuples, that have been exacted from the Web.
However, these KBs are incomplete, that is, there are
many facts that should be included in the KB but are
not. Hence, a popular task is to attempt to automatically
complete these KBs. This entails inferring which other
relationships hold between the entities that appear in the
KB [6, 11, 13, 20, 28, 32, 33, 34, 36]. Because the task
typically only considers entities that already appear in the
KB, it can be viewed as a transductive learning problem.

Given the relational nature of KBs, a popular approach
to knowledge base completion is to approach it from the
perspective of (probabilistic) relational learning (e.g., [20,
10, 28, 36]). A key challenge for these approaches is
that the KB contains only positive examples, that is, the
facts already in the KB. All other tuples should be con-
sidered as missing: if a tuple is not included in the KB,
we do not know if it is true (i.e., it should be added to
the KB) or false (i.e., it should be excluded from the KB).

Approaches cope with this complication in various ways
such as trying to learn by only considering the facts in
the KB (i.e., learning from positive only data) [28], auto-
matically inferring negative examples [4, 10] or explicitly
reasoning about the missing data [36]. A drawback to
these approaches is that they are ad-hoc, and lack theoret-
ical justification or guarantees.

In this paper we theoretically study the suitability of learn-
ing the weights of a Markov logic network from a KB in
the presence of missing data. After learning the weights,
such an MLN could be used to infer additional facts to
include in the KB. This is a challenging problem because
our analysis must account for the fact that our sample
only consists of a single training example: the KB. In
contrast, most learning theory results assume access to
multiple training examples. Our analysis focuses on the
case where the available KB conforms to the missing com-
pletely at random assumption and we tackle the problem
from a relational marginal point of view [18]. We show
two main results. First, we show via a concentration in-
equality that it is possible to learn the weights of an MLN
from a single example that faithfully models the unknown
relational marginals, given large enough example. Sec-
ond, we bound the expected difference in normalized log
likelihood between the learned MLN and the optimal one.

2 PRELIMINARIES

In this section, we provide the necessary background.

2.1 FIRST ORDER LOGIC

We consider a standard function-free first-order language
defined by a set of constants ∆, a set of variables V and
for each k ∈ N a set Rk of k-ary predicates. To avoid
confusion, variables start with lowercase letters and con-
stants start with uppercase letters. An atom is of the form
r(a1, ..., ak) with a1, ..., ak ∈ ∆ ∪ V and r ∈ Rk. A
literal is an atom or its negation. A clause is a disjunction



over a finite set of literals. We assume that the variables in
a clause are all universally quantified. A clause in which
none of the literals contains any variables is called ground.
The set of grounding substitutions of a clause α w.r.t. a
set of constants ∆ is the set Θ(α,∆) = {ϑ1, ..., ϑm} that
contains substitutions to all variables occurring in α using
constants from ∆. A possible world ω is represented as
a set of ground atoms that are true in ω. We sometimes
treat possible worlds as sets and use set-theoretic notation
such as |ω| denoting the number of atoms in ω. The sat-
isfaction relation |= is defined in the usual way: ω |= α
means that the formula α is true in ω.

2.2 MARKOV LOGIC NETWORKS

A Markov logic network [27] (MLN) is a set of weighted
first-order logic formulas (α,w), where w ∈ R and
α is a function-free and quantifier-free first-order for-
mula. The semantics are defined w.r.t. the groundings
of the first-order formulas, relative to some finite set
of constants ∆, called the domain. An MLN is classi-
cally seen as a template that defines a Markov random
field. Specifically, an MLN Φ induces the following
probability distribution on the set of possible worlds
ω ∈ Ω: pΦ(ω) = 1

Z exp
(∑

(α,w)∈Φ w ·N(α, ω)
)
,

where N(α, ω) is the number of groundings of α sat-
isfied in ω, and Z is a normalization constant to ensure
that pΦ is a probability distribution. It turns out to be
more convenient for our purposes to replace N(α, ω) in
the definition of MLNs by

Q(α, ω) =
1

|∆||vars(α)|

∑
ϑ∈Θ(α,∆)

1(ω |= αϑ),

where Θ(α,∆) is the set of all grounding substitutions of
α’s variables using constants from ∆ and 1(ω |= αϑ) is
the indicator function, which is equal to 1 when αϑ is true
in the possible world ω. Thus, Q(α, ω) is the fraction of
the groundings of α satisfied in ω. Hence, we will write
the probability of a possible world ω ∈ Ω as:

pΦ(ω) =
1

Z
exp

 ∑
(α,w)∈Φ

w ·Q(α, ω)

 .

2.3 RELATIONAL MARGINAL PROBLEMS

An alternative way to view a Markov logic network Φ =
{(α1, w1), . . . , (αm, wm)} is to think of it as a maximum
entropy distribution satisfying given marginal constraints
E[Q(αi, .)] = θi, where θi ∈ [0; 1]. Assuming we have
the expected values of the formula statistics (which we
might have, for instance, estimated from training data), we
can define the following maximum entropy problem [18].

Relational Marginal Problem (Formulation):

min
{Pω : ω∈Ω}

∑
ω∈Ω

Pω logPω s.t. (1)

∀i = 1, . . . ,m :
∑
ω∈Ω

Pω ·Q(αi, ω) = θi (2)

∀ω ∈ Ω : Pω ≥ 0,
∑
ω∈Ω

PΩ = 1 (3)

Here, the Pωs are the problem’s decision variables, each
of which represents the probability of one possible world
ω ∈ Ω. Line (1) is the maximum entropy criterion, which
is shown here as the minimization of the negative entropy;
Line (2) shows the constraints given by the statistics; and
Line (3) provides the normalization constraints for the
probability distribution.

Assuming there exists a feasible solution satisfying ∀ω :
Pω > 0 (we call such a solution positive), the optimal
solution of the above maximum entropy problem is an
MLN

Pω =
1

Z
exp

 ∑
(αi,wi)∈Φ

wi ·Q(αi, ω)

 (4)

where the parameters w = (w1, . . . , wm) are obtained by
maximizing the dual criterion

L(λ) =
∑
αi

wiθi − log
∑
ω∈Ω

e
∑
αi
wiQ(αi,ω). (5)

This dual criterion also happens to be equivalent to the
log-likelihood of the MLN (4) w.r.t. a (possibly fictitious)
training example ω̂ that is over the same domain ∆ and
satisfies Q(αi, ω̂) = θi for all the formula statistics.

2.4 RELATIONAL MARGINAL POLYTOPES

Next we define relational marginal polytopes [18]. These
represent the expected values for the vectors of statistics
of the given formulas that are possible.

Definition 1 (Relational marginal polytope). Let Ω be a
set of possible worlds and Φ = (α1, . . . , αm) be a list
of formulas. We define the relational marginal polytope
RMP(Φ,Ω) w.r.t. Φ as RMP(Φ,Ω) = {(x1, . . . , xm) ∈
Rl : ∃ prob. distr. on Ω s.t. E[Q(α1, ω)] = x1 ∧ · · · ∧
E[Q(αl, ω)] = xm}.
Example 1. Consider the formulas α = friends(x1, x2)
and β = friends(x1, x2) ∧ friends(x2, x3) ∧
friends(x3, x1). Let ∆ = {C1, . . . , C100} be the
set of domain elements and Ω be the respective set of
possible worlds over the first-order language given by
the predicate friends/2 and the constants from ∆. The
possible worlds ω ∈ Ω may be thought of as representing



social networks. Then Q(α, ω) corresponds to the
“frequency” of friendships in the network and Q(β, ω) to
the “frequency” of friendship-triangles. We can then
see easily why there is, for instance, no distribution
with E[Q(α, ω)] = 0 and E[Q(β, ω)] = 0.5 (as graphs
without edges cannot have a positive number of triangles).
Hence, the point (0, 1) will not be contained in the
relational marginal polytope.

The relational marginal polytope w.r.t. a given list of for-
mulas (α1, . . . , αm) can be also defined as the convex
hull of the set {(Q(α1, ω), . . . , Q(αm, ω)) : ω ∈ Ω}.

Next we define what it means for a point to be in the
η-interior of a polytope.

Definition 2 (Interiority). Let η > 0, P be a polytope and
A=x = c be the maximal linearly independent system of
linear equations that hold for the vertices of P (i.e. A=

and b define the affine subspace in which P “lives”). A
point θ is said to be in the η-interior of P if {θ′|A=θ′ =
c, ‖θ′ − θ‖ ≤ η} ⊆ P.

We need to consider the system of linear equations
A=x = c in the definition of interiority because the poly-
tope may live in a lower dimensional subset of the given
space. Our definition of interiority is also often called
relative interiority in the literature.

If the vector of formula statistics’ estimates θ is in the
η-interior of the respective relational marginal polytope
for some η > 0, then there always exists a positive dis-
tribution satisfying the marginal constraints given by the
statistics.

We will use the following theorem from [16] which links
the magnitudes of an MLN’s weights and the interiority
of the respective marginals.1

Theorem 2 (Theorem 16 in [16]). Let Φ be a set of
quantifier-free first-order logic formulas, let Ω be a set of
possible worlds andA=x = c be a maximal system of lin-
early independent equations satisfied by the vertices of the
relational marginal polytope PR = RMP(Φ,Ω). Let θ be
a point in the η-interior of PR. Then there is an optimal
solution w∗ = (w∗1 , . . . , w

∗
m) of the relational marginal

problem constrained by the parameters θ (which is dual to
the maximum-likelihood problem) such that A=w∗ = 0
and any such solution satisfies ‖w∗‖ ≤ log |Ω|/η.

3 LEARNING SETTING

This paper addresses the following transductive learning
problem:

1This theorem is just a relational version of a theorem
from [31].

Given: A fixed set of constants ∆, a fixed set of relations
R and a single sample ω̂ of a knowledge base ω∗

selected according to the following data generation
process:

P (ω) =

{
(1− δ)|ω| · δ|ω∗|−|ω| ω ⊆ ω∗

0 ω 6⊆ ω∗
(6)

where δ ∈ [0; 1] is the subsampling rate.

Do: Reconstruct ω∗ from ω̂.

Intuitively, this process removes from ω∗ (“forgets”) each
of the true facts independently with probability δ. This
corresponds to a relational variant of the missing data
setting known as “missing completely at random” or
MCAR [21]. What makes our setting more complicated
is the fact that we only have one training example. Note
this contrasts with the classical work on relational learn-
ing that operates on data sets consisting of many small
examples, each of which can be considered to be a small
relational database. For example, data about molecules
fits this description: each molecule is an individual exam-
ple (with a variable number of atoms and bonds) and each
one can be represented using a graph. This type of data
has also been considered in SRL (e.g., [14]).

If we had access to set of samples {ω1, . . . , ωn}, where
each ωi is generated according to Equation 6, there are
several approaches for reconstructing ω∗. The most obvi-
ous one would be to simply take the union of all ωi. An-
other approach would be to model the probability distribu-
tion of the data generation process which has a very sim-
ple form. That is, we could model a distribution over the
(independent) random variables, where we have one ran-
dom variable for each possible ground atom. If we could
learn an accurate enough model, we could reconstruct
ω∗ by taking all the ground atoms that have probability
greater than certain threshold. Given a sufficient number
of training examples, this would simply entail computing
the empirical frequencies of the observed ground atoms.

However, since we only have one training example ω̂, we
need to estimate the distribution in a smarter way. The key
insight underlying most of statistical relational learning
is that this can be done by identifying and exploiting
the structural regularities that hold in ω̂. One strategy
is to learn a model that maximizes the log-likelihood of
the data and thereby learn the distribution. Because we
are considering relational data, we can use Markov logic
networks as our model class. The following example
illustrates the intuition behind our approach.

Example 3. Let the complete state of the data
be ω∗ = {Smokes(Alice),Friends(Alice,Bob),
Friends(Bob,Alice)} and suppose we know that



the friendship relation is symmetric. Given the
following possible world sampled by the data gen-
eration process ω̂ = {Friends(Alice,Bob)}, we
could exploit our knowledge about the symmetric
nature of friendship to yield the reconstruction
ω′ = {Friends(Alice,Bob),Friends(Bob,Alice)}.
This is obviously not perfect because it misses the
Smokes(Alice), but represents a step forward.

In this paper, we study from a theoretical perspective
whether Markov logic networks are a suitable representa-
tion for this task. Specifically, we explore what theoretical
guarantees are possible when learning the weights of an
MLN from a single training example generated according
to Equation 6.

4 NORMALIZED LOG-LIKELIHOOD

Ideally, we would use the KL-divergence
DKL(PDG||PΦ) to assess how close a distribution
PΦ modeled by MLN Φ is to the true distribution
PDG. However, it is more convenient to work with
the log-likelihood of PΦ, which only differs from
the KL-divergence by the entropy of PDG, i.e.,
DKL(PDG||PΦ) = H(PDG) − E[L(Φ|.)]. Hence, we
will focus on log-likelihood and note that the MLN which
maximizes the expected log-likelihood is also the one
that minimizes the KL-divergence.

We will need to show that the log-likelihood estimated on
the one available sample converges to the expected log-
likelihood in some sense. However, this poses a problem
as the log-likelihood typically decreases as the size of
the test example increases. This occurs even for the best
possible model, which the following example illustrates.

Example 4. Let us suppose that the true distributionPDG
is generated by tossing biased coins from domain ∆ =
{Coin1, . . . ,Coinn} that land on heads with probability
0.9. Such a distribution can clearly be modelled by an
MLN Φ containing just one formula α = heads(x). Even
if the MLN Φ modelled the distribution perfectly, the
expected log-likelihood would decrease as the domain
size grows bigger. Indeed, we would have E[L(Φ|.)] =
|∆| · (0.9 log 0.9 + 0.1 log 0.1).

To cope with this issue, we will work with the normalized
log-likelihood, which is commonly done in the statistical
relational learning literature (e.g. [35, 29]). We define
normalized log-likelihood as follows.

Definition 3 (Normalized log-likelihood). Let Φ be an
MLN, ∆ be the domain and L(Φ, ω) be the log-likelihood
of Φ given ω. Let M be the number of all possible ground
atoms constructed using the constants from ∆ and rela-
tions from the given first-order language. Then we define

the normalized log-likelihood as

NL(Φ|ω) =
1

M
· L(Φ|ω).

As each ground atom is a Boolean random variable in an
MLN, this can be interpreted as the average log-likelihood
per random variable.

When defining a normalized log-likelihood, it is impor-
tant not to normalize by a factor that grows too quickly.
If the normalization factor grew too quickly, the normal-
ized likelihood would always converge to zero, which
would make having additive bounds on the estimation
error of the log-likelihood pointless. It is easy to see that
our definition does not suffer from this problem because
the uniform distribution over elements of Ω always has
a constant normalized log-likelihood. In particular, we
have NL(Φ|ω) = 1

M log 2−M = − log 2. Moreover,
any MLN, regardless of which formulas it contains, can
represent the uniform distribution because setting all the
formulas’ weights to 0 yields a uniform distribution. It
follows that it is statistically meaningful and non-trivial
to show that the normalized log-likelihood of a learned
MLN will be close (in expectation) to the normalized
log-likelihood of the best possible such MLN.

5 CONSISTENCY OF MLN LEARNING

Our goal is to learn maximum-likelihood weights for a
Markov logic network using only a single sampled train-
ing example ω̂. However, this approach only makes sense
if it also guaranteed to make the distribution encoded
by the Markov logic model close to the data generation
distribution. For that we need to study generalization guar-
antees of maximum-likelihood estimation in our learning
setting. In particular, we want to show that optimizing the
normalized log-likelihood on the training data also leads
to optimizing the expected normalized log-likelihood. If
multiple independently sampled training examples ω̂ were
available, we could use standard tools from statistical
learning theory [7]. Hence, the key challenge we address
in this section is replacing these classical tools with tech-
niques that apply when we only have the single sample ω̂.

5.1 MAIN TECHNICAL RESULTS

This section presents our two main technical results. The
first is Theorem 5, which provides a concentration in-
equality on the values of the statistics Q(α, ω). As dis-
cussed in Section 2.3, a Markov logic network consist-
ing of the formulas {α1, . . . , αk} can also be seen as
a maximum-entropy distribution given by the sufficient
statistics Q(αi, .). Learning the weights for an MLN us-
ing maximum-likelihood estimation on ω̂ then amounts



to finding the weights wi of the formulas αi that make
the MLN Φ (approximately) satisfy Eω∼Φ[Q(αi, ω)] =
Q(αi, ω̂) [16].

Ideally, the learned MLN should faithfully model the
sufficient statistics. Therefore, we want Q(α, ω̂) to be
concentrated close to Eω∼PDG [Q(α, ω)], where PDG is
the distribution that generates the training examples ω̂.
Our first theoretical result gives such a guarantee in the
form of a concentration inequality that probabilistically
bounds the difference |Q(α, ω̂)− Eω∼PDG [Q(α, ω)]|.

Theorem 5. Let PDG generate training examples ω
over a domain ∆ according to Equation 6. Next let α
be a quantifier-free formula not containing any 0-arity
literals,2 let Rα be the set of relations contained in
α and M be the maximum arity of relations in Rα.3

Then the following inequality holds for any ε > 0 and
|∆| ≥ (M + 1)M :

PDG[|Q(α, ω)− E[Q(α, .)]| ≥ ε]

≤ 2 · exp

(
−ε2 · |∆|
|Rα| · |α|2

)

In this inequality, the domain size plays the role of the
effective sample size. Interestingly, this means that the
bound does not, for instance, depend on the size of the
set of all possible ground atoms, which would grow much
more rapidly. This is in line with other concentration
inequalities that were obtained in the relational learning
literature, albeit under different sampling assumptions
(c.f. [18, 17]).

An absolute bound on the MLN’s ability to faithfully
model the relational marginals is insufficient to guaran-
tee that its normalized log likelihood is close to optimal.
Theorem 6, our second main technical result, bounds the
expected difference in normalized log-likelihood between
the optimal MLN Φ∗ and the MLN Φ̂(ω) learned using
maximum-likelihood on a single example ω sampled ac-
cording to Equation 6.

Theorem 6. Let PDG generate training examples ω over
a domain ∆, |∆| ≥ 2, according to Equation 6. Let
us have a set of quantifier-free formulas {α1, . . . , αm}
not containing any 0-arity literals. Let H (“hypoth-
esis class”) be the set of MLNs of the form Φ =
{(α1, w1), . . . , (αm, wm)} that satisfy the condition that
their marginal statistics E[Q(Φ, .)] are contained in the
η-interior of their relational marginal polytope, where

2It would be impossible to get a non-vacuous bound with
0-arity predicates present.

3In practice, the maximum arity will be small, e.g. it is 2 in
knowledge graphs.

η > 0 is fixed. Then the following holds:

E
[

sup
Φ∈H
|NL(Φ|ω)− E[NL(Φ, .)]|

]
≤ O

(√
log |∆|
η|∆|

)

Denoting Φ̂(ω) := arg maxΦ∈HNL(Φ, ω) (i.e., Φ̂(ω) is
the MLN obtained by maximum-likelihood learning on ω),
we also have for the expected difference in normalized
log-likelihood of the best possible Φ∗ ∈ H and Φ̂(ω):

sup
Φ∗∈H

E[NL(Φ∗|.)]− Eω
[
Eω′ [NL(Φ̂(ω), .)]

]
≤ O

(√
log |∆|
η|∆|

)
.

There are several interesting things to notice about the
results from Theorem 6. First, it exhibits the same
rate of convergence O(

√
log n/n) that appears in VC-

dimension-based bounds for the classical setting of learn-
ing from i.i.d. data [7]. The main difference is that our
results depend on the size of the domain ∆ as opposed
to the number of training examples. This shows that the
approach to knowledge base completion based on learn-
ing an MLN on the single available learning example is,
in a precise sense, sound. Second, the bound is inversely
proportional to the interiority parameter of the MLNs in
the considered hypothesis class. This is interesting be-
cause the runtime of maximum-likelihood learning for
MLNs depends polynomially on 1/η [16]. Thus, allowing
smaller η’s increases both the computational and sample
complexity of the problem.

5.2 PROOF OF THEOREM 5

We now prove Theorem 5 using McDiarmid’s inequality.
This requires the following lemma, which bounds the dif-
ference in the Q(α, ω) statistics for two possible worlds
that only differ by the presence of one true ground atom.

Lemma 1. Let Ω be a set of possible worlds over a
domain ∆, and let ω1, ω2 ∈ Ω be possible worlds. If
|ω1 	ω2| = 1, where 	 denotes the symmetric difference
operator,4 then

|Q(α, ω1)−Q(α, ω2)| ≤ |α|
|∆|a

where a is the number of constants in the unique ground
atom l in the symmetric difference ω1 	 ω2.

Proof. Let Θl be the set of those grounding substi-
tutions ϑ ∈ Θ(α,∆) such that αϑ contains either

4Symmetric difference is defined as ω1	ω2 = (ω1 ∪ω2) \
(ω1 ∩ ω2).



l or ¬l. Then we have |Q(α, ω1) − Q(α, ω2)| =
1

|∆||vars(α)|

∣∣∑
ϑ∈Θl

(1(ω1 |= αϑ)− 1(ω2 |= αϑ))
∣∣ ≤

1
|∆||vars(α)| · |Θl|. For a literal a ∈ α, the number of sub-
stitutions ϑ ∈ Θ such that aϑ = l or aϑ = ¬l is at most
|∆||vars(α)|−a. Using the union bound over the literals
in α, we immediately obtain |Θl| ≤ |α| · |∆||vars(α)|−a

which finishes the proof.

We can now prove Theorem 5.

Proof of Theorem 5. We first redefine the random vari-
able Q(α, ω) as a function of independent Bernoulli ran-
dom variables B1, . . . , B|ω∗| satisfying P [Bi = 0] = δ,
where δ is the subsampling rate from Equation 6. We
suppose that there is some (arbitrary) ordering of the
atoms in ω∗ = {a1, . . . , a|ω∗|} so that we could uniquely
identify each Bi with an atom ai in ω∗. Then we define
a function g : {0, 1}|ω∗| → 2ω

∗
as: g(b1, . . . , bω∗) 7→

{ai ∈ ω∗|bi = 1}. Finally we define Qα(b1, . . . , bω∗)
∆
=

Q(α, g(b1, . . . , b|ω∗|)). It is easy to see that Q(α, ω) and
Qα(B1, . . . , B|ω∗|) have the same distribution. As a con-
sequence we have PDG[|Q(α, ω) − E[Q(α, .)]| ≥ ε] =
P [|Qα(B1, . . . , B|ω∗|) − E[Qα]| ≥ ε]. We also assume
w.l.o.g. that ω∗ contains only relations that also appear in
α (since the rest of the relations in ω∗ do not influence
the values Q(α, ω)). We denote by Rα ⊆ R the set of
relations present in α.

From McDiarmid’s inequality [24] we have

P [|Qα(B1, . . . , B|ω∗|)− E[Qα]| ≥ ε]

≤ 2 · exp

(
−2ε2∑|ω∗|
j=1 c

2
j

)
(7)

provided that |Qα(B1, . . . , Bj , . . . , Bω∗) −
Qα(B1, . . . , B

′
j . . . , Bω∗)| ≤ cj holds for every j

and every value of Bj and B′j . It follows from Lemma
1 that we can set cj := |α| · |∆|−Aj , where Aj is
the number of unique constants in the atom aj , in
Inequality (7).

Let us split ω∗ into disjoint subsets ω∗1 , ω∗2 , . . . , ω∗M
where each ω∗i contains all atoms from ω∗ with i unique
constants. Then we can write

|ω∗|∑
j=1

c2j =

|ω∗|∑
j=1

(
|α| · |∆|−Aj

)2
=

|ω∗1 | ·
(
|α|
|∆|

)2

+ · · ·+ |ω∗M | ·
(
|α|
|∆|M

)2

. (8)

We can also bound5 every |ω∗i | as |ω∗i | ≤ iM−1·|Rα|·|∆|i.
By substituting this into (8) and assuming that |∆| ≥

5Here the factor iM−1 is an upper bound on the number of

(M + 1)M , we obtain

|ω∗|∑
j=1

c2j ≤ |Rα| · |α|2 ·
(

1

|∆| +
2M−1

|∆|2 + · · ·+ MM−1

|∆|M

)

= |Rα| · |α|2 ·
1

|∆| ·
(

1 +
2M−1

|∆| + · · ·+ MM−1

|∆|M−1

)
≤ 2 · |Rα| · |α|

2

|∆| .

Finally, plugging this into Inequality (7) finishes the
proof.

Using the same reasoning as in the proof of Theorem 5,
we can obtain the following generalization of Theorem 5,
which we prove in the appendix.6

Theorem 7. Let PDG, ω, ∆, M be as in Theorem 5.
Next let Φ = (α1, . . . , αm) be a list of quantifier-free
formulas not containing any 0-arity literals and let RΦ

denote the set of relations contained in the formulas in
Φ. Then the following inequality holds for any ε > 0 and
|∆| ≥ (M + 1)M and w ∈ Rm:

PDG[|〈w, Q(Φ, ω)〉 − E[〈w, Q(Φ, .)〉]| ≥ ε]

≤ 2 · exp

 −ε2 · |∆|

|RΦ| · ‖w‖2 ·
(∑m

j=1 |αj |
)2


5.3 PROOF OF THEOREM 6

We now prove Theorem 6, which requires a series of
lemmas. The first one is a concentration inequality for the
log-likelihood.
Lemma 2. Let Φ = {(α1, w1), . . . , (αm, wm)} be an
MLN on domain ∆,RΦ be the set of relations occurring
in formulas in Φ, let M be the maximum arity of relations
in RΦ, and let us denote w = (w1, . . . , wm). Let ω be
sampled according to Equation 6. Then the following
inequality holds

P [|L(Φ|ω)− E[L(Φ|.)]| ≥ ε]

≤ 2 · exp

 −ε2 · |∆|

|RΦ| · ‖w‖2 ·
(∑m

j=1 |αj |
)2


where L(Φ|ω) is the log-likelihood of Φ given ω.

Proof. We have

L(Φ|ω)− E[L(Φ|.)] = 〈w, Q(Φ, ω)〉 − E[〈w, Q(Φ, .)〉]
all possible patterns of i constants in a literal of arity M , e.g.
for M = 3 and i = 2, we have the following three possible
patterns: (a, a, b), (a, b, b), (a, b, a).

6https://bit.ly/31TC7zx



The rest of the proof of this lemma then follows directly
from Theorem 7.

Next we use Lemma 2 to derive a bound on the expected
deviation of log-likelihoods from their expected values
for MLNs selected from a finite setH.

Lemma 3. Let H be a finite set of MLNs given by the
same set of formulas α1, . . . , αm and satisfying ‖w‖ ≤
W , where w = (w1, . . . , wm) are the weights of the
MLNs’ formulas. Next letRΦ be the set of relations that
occur in the formulas in Φ and M be the maximum arity
of relations inRΦ. Finally, let ω be a possible world on
the domain ∆, |∆| ≥ (M + 1)M , sampled according to
the data generating distribution in Equation 6. Then the
following holds

E
[

sup
Φ∈H
|L(Φ|ω)− E[L(Φ|.)|

]

≤
√
|RΦ| ·W ·

m∑
j=1

|αj |

√
log (2e|H|)
|∆|

.

Proof. For notational convenience, let us first denote
Z := supΦ∈H |L(Φ|ω)− E[L(Φ|.)| and

B :=
|∆|

|RΦ| ·W 2 ·
(∑m

j=1 |αj |
)2 .

Then, using the union bound and Lemma 2, we have

P [Z ≥ ε] ≤ 2|H| · exp
(
−ε2 ·B

)
.

Next, we have

E[Z] ≤
√
E[Z2] =

√∫ ∞
0

P [Z2 ≥ t]dt

=

√∫ ∞
0

P [Z ≥
√
t]dt ≤

√
u+

∫ ∞
u

P [Z ≥
√
t]dt

≤

√
u+

∫ ∞
u

2|H| · exp (−t ·B)dt

=

√
u+

2|H|
B
· exp (−u ·B)

The above expression is minimized for u :=
log (2|H|)/B (note that u may be arbitrary), yielding
the bound:√

log (2e|H|)
B

=
√
|RΦ| ·W ·

m∑
j=1

|αj |

√
log (2e|H|)
|∆|

We will use the following well-known results about the
number of balls of a specific radius that are needed to
cover a given subset of a metric space.

Lemma 4 (Covering number, e.g., [30]). Let S be a sub-
set of Rd of diameter at most k (i.e. for any x1,x2 ∈ S,
‖x1 − x2‖ ≤ k). Then S can be covered by(

2 · k ·
√
d

r

)d
balls of radius r.

Next we upper-bound the maximum change in log-
likelihood when we move the weights w.

Lemma 5. Let ω ∈ Ω be a possible world on the
domain ∆. Let Φ = {(α1, w1), . . . , (αm, wm)} and
Φ′ = {(α1, w

′
1), . . . , (αm, w

′
m)} be MLNs. Then

|L(Φ|ω)− L(Φ′|ω)| ≤ 2 · ‖w −w′‖ ·
√
|Φ|

where w = (w1, . . . , wm) and w′ = (w′1, . . . , w
′
m) and

L(Φ|ω) is the log-likelihood of Φ given ω.

Proof. We have |L(Φ|ω)− L(Φ′|ω)| =

=

∣∣∣∣∣〈w, Q(Φ, ω)〉 − log
∑
ω′∈Ω

exp
(
〈w, Q(Φ, ω′)〉

)
−〈w′, Q(Φ, ω)〉+ log

∑
ω′∈Ω

exp
(
〈w′, Q(Φ, ω′)〉

)∣∣∣∣∣
(using the triangle inequality)

≤
∣∣〈w −w′, Q(Φ, ω)〉

∣∣
+

∣∣∣∣log

∑
ω′∈Ω exp (〈w −w′ + w′, Q(Φ, ω′)〉)∑

ω′∈Ω exp (〈w′, Q(Φ, ω′)〉)

∣∣∣∣
(using ‖Q(Φ, ω)‖ ≤

√
|Φ|)

≤‖w −w′‖ ·
√
|Φ|

+

∣∣∣∣∣∣log

∑
ω′∈Ω exp

(
‖w −w′‖

√
|Φ|+ 〈w′, Q(Φ, ω′)〉

)
∑
ω′∈Ω exp (〈w′, Q(Φ, ω′)〉)

∣∣∣∣∣∣
=2 · ‖w −w′‖ ·

√
|Φ|.

Now we finally have all the necessary machinery to prove
Theorem 6. The proof relies on a covering-number based
approach [30].

Proof of Theorem 6. Let us denote d := |Φ| and letW =
{x ∈ Rd|‖x‖ ≤ log |Ω|/η} be a ball of radius log |Ω|/η
centered at 0; it follows from Theorem 2 that at least
one optimal solution of the maximum-likelihood problem
must be contained inW . Let B be a finite set of points



such that if we place balls of radius r in all these points
then the balls cover the setW . Let us further assume that

|B| ≤
(

2 · 2 · log |Ω|/η ·
√
d/r
)d
,

which Lemma 4 guarantees is possible. Next we assume
that we are only searching for a maximum-likelihood solu-
tion among the weight vectors fromB so that we could use
Lemma 3 which expects a finite hypothesis setH (i.e., for
us,HB := {{(α1, w1), . . . , (αm, wm)}|(w1, . . . , wm) ∈
B}). Then from Lemma 3 we have:

E
[

sup
Φ∈HB

|L(Φ|ω)− E[L(Φ|.)|
]

≤
√
|RΦ| ·W ·

m∑
j=1

|αj |

√
log (2e|B|)
|∆|

. (9)

We define L :=
∑m
j=1 |αj |, which is the sum of the

lengths of the formulas in Φ. Using Theorem 2 and the
fact that log |Ω| ≤ |RΦ| · |∆|A · log 2, where A is the
maximum arity among the relations in the language, we
can bound the r.h.s. by:

R :=
|RΦ|1.5|∆|AL

√
d log 2

η
·

√√√√ log
(

8e|∆|A
√
d

ηr

)
|∆|

(10)

For Φ′ = {(α1, w
′
1), . . . , (αm, w

′
m)}, let HW(Φ′) be

the set of MLNs Φ = {(α1, w1), . . . , (αm, wm)} where
(w1, . . . , wm) is contained in the ball of radius r centered
at (w′1, . . . , w

′
m). Now, optimizing over the set of all pos-

sible weight vectors fromW instead of just the vectors
from the setHB, would yield the next bound:

E
[

sup
Φ∈HW

|L(Φ|ω)− E[L(Φ|.)]|
]

= E

[
sup

Φ′∈HB
sup

Φ∈HW(Φ′)

|L(Φ|ω)− E[L(Φ′|.)]

+E[L(Φ′|.)]− E[L(Φ|.)]|]

≤ E

[
sup

Φ′∈HB
sup

Φ∈HW(Φ′)

|L(Φ|ω)− E[L(Φ′|.)]|

]
+ sup

Φ′∈HB
sup

Φ∈HW(Φ′)

|E[L(Φ′|.)]− E[L(Φ|.)]|

≤ E

[
sup

Φ′∈HB
sup

Φ∈HW(Φ′)

|L(Φ|ω)− L(Φ′|ω)

+L(Φ′|ω)− E[L(Φ′|.)]|]
+ sup

Φ′∈HB
sup

Φ∈HW(Φ′)

|E[L(Φ′|.)]− E[L(Φ|.)]|

≤ E

[
sup

Φ′∈HB
sup

Φ∈HW(Φ′)

|L(Φ|ω)− L(Φ′|ω)|

]

+ E
[

sup
Φ′∈HB

|L(Φ′|ω)− E[L(Φ′|.)]|
]

+ sup
Φ′∈HB

sup
Φ∈HW(Φ′)

|E[L(Φ′|.)]− E[L(Φ|.)]|

Next, to bound the first and third term, we use Lemma 5
and, to bound the second term, we use Equations (9) and
(10). After setting

r :=
1

η
√
|∆|

and simplifying, this gives us the following bound:

E
[

sup
Φ∈HW

|L(Φ|ω)− E[L(Φ|.)]|
]

≤
|RΦ|1.5|∆|AL log 2

√
d log(8e|∆|A+0.5

√
d) + 4

√
d

η
√
|∆|

= O

(
|∆|A ·

√
log |∆|
|∆|

)
.

For the expected error of normalized log-likelihood we
then obtain

E
[

sup
Φ∈HB

|NL(Φ|ω)− E[NL(Φ|.)|
]
≤ O

(√
log |∆|
η|∆|

)

which finishes the proof of the first part of the theorem.

The second part of the theorem follows easily from the
same argument as the first part. We use the following
inequality (e.g. Lemma 8.2 in [7]) that holds for every ω:

sup
Φ∗∈H

E[L(Φ∗|.)]− E[L(Φ̂(ω), .)]

≤ 2 · sup
Φ∈H
|L(Φ, ω)− E[L(Φ, .)]| .

6 RELATED WORK

This work is related to learning from missing data [21],
which has not received much attention in the statistical
relational learning literature. A standard approach is to
perform structural EM [15] for learning both the weights



and the structure in the presence of missing data. The
work of Neumann et al. [26] is similar to ours in that it
assumes positive-only data in a transductive setting. It
attempts to infer negative examples, but is concerned with
clustering and not weight learning.

The problem can also be viewed from the prism of learn-
ing from positive and unlabeled (PU) data [1] or learn-
ing from purely positive data [5, 23, 25]. In our setting,
ground atoms either are in the knowledge base (i.e., are
positive examples) and all other ground atoms are unla-
beled, i.e., they may or may not belong in the knowledge
base. One way to view our work is as a multi-target vari-
ant of the non-traditional classifiers used in positive and
unlabeled learning [9] for propositional data. Recently,
there has been some work on PU learning for relational
data [2, 3, 10, 36]. All of these approaches are inductive
and focus on learning rules (i.e., structure learning from
the MLN perspective), possibly with an associated weight
or confidence, from data. Some work focuses on predict-
ing a single target predicate [2, 3] whereas other work fo-
cuses on a multi-predicate approach [10, 36]. Both [2, 36]
look at trying to understand the data generation procedure,
but neither of them study it from a theoretical perspective.

Several works have explored statistical learning theory
for SRL. For instance, Xiang and Neville [35] studied the
consistency of estimation. However, in their setting the
relational graph is fixed and one only predicts the labels
of vertices by exploiting the relational structure to make
the predictions. Additionally, there are rather strong as-
sumptions on the sequence of relational graphs as their
size tends to infinity: (i) bounded degree and (ii) weak
dependence. Our work does not require bounded degree
assumptions. Note that the interiority parameter that ap-
pears in our bounds from Theorem 6 is related to weak
dependence assumptions, however, it is more explicit, as
it directly refers to properties of the marginal statistics.
Under similar assumptions, in particular assuming a fixed
relational graph, He and Zhang [12] extended the results
of Xiang and Neville to the non-asymptotic setting.

Dhurandhar and Dobra [8] derived Hoeffding-type in-
equalities for classifiers trained from relational data. How-
ever, these inequalities, which are based on the restriction
on the independent interactions of data points, cannot be
applied to solve the problems tackled in this paper. In
particular, these bounds also assume a fixed relational
graph. Finally, recent work has proposed VC-dimension
based bounds for relational learning [19]. However, that
work only provides bounds for the sufficient statistics un-
der the assumption that the training example is induced
by a subset sampled from the domain uniformly. More
importantly, it requires that there are no missing facts,
which makes it inapplicable to our setting.

7 CONCLUSIONS

This paper studied the question of whether it makes sense
to use MLNs for knowledge base completion in the most
naive way: first learning their weights on the given, incom-
plete, knowledge base, treating it as if it were complete
(i.e. using the so-called closed-world assumption), and
then using the learned MLN for prediction on the same
knowledge base to infer missing facts. For this approach
to make sense, a necessary condition is that the learned
distribution represented by the MLN should be as close
to the data generation distribution as possible. In par-
ticular, maximizing the log-likelihood on training data
should lead to maximizing the expected log-likelihood
of the MLN model. Under the assumption that facts are
missing from the knowledge base completely at random,
we showed that the normalized log-likelihoods of the
learned models converge to the optimal ones in expecta-
tion with the rate O(

√
log |∆|/(η|∆|)) where ∆ is the

set of domain elements and η is a parameter measuring
how extreme the values of the sufficient statistics of the
learned MLNs may be (the smaller the value of η, the
more extreme the statistics may be). We have also derived
bounds on the estimated values of the sufficient statis-
tics. It follows from our results that the naive strategy
for knowledge base completion using MLNs that we con-
sidered here is, perhaps a bit surprisingly, justifiable by
theoretical arguments.
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