
A Weighted Mini-Bucket Bound for Solving Influence Diagrams

Junkyu Lee1 Radu Marinescu2 Alexander Ihler1 Rina Dechter1

1 University of California, Irvine 2 IBM Research, Ireland
{junkyul, ihler, dechter} @ics.uci.edu {radu.marinescu} @ie.ibm.com

Abstract

Influence diagrams provide a modeling and in-
ference framework for sequential decision prob-
lems, representing the probabilistic knowledge
by a Bayesian network and the preferences of
an agent by utility functions over the random
variables and decision variables. The time and
space complexity of computing the maximum
expected utility (MEU) and its maximizing pol-
icy are exponential in the induced width of the
underlying graphical model, which is often pro-
hibitively large. In this paper, we develop a
weighted mini-bucket approach for bounding
the MEU. These bounds can be used as a stand-
alone approximation that can be improved as
a function of a controlling i-bound parameter,
or as a heuristic function to guide subsequent
search. We evaluate the scheme empirically
against the current state of the art, illustrating
its potential.

1 INTRODUCTION

An influence diagram (ID) [Howard and Matheson, 2005]
is a graphical model for sequential decision-making under
uncertainty that compactly captures the local structure of
the conditional independence of probability functions and
the additivity of utility functions. Its structure is captured
by a directed acyclic graph (DAG) over nodes represent-
ing the variables (decision and chance variables). The
standard query on an ID is finding the maximum expected
utility (MEU) and the corresponding optimal policy for
each decision, subject to the history of observations and
the previous decisions.

Computing the MEU is recognized as one of the hardest
tasks over graphical models, and hence recent work aims
at developing anytime bounding schemes that tighten the

bounds if more time and memory are available [Lee et al.,
2018]. Often, the goal is to incorporate such bounds as
heuristic functions to guide search algorithms. In this pa-
per, we focus on computing an upper bound on the MEU
for a single agent sequential decision making problem
with no-forgetting assumptions.

There exist several approaches to develop such bounds:

Information relaxation methods relax the constraints on
the variable ordering in the ID, re-ordering the chance
variables and resulting in a model with smaller induced
width whose value upper bounds the original ID [Nils-
son and Hohle, 2001]. These “re-ordered” upper bounds
can be used as heuristics, for example to guide a branch-
and-bound search to solve the original ID [Yuan et al.,
2010]. It is notable that, since these methods alter the ID
itself, they are orthogonal to the approximate inference
techniques described in the sequel and can potentially be
combined with such approaches.

Task transform methods convert the MEU task into a
marginal MAP query on a related graphical model, and
then apply existing approximation techniques to the
MMAP query [Liu and Ihler, 2012; Mauá, 2016]. This
allows state-of-the-art methods to be applied, but is often
impractical due to the size and complexity of the trans-
formed graph.

Decomposition bounds for MEU generalize bounding
techniques developed on other inference tasks to operate
on IDs. For example, a version of mini-bucket [Dechter
and Rish, 2003] was proposed for MEU in Dechter [2000];
mini-bucket relaxes the variable elimination procedure to
ensure that its computational cost is at most exponential
in a user-controlled parameter called the i-bound. Mini-
bucket’s similarity to variable elimination also makes it
well-positioned to provide precomputed and thus efficient
to evaluate bounds during search. Lee et al. [2018] ex-
tended the generalized dual decomposition bounds (GDD)
for MMAP [Ping et al., 2015] to MEU tasks using the
framework of valuation algebra [Shenoy and Shafer,

1990; Mauá et al., 2012; Moral, 2018], which defines
operators such as combination and marginalization over
pairs of probability and utility functions called potentials
[Jensen et al., 1994]. This results in a class of decom-
posed bounds that can be optimized through iterative
cost-shifting updates; however, unlike GDD for MMAP,
these bounds are non-convex and often difficult or slow
to optimize, particularly for large clique sizes.

One of the most effective current techniques for building
anytime bounds and search heuristics in other inference
tasks, such as MAP, summation, or MMAP, is weighted
mini-bucket [Liu and Ihler, 2011; Ihler et al., 2012; Mari-
nescu et al., 2014, 2018]. Weighted mini-bucket bounds
are constructed via approximate variable elimination, but
perform a single round of cost-shifting during construc-
tion (“moment matching”) and/or a few iterations of opti-
mization after construction. This results in decomposition
bounds with benefits from both techniques: moderate to
large clique sizes (controlled by the i-bound), with much
of the gains from cost-shifting without significantly more
computation.

In this work, we develop a weighted mini-bucket scheme
for generating upper bounds on the MEU. Given a consis-
tent variable ordering, the scheme generates bounds for
each variable conditioned on past histories, observations
and decisions relative to a given variable ordering. We
develop a stage-wise cost-shifting procedure that attempts
to minimize the bound locally during each approximate
elimination step, based on optimizing a simplified upper
bound on the unprocessed remainder of the model. We
show empirically that our scheme can offer more effective
bounds faster than existing state-of-the-art schemes. Thus,
these bounds have great potential to be used as a heuristic
function for search algorithms for solving IDs.

In Section 2, we review preliminaries and background
(i.e., definition of influence diagrams, valuation alge-
bra and decomposition bounds). Section 3 develops our
weighted mini-bucket algorithm generating parameterized
bound for IDs, empirical evaluation is given in Section 4
and Section 5 concludes.

2 BACKGROUND

2.1 INFLUENCE DIAGRAMS

An ID is a tuple M :“xC,D,P,U,Oy consisting of a
set of discrete random variables C“tCi|i P ICu, a set
of discrete decision variables D“tDi|i P IDu, a set of
conditional probability functions P“tPi|i P IPu , a set
of real-valued additive utility functions U“tUi|i P IUu,
and a constrained variable ordering O that will be elabo-
rated below. We use IS “ t0, 1, . . . , |S| ´ 1u to denote

Figure 1: Factored 2 Stage Markov Decision Process (MDP)
as an Influence Diagram

the set of indices of each element in a set S, where |S|
is the cardinality of S. As illustrated in Figure 1, an ID
can be associated with a DAG containing three types of
nodes: chance nodes C drawn as circles, decision nodes
D drawn as squares, and value nodes U drawn as di-
amonds representing utility functions defined over the
chance and decision nodes in its scope. There are also
three types of directed edges: edges directed into a chance
node Ci from its parents papCiq Ď CYD representing
the conditional probability function PipCi|papCiqq, edges
directed into a value node Ui denoting the utility function
UipXiq over its scope Xi Ď C YD, and informational
arcs (dashed arrows in Figure 1) directed from chance
nodes to a decision node. The set of parent nodes Ii
associated with a decision node Di are assumed to be
observed before making decision Di. An ID implies the
constrained partial variable ordering O which alternates
between the observed chance variables and decision vari-
ables tI0 ăD0 ă . . .ă I|D|´1 ăD|D|´1 ă I|D|u. Since
the agent is no-forgetting, the partial ordering ensures
the regularity property of an ID requiring a total ordering
of all decision variables [Shachter, 1986], and dictates
the available information at each decision Di so that the
agent makes decisions in a multi-staged manner based on
the whole history available at each stage.

Solving an ID is computing the Maximum Expected
Utility (MEU), Er

ř

i Ui|∆∆∆s under an optimal strategy,
∆∆∆ “ t∆i|∆i : RpDiq ÞÑ Di,@Di P Du, where ∆i is a
policy for Di and RpDiq is the requisite information to
Di [Nielsen and Jensen, 1999].

2.2 VALUATION ALGEBRA

The valuation algebra for IDs is an algebraic framework
for computing the expected utility values, or values for
short, using combination and marginalization operators
applied to valuations, or “potentials” [Jensen et al., 1994;
Mauá et al., 2012; Lee et al., 2018]. A valuation ΨpXq is
a pair of probability and value functions pP pXq, V pXqq
over a set of variables X called its scope. We will some-
time abuse notation, removing explicit reference to the
scope of function, e.g., writing P1pX1q as P1. We next
define some operators over valuations.

Definition 1. (combination of two valuations)
Given two valuations Ψ1pX1q:“pP1pX1q, V1pX1qq and
Ψ2pX2q:“pP2pX2q, V2pX2qq, the combination of the two
valuations over X1 YX2 is defined by

Ψ1pX1q bΨ2pX2q :“ pP1P2, P1V2 ` P2V1q.

Following Definition 1, the identity is p1, 0q and the in-
verse of pP pXq, V pXqq is p1{P pXq,´V pXq{P 2pXqq.

Definition 2. (variable elimination for valuations)
Given a valuation ΨpXq:“pP pXq, V pXqq, eliminating
a variable Y P X from a valuation by summation, max-
imization, or by powered-sum with weight w, is defined
by

ÿ

Y

ΨpXq :“
´

ÿ

Y

P pXq,
ÿ

Y

V pXq
¯

,

max
Y

ΨpXq :“
´

max
Y

P pXq,max
Y

V pXq
¯

,

w
ÿ

Y

ΨpXq:“
´

w
ÿ

Y

P pXq,
w
ÿ

Y

V pXq
¯

.

The powered-sum elimination operator
řw
Y is defined by

řw
Y fpXq “ r

ř

Y |fpXq|
1{wsw for a variable Y associ-

ated with a weight 0 ď w ď 1, and reduces to simple max
and sum when wÑ0 and w“1, respectively.

Definition 3. (comparison of two valuations) Given two
valuations Ψ1 :“ pP1, V1q and Ψ2 : pP2, V2q on the same
scopes, we say that Ψ1 ď Ψ2 iff P1 ď P2 and V1 ď V2.

Using valuation algebra notation, an ID M can be com-
pactly represented as xX,ΨΨΨ,Oy, where X “ CYD and
ΨΨΨ “ tpPi, 0q|Pi P PuY tp1, Uiq|Ui P Uu, and the MEU
can be written as

ÿ

I0

max
D0

. . .
ÿ

I|D|´1

max
D|D|´1

ÿ

I|D|

â

αPIΨ

ΨαpXαq, (1)

where IΨ is the set of indices of all valuations ΨΨΨ, and Xα

denotes the scope of Ψα.

2.3 DECOMPOSITION BOUNDS

Graphical Model Decomposition The dependence re-
lation between variables in a graphical model can be cap-
tured by a primal graph Gp “ pV,Eq. In particular, the
primal graph of an ID has chance variables and decision
variables as nodes and an edge e P E connects two nodes
if their corresponding variables appear in the scope of
either a probabilistic or a utility function.

The bucket-tree decomposition [Dechter, 1999] decom-
poses a graphical model into a tree of buckets, one for
each variable, that can be generated by triangulating the

Figure 2: Weighted Mini-Bucket Elimination example. The
details are elaborated in Example 1.

primal graph Gp along a total variable ordering. Each
bucket has a subset of variables identified by the tri-
angulated graph cliques and a subset of functions, sat-
isfying some properties (e.g., the running intersection
property). Subsequently, messages are passed between
the buckets up and down the bucket-tree yielding exact
computation [Dechter, 2013]. A bucket-tree is a type
of tree-decomposition called join-tree. The mini-bucket
scheme [Dechter and Rish, 2003] relaxes such exact tree-
decomposition by splitting a bucket into mini-buckets
whenever its size exceeds a bounding parameter termed
the i-bound, yielding a mini-bucket tree. This splitting
can be interpreted as variable duplication that forces ad-
ditional independence. Join-graph decomposition [Ma-
teescu et al., 2010] is a structure that facilitates another
type of approximation via iterative message-passing. A
join-graph can be generated by extending the mini-bucket
tree into a graph by adding a chain of edges between mini-
buckets of the same variable. The resulting structure is a
graph connecting clusters called a join-graph. The edges
of a join-graph can be labeled by a separator, which is a
subset of variables shared by two adjacent clusters.

Weighted Mini-buckets and Cost-Shifting Schemes
Weighted mini-bucket [Liu and Ihler, 2011] further tight-
ens the mini-bucket relaxation by using Hölder’s inequal-
ity,

wX
ÿ

X

q
ź

α“1

fαpXαq ď

q
ź

α“1

wαX
ÿ

Xα

fαpXαq, (2)

where q is the number of mini-buckets of a given variable
X , fαpXαq is the combined function at the α-th mini-
bucket, wX is the weight of the variable X (1 for the
summation and 0 for the maximization), and wαX is a
set of non-negative weights distributed to q mini-buckets
such that wX “

řq
α“1 w

α
X .

For bounding MEU of IDs, Lee et al. [2018] extended the
weighted mini-bucket scheme to valuation algebra using

Hölder’s and Minkowski’s inequality, showing that

wX
ÿ

X

b
q
α“1ΨαpXαq ď

q
â

α“1

wαX
ÿ

Xα

ΨαpXαq, (3)

where ΨαpXαq is a pair of probability and value func-
tions.

Example 1. Figure 2 illustrates the schematic trace of
weighted mini-bucket elimination applied to the ID in
Figure 1 with i-bound 2. First, a constrained elimina-
tion ordering consistent to the partial ordering specified
by the informational arcs is O :“ tD1 ă S2 ă S3 ă

D0 ă S0 ă S1u. To generate a mini-bucket tree, we
process the variables following the order O. For each
variable, we collect all valuations that contain that vari-
able and place them in a bucket. When the total number
of variables in a bucket exceeds i+1, we partition the
bucket into mini-buckets such that each mini-bucket con-
tains i ` 1 or fewer variables. For example, bucket S2

is partitioned into two mini-buckets in Figure 2. Then,
we generate messages by eliminating the labelling vari-
able of each mini-bucket from the combined valuation
and send the result (a valuation message) to a mini-
bucket in a lower layer. For example, the mini-bucket
on the right of bucket S2 sends its message to bucket S0.
Weights can be assigned to each bucket labelled by a sum-
mation variable. The weighted mini-bucket relaxation
for bucket S2 is

ř

S2
λD1pS2, S3qbpP pS2|S0, S1q, 0q ď

r
řwS2

S2
λD1pS2, S3qs b r

ř
wS12
S2
pP pS2|S0, S1q, 0qs.

Decomposition bounds can also be optimized by introduc-
ing auxiliary cost-shifting functions between decomposed
clusters, thus reparameterizing the original functions allo-
cated to each cluster [Sontag et al., 2011; Liu and Ihler,
2011; Ihler et al., 2012; Ping et al., 2015]. In particu-
lar, the generalized dual decomposition (GDD) bound
[Ping et al., 2015] generates upper bounds of the MMAP
task by jointly optimizing the weights associated with the
variables at each cluster and the cost-shifting functions
defined over the separators in a join graph decomposition
under the fully decomposed setting.

More recently, [Lee et al., 2018] extended this idea to a
GDD reparameterized bound for the MEU task thus yield-
ing a join-graph decomposition bound for IDs (JGDID).
This scheme recursively applies the weighted mini-bucket
scheme for IDs in Eq. (3) to the all variables at once,
described as

w
ÿ

X

bαPIαΨαpXαq ď
â

αPIα

wα
ÿ

Xα

ΨαpXαq, (4)

where Iα is the index set of all nodes in a join graph,
ΨαpXαq is a valuation that combines all valuations in the

α-th cluster, w “ twX1 , . . . , wX|X|u is the set of all the
weights that corresponds to all the variables X, Xα is
the set of variables appear in the α-th cluster, and wα “

twαX1
, . . . , wαX|X|u is the set of weights of the Xα such

that wXi “
ř

αPIα w
α
Xi

for all Xi P X. The auxiliary
optimization parameters are the cost-shifting valuations,
δpCi,Cjq and δpCj ,Ciq between two clusters Ci and Cj that
are defined over the separator variables SpCi,Cjq such that
both cancels to satisfy δpCi,Cjq b δpCj ,Ciq “ p1, 0q, where
wC are the weight parameters distributed to each cluster
C. Incorporating the optimization parameters into Eq. (4),
we can rewrite the reparameterized bound for IDs as,

w
ÿ

X

â

αPIα
ΨαpXαqď

â

αPIα

wα
ÿ

Xα

rΨαpXαqbp
â

pα,CjqPS
δpα,Cjqqs, (5)

where each cluster’s valuation Ψα is reparameterized by
the shifts δ from the incident edges of the join graph.
Minimizing the value component of the right hand-side
of Eq. (5) relative to each wα for all α P Iα, and each
δpCi,Cjq and δpCj ,Ciq for all pCi, Cjq P S, subject to con-
straints wX “

ř

α w
α
X , X P X, and δpCi,Cjq b δpCj ,Ciq “

p1, 0q, pCi, Cjq P S , yields a local optimum with a tighter
MEU bound.

3 A WEIGHTED MINI-BUCKET
BOUND FOR IDS

The value component of the decomposition bounds for
IDs such as Eq. (5) is not a convex function of the weights
w and the cost-shifting functions δ because a bound on
the global expected utility value is a weighted sum of
value components, each multiplied by the product of the
probability components of all other clusters. Note that the
parameters w and δ appear in both probability and value
components. This means that optimization difficulty can
play a significant role in the quality of the final bounds.
For example, we observed that the JGDID scheme [Lee
et al., 2018] often shows worse upper bounds at higher i-
bounds, in part because of the increased dimension of the
objective function (which is exponential in the i-bound).

An alternative approach we explore here is to interleave
the variable elimination and decomposition/optimization
of the clusters “on the fly” in a more local manner. Ihler
et al. [2012] presented a single pass approximate variable
elimination algorithm that matches the max-marginal mo-
ments of the mini-buckets for MPE task, and Marinescu
et al. [2014] showed a similar approach for MMAP. This
way, the intermediate reparameterization step optimizes a
partial decomposition scheme applied to a single cluster
of the bucket-tree, yielding a lower dimensional optimiza-
tion space. In other words, the optimization process repa-
rameterizes the mini-bucket relaxation locally within a

single bucket. It then generates messages by the weighted
power-sum for each mini-bucket independently, avoiding
the difficult optimization steps altogether. In the following
subsections, we develop a weighted mini-bucket elimina-
tion bounds for IDs (WMBE-ID) based on these ideas.

3.1 BOUND DERIVATION

Given an ID M :“ xX,ΨΨΨ,Oy, we could apply the
weighted mini-bucket scheme in Eq. (3) to one variable
at a time following the constrained elimination ordering
O : tX|X|, X|X|´1, . . . , X1u. The intermediate messages
could be sent to mini-buckets at lower layers, as illustrated
in Figure 2. To tighten the upper bound, we introduce
cost-shifting functions between mini-buckets, yielding
the following parameterized bound for each bucket of a
variable X ,

wX
ÿ

X

q
â

α“1

ΨαpXαqď

q
â

α“1

wαX
ÿ

Xα

rΨαpXαqb
δpα´1,αqpXq

δpα,α`1qpXq
s, (6)

where wX is the weight of the variable X (1 or 0), q is
the total number of mini-buckets, wαX is the weight of
X at its α-th mini-bucket, and δpα,α`1qpXq is the cost-
shifting valuation from the α-th mini-bucket to the pα`
1q-th mini-bucket. Using the example in Figure 2, the
reparameterized upper bound at Bucket S2 can be written
as,

r

wS2
ÿ

S2

pλD1 , ηD1q

δpS2,S12q
s b r

wS12
ÿ

S12

pP pS12|S0, S1q, 0q b δpS2,S12q
s.

However, the value component of Eq. (6) cannot be used
as an objective function to be optimized; it is not a scalar
quantity, but rather a function whose scope may be as
large as the induced width. Therefore, we propose a
surrogate optimization objective function based on the
fully decomposed bound as follows.

Theorem 1. (Weighted Mini-bucekt Elimination
Bounds for IDs) Given an ID M :“ xX,ΨΨΨ,Oy
and a constrained variable elimination ordering
O :“tX|X|, X|X|´1, . . . , X1u, assume that the variables
tX|X|, X|X|´1, . . . Xn`1u are already eliminated by the
weighted mini-bucket elimination algorithm, and Xn

is the current variable to eliminate. Let ΨXipX1:iq be
the combination of all valuations allocated to bucket
Xi of the bucket-tree, QXi :“ t1, . . . , qXiu be the
mini-bucket partitioning for bucket Xi, and ΨXi

α pX
Xi
α q

be the combination of the valuations allocated at the α-th
mini-bucket of bucket Xi. Then, we set up a surrogate
upper bound, which we call weighted mini-bucket
elimination bounds for IDs (WMBE-ID), on the MEU of
the remaining subproblem and it is defined over those

remaining variables X1:n :“ tX1, . . . , Xnu, as follows.

w1:ń 1
ÿ

X1:ń 1

rt

ń 1
â

i“1

ΨXipX1:iqubt

wXn
ÿ

Xn

ΨXnpX1:nqus (7)

ď

w1:ń 1
ÿ

X1:ń 1

rt

ń 1
â

i“1

ΨXipX1:iqubt
â

αPQXn

wXn,αXn
ÿ

Xn

ΨXn
α pXXn

α qus (8)

ď

n´1
â

i“1

r
â

αPQXi

w
Xi,α

1:i
ÿ

X1:i

ΨXi
α pX

Xi
α qsbr

â

αPQXn

wXn,α1:n
ÿ

X1:n

ΨXn
α pX

Xn
α qs. (9)

The weights w1:n :“ twX1 , . . . , wXnu in Eq. (7) are
the set of elimination weights for variables X1:n, either
1 (chance variable) or 0 (decision variable), and the
weights wXi,α

1:k :“ twXi,αX1
, . . . , wXi,αXk

u in Eq. (9) is a set
of weights of the variables X1:k in the α-th mini-bucket
of bucket Xi such that wXj “

řk
l“1

ř

αPQXl
wXl,αXj

.

Proof. Concretely, Eq. (7) is the MEU of the subproblem
after eliminating variables tX|X|, . . . , Xn`1u, and the
inequality in Eq. (8) is obtained by applying weighted
mini-bucket elimination of Eq. (3) to bucket Xn only.
The final inequality, Eq. (9), is then given by applying the
generalized dual decomposition bound for MEU in Eq. (4)
to all mini-buckets tQXi |Xi P X1..nu in the remaining
subproblem, yielding a scalar valued function that bounds
the MEU of the remaining subproblem.

3.2 OPTIMIZING THE UPPER BOUND

Optimization Objectives and Parameters Given an
ID M :“ xX,ΨΨΨ,Oy and a constrained elimination or-
dering O :“tX|X|, X|X|´1, . . . , X1u, the weighted mini-
bucket bounds as defined in Theorem 1 can be param-
eterized relative to a chain of mini-buckets QXn when
variable Xn is the next variable to be eliminated (after
reparameterization) as follows.

r

n´1
â

i“1

â

αPQXi

w
Xi,α

1:n´1
ÿ

X1:n´1

ΨXi
α pX

Xi
α qs b

r
â

αPQXn

wXn,α1:n
ÿ

X1:n

ΨXn
α pXXn

α q
δXn
pά 1,αqpXnq

δXn
pα,ὰ 1qpXnq

s (10)

The optimization parameters in Eq.(10) are the cost-
shifting functions between adjacent mini-buckets and the
weights over the mini-buckets QXn namely,

tδXn
pα,α`1qpXnq|@α, α`1 P QXnu (11)

twXn,αXn
|@α, α`1 P QXnu, (12)

where δXn
pα,ὰ 1qpXnq is a pair of probability and value

components λXn
pα,ὰ 1qpXnq and ηXn

pα,ὰ 1qpXnq. Dropping

Algorithm 1 Weighted Mini-Bucket Elimination Bounds
for IDs (WMBE-ID)
Require: Influence diagram M “ xX,ΨΨΨ,Oy, total constrained elimination

order O :“ tXN , XN´1, . . . , X1u, i-bound, iteration limit L,
Ensure: an upper bound of the MEU
1: Generate a schematic mini-bucket tree and allocate valuations to mini-

buckets, tQXi |Xi P Xu.

2: Initialize weights twXi,α1:N |@Xi P X, α P QXiu, and optionally tune the
weights by a single JGDID update.

3: Compute fully decomposed bounds at all mini-buckets.
4: UbÐ p1, 0q
5: for iÐ N to 1 do
6: iter “ 0
7: while iter ă L and bounds not converged do
8: Update cost functions tδpα,ὰ 1q|αPQXi

u by SLSQP.

9: Update weights twXi,αXi
|αPQXiu by EGD.

10: end while
11: for α P QXi do

12: pλ
Xi
α , η

Xi
α q Ð

ř

w
Xi,α
Xi

Xi
Ψ̃
Xi
α pX

Xi
α q

13: if pλXiα , η
Xi
α q is constant then

14: UbÐ Ubb pλ
Xi
α , η

Xi
α q

15: else
16: Send message pλXiα , η

Xi
α q downward.

17: Combine the message and the valuation at the destination mini-bucket.
18: Merge the weights of the source and destination mini-buckets.
19: Recompute fully decomposed bound at the destination mini-bucket.
20: end if
21: end for
22: end for
23: Return value component of Ub

the scopes XXi
α , the objective function obtained (follow-

ing some algebraic manipulation), derived as the value
component of Eq. (10), can be written explicitly as

Γ ¨

«

n´1
ÿ

i“1

ÿ

αPQXi

řw
Xi,α

1:n´1

X1:n´1
V Xiα

řw
Xi,α

1:n´1

X1:n´1
PXiα

` (13)

ÿ

αPQXn

řwXn,α1:n

X1:n
PXnα

λXn
pα´1,αq

λXn
pα,α`1q

r
V Xnα

PXnα
´

ηXn
pα,α`1q

λXn
pα,α`1q

`
ηXn
pα´1,αq

λXn
pα´1,αq

s

řwXn,α1:n

X1:n
PXnα

λXn
pα´1,αq

λXn
pα,α`1q

ff

,

where Γ is the probability component of Eq. (10),

Γ “ r
n´1
ź

i“1

ź

αPQXi

PXiα s ¨ r
ź

αPQXn

PXnα

λXn
pα´1,αq

λXn
pα,α`1q

s. (14)

The probability component at the α-th mini-bucket of
the bucket of Xn is reparameterized by the probability
cost-shifting functions λXn

pα´1,αq and λXn
pα,α`1q as,

PXnα

λXn
pα´1,αq

λXn
pα,α`1q

. (15)

Similarly, the value component at the the α-th mini-bucket
of the bucket of Xn is reparameterized by subtracting the
outgoing utility cost and adding the incoming utility cost
to V Xnα

PXnα
, and multiplying the new probability component

in Eq. (15) yielding,

rPXnα

λXn
pα´1,αq

λXn
pα,α`1q

sr
V Xnα

PXnα
´

ηXn
pα,α`1q

λXn
pα,α`1q

`
ηXn
pα´1,αq

λXn
pα´1,αq

s. (16)

Constraints for Optimizing the Cost-shifting Func-
tions Since the power-sum operator is defined over the
absolute value of a function, the value components of all
mini-buckets must remain non-negative after reparameter-
ization. Let ΨXn

α pXαq be the valuation at the α-th mini-
bucket of the bucket of Xn having the probability com-
ponent λXnα pXαq and the value component ηXnα pXαq,
and δpα,ὰ 1qpXnq :“ pλpα,ὰ 1qpXnq, ηpα,ὰ 1qpXnqq be
the cost-shifting valuation between the α-th and pα`1q-
th mini-buckets. Then, the non-negativity of the value
components after the reparameterization is ensured by:

ηXnα pXαq

λXnα pXαq
´
ηpα,α`1qpXnq

λpα,α`1qpXnq
`
ηpα´1,αqpXnq

λpα´1,αqpXnq
ě 0. (17)

In addition, the non-negativity of the probability compo-
nents is ensured by:

λpα,α`1qpXnq ě 0 (18)

for all mini-buckets α P QXn . Equipped with the above
optimization objective and constraints, any constrained
optimization procedure can be applied to reparameterize
the mini-buckets.

Optimization Routines In the empirical evaluation, we
implemented optimization routines that optimize the prob-
ability cost-shifting functions, the value cost-shifting func-
tions, and the weights. In order to optimize the probability
and value cost-shifting functions, we integrated sequen-
tial least square programming (SLSQP) [Kraft, 1988] to
optimize Eq. (13) subject to the constraints of Eq. (17)
and Eq. (18). In order to optimize the weights, we imple-
mented the exponentiated gradient descent (EGD) [Kivi-
nen and Warmuth, 1997] as shown in [Lee et al., 2018].

Interleaving Elimination and Optimization Algo-
rithm 1 outlines our overall algorithm, weighted mini-
bucket elimination that is interleaved with reparameteriza-
tion, which computes an upper bound on the MEU. Given
an input ID M and a constrained elimination order O,
the schematic mini-bucket elimination algorithm [Dechter
and Rish, 2003] generates a mini-bucket tree and valu-
ations are allocated to mini-buckets (line 1). Then, all
the weights are initialized uniformly over a join-graph
obtained from the mini-bucket tree; an optional tuning
step that runs a single JGDID iteration on the weights
often showed a significant impact in our empirical eval-
uation (line 2). Initialization is completed by computing
the fully decomposed bounds at each mini-bucket using

Figure 3: Optimizing the WMBE-ID Bounds for the example
shown in Figure 2. The details are elaborated in Example 2.

the initial weights and valuations,
řw

Xi,α

1:N

X1:N
ΨXi
α pX

Xi
α q for

all tpXi, αq|Xi P X, α P QXiu (line 3). In the main
loop, variables are processed from first to last in the con-
strained elimination ordering. Given the current variable
Xi, the cost-shifting functions and weights that parame-
terizes Xi’s mini-buckets are updated to tighten the upper
bound of Eq. (13) by the optimization routines (line 7 –
10). Subsequently, mini-bucket messages at the current
layer are computed using the optimized weights and repa-
rameterized valuations (line 12). These messages are sent
downward along the mini-bucket tree, and the weights and
valuations at the destination mini-bucket are incorporated
into the fully decomposed bound (line 16 – 18).

Example 2. Figure 3 illustrates how the mini-buckets
of bucket S2 in Figure 2 are optimized by the algo-
rithm. Before entering the optimization loop, the mini-
buckets of bucket S2 contain the input valuations and
the messages received from the upper layers. Namely,
ΨS2

1 “ pλD1 , ηD1q, and ΨS2
2 “ pP pS2|S0, S1q, 1q. The

cost-shifting δS2
1,2pS2q reparameterizes the valuations at

each mini-bucket by shifting the cost δS2
1,2pS2q from mini-

bucket1 to mini-bucket2. The weights wS2,1
S2

and wS2,2
S2

are optimized under the constraint 1 “ wS2,1
S2

` wS2,2
S2

.
In mini-bucket1 , the weighted mini-bucket message

pλS2,1, ηs2,1q is computed by
řw

S2,1

S2

S2
ΨS2

1 , and sent to
the bucket of S3 Once the optimization steps ran up to
the maximum number of iterations or until convergence.
The bucket of S3 combines the incoming message and the
preassigned valuation ΨS3

1 , merges the incoming weights
wS2,1
S3

to wS3,1
S3

, and recomputes the fully decomposed
bound to incorporate the modification.

4 EXPERIMENTS

We compare the performance of our proposed bounding
scheme WMBE-ID with earlier approaches on 4 domains
each containing 5 problem instances. The benchmark
statistics are summarized in Table 1.

Benchmarks We generated 4 domains in the following
way: (1) Factored Finite Horizon Markov Decision Pro-

Domain n f k s w

FH-MDP 99, 145, 170 120, 170, 240 3, 3, 5 7, 9, 9 21, 39, 43
FH-POMDP 57, 92, 96 72, 128, 140 2, 2, 3 5, 6, 9 28, 43, 47
RAND 60, 77, 91 60, 77, 91 2, 2, 2 3, 3, 3 20, 27, 41
BN 54, 54, 100 54, 54, 100 2, 2, 2 6, 10, 10 19, 24, 28

Table 1: Benchmark statistics. We show the minimum, median,
and maximum values for each of the problem parameters: n –
the number of chance and decision variables, f – the number
of probability and utility functions, k – the domain size, s – the
scope size, and w – the induced width, respectively.

cess (FH-MDP) instances are generated from two stage
factored MDP templates by varying the number of state
and action variables, the scope size of functions, and the
length of time steps between 3 and 10. (2) Factored Fi-
nite Horizon Partially Observable MDP (FH-POMDP)
instances are generated similarly to MDP instances, but
it incorporates observed variables. (3) Random influence
diagrams (RAND) are generated from a random topology
of influence diagram by varying the number of chance,
decision, and value nodes. (4) BN influence diagram in-
stances are IDs converted from the Bayesian networks
BN-0 and BN-78 that are released in the UAI-2006 prob-
abilistic inference challenge by converting random nodes
to decision nodes and adding utility nodes.

Algorithms We evaluated our algorithm WMBE-ID us-
ing 4 configurations: (1) uniform weights without cost-
shifting updates (WMBE-U) (2) uniform weights with
cost-shifting updates (WMBE-UC), (3) updating both
weights and applying cost-shifting (WMBE-WC1) when
initial weights assigned uniformly, and (4) updating both
weights and cost-shifting (WMBE-WC2) when using the
initial weight tuning step by a single JGDID iteration. For
comparison, we consider the following earlier approaches:
the mini-bucket elimination bound (MBE) [Dechter and
Rish, 2003; Mauá et al., 2012], MBE combined with
the re-ordering relaxation (MBE-Re) [Nilsson and Hohle,
2001], and the state-of-the-art join graph decomposition
bounds for IDs (JGDID) [Lee et al., 2018]. WMBE-U,
MBE, and MBE-Re are non-iterative algorithms that com-
pute the upper bounds in a single pass. The others are iter-
ative algorithms that run either until the maximum number
of iterations or they convergence. We implemented all
algorithms in Python using the NumPy [Oliphant, 2015]
and SciPy [Jones et al., 2001] libraries.

4.1 COMPARING ON INDIVIDUAL INSTANCES

Table 2 shows the quality of the upper bounds obtained
by all 7 algorithms using i-bounds 1, 5, 10, and 15,
and iteration limits of 1, 5, 10, and 20, on selected in-
stances from the 4 domains. We can see that the qual-
ity of the bounds from MBE and MBE-Re is orders of

Instance
Algorithm

i=1 (time (sec), bound) i=5 (time (sec), bound)
(n,f,k,s,w) iter=1 5 10 20 iter=1 5 10 20

ID_from_BN_78 WMBE-U (47, 418) - - - (52, 147.78) - - -
_w19d3 WMBE-UC (605, 381) (519, 381) (694, 381) (376, 381) (531, 151.58) (226, 151.58) (364, 151.58) (410, 151.58)

WMBE-WC1 (164, 406.20) (631, 404.56) (879, 236.99) (746, 252.08) (323, 113.86) (704, 108.07) (804, 87.72) (1034, 107.82)
WMBE-WC2 (382, 181.10) (416, 159.81) (994, 153.40) (531, 157.34) (706, 82.49) (413, 77.89) (944, 77.11) (1045, 78.56)

(54, 54, 2, 10, 19) JGDID (0.51, 889) (973, 28.34) (1281, 27.53) - (0.7, 4362) (915, 118) (2731, 33.64) (6076, 32.59)
MBE (1, 3.14E+5) - - - (1, 2957) - - -

MBE-Re (1, 2.45E+5) - - - (1, 19059) - -

Algorithm
i=10 (time (sec), bound) i=15 (time (sec), bound)

iter=1 5 10 20 iter=1 5 10 20

WMBE-U (214, 46.93) - - - (252, 27,79) - - -
WMBE-UC (350, 44.94) (282, 44.94) (286, 44.94) (170, 44.94) (270, 27,79) (399, 27.79) (147, 27.79) (228, 27.79)

WMBE-WC1 (176, 46.98) (222, 43.32) (480, 43.39) (368, 45.33) (211, 25.76) (208, 25.69) (287, 25.69) (193, 25.69)
WMBE-WC2 (538, 42.62) (928, 41.71) (1459, 38.99) (1910, 38.97) (406, 25.43) (740, 26.08) (919, 24.84) (1118, 24.82)

JGDID (1, 4561) (3530, 90.23) (7433, 48.15) (15235, 47.08) (1, 4513) (7391, 45.21) (15720, 42.34) -
MBE (1, 113) - - - (1, 37.38) - - -

MBE-Re (1, 329) - - - (1, 49.43) - - -

Instance
Algorithm

i=1 (time (sec), bound) i=5 (time (sec), bound)
(n,f,k,s,w) iter=1 5 10 20 iter=1 5 10 20

mdp9 WMBE-U (466, 2.86E+9) - - - (494, 1.25E+8) - - -
-32_3_8_3 WMBE-UC (4975, 1.01E+9) (8707, 1.01E+9) (6689, 1.01E+9) (6294, 1.01E+9) (2202, 7.49E+7) (2497, 7.49E+7) (2929, 7.49E+7) (2616, 7.49E+7)

WMBE-WC1 (4931, 182.18) (16965, 777.23) (18317, 123.72) (19084, 167.08) (2282, 22.65) (14020, 183.96) (12021, 389.51) (16946, 110.97)
WMBE-WC2 (3840, 30.64) (14553, 22.73) (12235, 22.88) (16595, 23.86) (6176, 22.56) (8280, 22.31) (6546, 22.25) (10479, 22.33)

(54, 54, 2, 10, 19) JGDID (2.8, 1.65E+11) (7625, 48.22) (15340, 23.58) - (3, 2.58E+13) (6790, 7104) (18589, 634) (30243, 27.57)
MBE (3, 2.4E+21) - - - (3, 4.3E+14) - - -

MBE-Re - - - - - - - -

Algorithm
i=10 (time (sec), bound) i=15 (time (sec), bound)

iter=1 5 10 20 iter=1 5 10 20

WMBE-U (581, 1666593) - - - (790, 372057) - - -
WMBE-UC (2968, 8.25E+5) (2529, 8.25E+5) (2586, 8.25E+5) (2783, 8.25E+5) (4158, 3.19E+5) (5129, 3.33E+5) (3586, 3.22E+5) (4840, 3.21E+5)

WMBE-WC1 (3819, 21.28) (4778, 27.78) (11776, 22.03) (7378, 21.38) (8298, 20.45) (9299, 43.38) (20944, 26.40) (21815, 19.77)
WMBE-WC2 (6548, 21.49) (12698, 21.07) (14260, 21.08) (6987, 21.05) (12809, 20.78) (22651, 20.35) (30883, 20.22) (35086, 20.26)

JGDID (4, 4.01E+14) (4282, 8.75E+8) (9294, 4.40E+7) (21315, 4.62E+6) (7, 4.63E+14) (9250, 2.42E+8) (19791, 5.35E+7) (40074, 7.39E+5)
MBE (2.6, 159E+12) - - - (2, 1.73E+10) - - -

MBE-Re - - - - - - - -

Instance
Algorithm

i=1 (time (sec), bound) i=5 (time (sec), bound)
(n,f,k,s,w) iter=1 5 10 20 iter=1 5 10 20

pomdp8 WMBE-U (312, 9.3E+14) - - - (2, 3.4E+14) - - -
-14_9_3_12_4 WMBE-UC (899, 9.3E+14) (1198, 9.3E+14) (1540, 9.3E+14) (574, 9.3E+14) (980, 2.4E+13) (1478, 2.4E+13) (1229, 2.4E+13) (894, 2.4E+13)

WMBE-WC1 (502, 3.30E+13) (1659, 1.62E+13) (1923, 1.62E+13) (3772, 1.62E+13) (499, 1.67E+12) (1534, 1.08E+12) (1378, 1.08E+12) (1892, 1.08E+12)
WMBE-WC2 (708, 2.41E+12) (2200, 2.32E+12) (2631, 2.33E+12) (4283, 2.24E+12) (1531, 3.12E+11) (2567, 3.14E+11) (3451, 2.96E+11) (2967, 2.97E+11)

(96, 140, 2, 6, 47) JGDID (2.05, 1.8E+16) (1920, 3.73E+10) (4458, 8.65E+9) (7111, 6.12E+8) (3, 2.75E+19) - - -
MBE (3, 1.94E+22) - - - (3, 2.57E+18) - - -

MBE-Re (4, 2.9E+18) - - - (2, 3.4E+14) - - -

Algorithm
i=10 (time (sec), bound) i=15 (time (sec), bound)

iter=1 5 10 20 iter=1 5 10 20

WMBE-U (755, 1.90E+10) - - - (1861, 9.49E+8) - - -
WMBE-UC (773, 1.90E+10) (1575, 1.90E+10) (968, 1.90E+10) (607, 1.90E+10) (2022, 9.49E+8) (3186, 9.49E+8) (1606, 9.49E+8) (2363, 9.49E+8)

WMBE-WC1 (510, 3.97E+9) (1409, 4.33E+9) (1209, 4.33E+9) (1867, 4.33E+9) (792, 4.42E+8) (2409, 1.19E+10) (3588, 4.71E+8) (9236, 4.70E+8)
WMBE-WC2 (4582, 2.63E+9) (4099, 2.23E+9) (4394, 2.23E+9) (4970, 2.23E+9) (5923, 6.82E+7) (12317, 6.72E+7) (11869, 6.72E+7) (7892, 6.72E+7)

JGDID (4, 3.2E+18) (3224, 3.48E+12) (7101, 5.55E+11) (14635, 4.42E+9) (12, 1.4E+18) (12196, 4.39E+11) (28338, 1.29E+11) (49188, 6.81E+9)
MBE (2, 1.4E+15) - - - (3, 7.3E+12) - - -

MBE-Re (1, 3.26E+8) - - - (1, 2.84E+5) - - -

Instance
Algorithm

i=1 (time (sec), bound) i=5 (time (sec), bound)
(n,f,k,s,w) iter=1 5 10 20 iter=1 5 10 20

rand WMBE-U (64, 1028113) - - - (109, 9227) - - -
-c70d7o1-01 WMBE-UC (371, 1.05E+6) (232, 1.05+6) (263, 1.05+6) (266, 1.05+6) (481, 7588) (341, 8196) (687, 8196) (344, 7625)

WMBE-WC1 (76, 3.98E+5) (171, 4.93E+5) (241, 4.90E+5) (314, 4.89E+5) (417, 6081.49) (415, 7247.53) (324, 6235.09) (249, 8662.08)
WMBE-WC2 (407, 6.04E+6) (856, 1.38E+5) (796, 1.35E+5) (687, 1.60E+5) (251, 4201.44) (633, 2567.81) (868, 2877.79) (678, 3639.72)

(91, 91, 2, 3, 41) JGDID (1, 2.15E+7) (337, 61104) (842, 758) (1453, 686) (1, 1.84E+7) (1248, 11213) (3195, 762) (4397, 736)
MBE (1, 2.69E+9) - - - (1, 4.46E+5) - - -

MBE-Re (1, 2.61E+9) - - - (2, 7.39E+5) - - -

Algorithm
i=10 (time (sec), bound) i=15 (time (sec), bound)

iter=1 5 10 20 iter=1 5 10 20

WMBE-U (160, 1863) - - - (193, 1542) - - -
WMBE-UC (793, 1835) (1460, 1820) (576, 1819) (911, 1820) (833, 1521) (1560, 1518) (1056, 1516) (930, 1512)

WMBE-WC1 (315, 1803.52) (357, 2041.08) (585, 1870.45) (524, 1866.48) (702, 2.08E+6) (1005, 1956.82) (1111, 1846.16) (1231, 1828.79)
WMBE-WC2 (1326, 1107.85) (1083, 1105.79) (953, 1140.48) (819, 1098.92) (2625, 1086.30) (2081, 1061.17) (2006, 1077.61) (2583, 1077.98)

JGDID (1, 20049757) (4228, 2167) (8358, 1303) (15787, 795) (2, 2.37E+7) (7837, 2006) (15134, 1357) -
MBE (1, 4937) - - - (1, 7027) - - -

MBE-Re (1, 40695) - - - (1, 16139) - - -

Table 2: The performance of the bounding schemes on individual instances. n is the number of variables, f is the number of
functions, k is the maximum domain size, s is the maximum scope size, w is the constrained induced width. We show (time (sec),
upper bound) for various i-bounds and number of iterations for the 7 algorithms. WMBE-U is the mini-bucket elimination with
uniform weights, WMBE-UC preforms cost-shifting without optimizing the weight, WMBE-WC1/2 optimizes both weights and
costs, JGDID is the fully decomposed bound over a join graph that optimizes both weights and costs, MBE is the mini-bucket
elimination, and MBE-Re is the mini-bucket elimination with relaxed variable ordering. The best bounds from WMBE-WC1/2 and
JGDID are highlighted by the boldface.

WMBE-WC2 JGDID (i=10)

Instance i=10, iter=1 i=10, iter=5 i=15, iter=1 i=15, iter=5 i=20, iter=1 i=20, iter=5 i=10, max iter 100

ID_from_BN_0_w28d6 13% 2.60 19% 2.74 61% 1.40 40% 2.13 193% 1.33 248% 1.37 410% 1.30
ID_from_BN_0_w29d6 10% 1.56 29% 1.52 26% 0.96 30% 0.94 132% 1.01 210% 1.02 255% 1.58
ID_from_BN_78_w19d3 40% 1.55 70% 1.51 31% 0.92 56% 0.95 244% 0.64 299% 0.64 1582% 1.70
ID_from_BN_78_w23d6 5% 1.53 5% 1.51 6% 1.24 8% 1.16 31% 0.87 38% 0.84 127% 1.79
ID_from_BN_78_w24d6 16% 2.12 21% 3.42 17% 1.15 31% 1.08 54% 0.72 90% 0.70 167% 1.83
mdp5-16_3_8_10 10% 0.88 13% 0.87 88% 0.76 91% 0.76 - - - - 114% 4.68E+11
mdp6-20_5_5_5 13% 0.94 20% 0.94 28% 0.85 34% 0.86 771% 0.80 659% 0.80 339% 2.69E+04
mdp7-28_3_6_5 14% 1.14E+07 17% 0.95 20% 0.93 26% 0.93 - - 333% 0.87 128% 1.56E+07
mdp8-28_3_6_4 21% 0.97 41% 0.96 34% 0.91 42% 0.90 287% 0.87 365% 0.87 228% 8.69E+03
mdp9-32_3_8_3 24% 0.93 46% 0.91 46% 0.90 81% 0.88 503% 0.84 520% 0.83 142% 2.65E+03
pomdp10-12_7_3_8_4 80% 0.10 93% 0.07 667% 17.11 1008% 4.06E-03 - - - - 264% 0.32
pomdp6-12_6_2_6_3 26% 8.59 78% 4.25 43% 0.17 98% 0.16 607% 0.01 489% 0.01 109% 7.36
pomdp7-20_10_2_10_3 27% 1083.13 53% 20.72 51% 0.89 59% 34.93 827% 1.78 1247% 0.03 174% 72.80
pomdp8-14_9_3_12_4 42% 4.30 38% 3.64 55% 0.11 114% 0.11 1504% 0.03 2022% 0.01 199% 7.22
pomdp9-14_8_3_10_4 56% 1.27 87% 0.87 1455% 0.02 1775% 0.02 - - - - 395% 17.00
rand-c50d15o1-03 56% 1.83 25% 1.98 51% 1.07 82% 1.04 379% 0.87 576% 0.87 1515% 1.35
rand-c50d5o1-01 42% 0.91 86% 0.90 44% 0.69 78% 0.66 61% 0.61 73% 0.61 1687% 1.02
rand-c70d14o1-01 79% 9.64 121% 3.31 172% 11.55 252% 13.53 2073% 1.65 2284% 1.78 1872% 1.23
rand-c70d21o1-01 56% 3.70 28% 3.72 85% 1.36 122% 1.24 604% 1.17 788% 1.22 885% 1.16
rand-c70d7o1-01 91% 1.61 75% 1.61 181% 1.58 143% 1.55 338% 0.73 422% 0.73 1475% 1.15

geometric mean 27% 4.96 37% 1.62 59% 0.89 81% 0.71 313% 0.56 384% 0.41 361% 66.03

Table 3: Comparing the ratio of time measured in seconds (left column) and quality of upper bounds (right column) against
JGDID(i=1). WMBE-WC2 were provided with i-bound 10, 15 and 20, and the maximum number of iteration 1 and 5. JGDID
were provided i-bound 1 and 10 with the maximum number iteration 100. All the quantities are normalized by the statistics of
JGDID(i=1). WMBE-WC2 was terminated by time cut-off when a single layer optimization exceeds the 7200 second time limit.
Normalized bounds tighter than JGDID(i=1) bound (less than 1.0) are highlighted by the boldface.

magnitude worse than the other algorithms. Algorithm
JGDID generates tight bounds on many of the cases, espe-
cially at low i-bounds, but it consistently produced worse
bounds with higher i-bounds and it takes more time; on
the mdp9-32-3-8-3 instance, the upper bound from
JGDID(i=15) is 7.39E+5 (40074 sec), whereas it is only
23.58 (15340 sec) from JGDID(i=1).

In contrast, all the WMBE-ID algorithms consis-
tently improved the quality of the bounds when us-
ing higher i-bounds. For example, on instance
ID-from-BN-78-w19d3, WMBE-WC2 with 1 iter-
ation computes upper bounds of 181.10, 82.49, 42.62
and 25.43 with i-bounds 1, 5, 10 and 15, respec-
tively. We can also observe that WMBE-WC1 and
WMBE-WC2 achieved the tightest bounds on all but
rand-c70d7o1-01 instances with i-bound 15. In the
case of ID-from-BN-78-w19d3, WMBE-WC2 pro-
duced a better bound than the best of JGDID’s bounds;
25.43 in 406 seconds by WMBE-WC2 with i-bound 15
and 1 iteration, and 27.53 in 1281 seconds by JGDID
with i-bound 1. Similarly, WBME-WC1 generated better
bounds for mdp9-32-3-8-3 instance; 20.45 in 8298
seconds by WMBE-WC1 with i-bound 15 and 1 itera-
tion, compared with 23.58 in 15340 seconds by JGDID
with i-bound 1. Comparing the 3 variants of WMBE-ID
algorithm, we see that optimizing both weights and cost-
shifting functions greatly improved the quality of bounds
but with additional time overhead.

4.2 COMPARING WMBE-ID VS. JGDID

Table 3 compares the quality of the upper bounds as well
as the running time against JGDID(i=1) by normalizing
both by the statistics of JGDID(i=1). Clearly, we see

that JGDID with i-bound 10 shows degradation of the
quality of the bounds on all but 1 instance. In contrast,
WMBE-WC2 improved the upper bounds as the i-bounds
increase. In particular, WMBE-WC2(iter “ 5) generated
tighter bounds than JGDID(i=1); in 8 out of 20 instances,
in 12 out of 20 instances, and in 13 out of 20 instances
with i-bounds of 10, 15, and 20, respectively. The geo-
metric mean over the normalized quantities summarizes
the overall trend. It goes down from 1.62 to 0.71, and to
0.41 with longer running time, 37 %, 81%, and 384 %
due to the increased i-bounds.

5 CONCLUSION

We presented a new weighted mini-bucket bounding
scheme for influence diagrams, called WMBE-ID, which
computes upper bounds of the MEU by interleaving vari-
able elimination with optimizing partial decomposition
within each variable’s bucket. Compared with previous
schemes, WMBE-ID yields tighter upper bounds faster,
but may require more memory. In addition to being a
better stand-alone bound, WMBE-ID bounds can be used
as a static heuristic function for subsequent search and
therefore facilitates an anytime algorithm for IDs in the
spirit of earlier work for queries such as MAP and MMAP
[Marinescu et al., 2018], a direction we plan to pursue.

Acknowledgements

We thank the reviewers for their helpful feedback. This
work supported in part by NSF grants IIS-1526842 and
IIS-1254071, the U.S. Air Force (Contract FA9453-16-C-
0508), and DARPA (Contract W911NF-18-C-0015).

References
Dechter, R. (1999). Bucket elimination: A unifying frame-

work for reasoning. Artificial Intelligence, 113(1):41–
85.

Dechter, R. (2000). An anytime approximation for opti-
mizing policies under uncertainty. In AIPS-2000 Work-
shop on Decision Theoretic Planning.

Dechter, R. (2013). Reasoning with probabilistic and
deterministic graphical models: Exact algorithms. Syn-
thesis Lectures on Artificial Intelligence and Machine
Learning, 7(3):1–191.

Dechter, R. and Rish, I. (2003). Mini-buckets: A general
scheme for bounded inference. Journal of the ACM
(JACM), 50(2):107–153.

Howard, R. A. and Matheson, J. E. (2005). Influence
diagrams. Decision Analysis, 2(3):127–143.

Ihler, A., Flerova, N., Dechter, R., and Otten, L. (2012).
Join-graph based cost-shifting schemes. In Uncertainty
in Artificial Intelligence (UAI), pages 397–406, Corval-
lis, Oregon. AUAI Press.

Jensen, F., Jensen, F. V., and Dittmer, S. L. (1994). From
influence diagrams to junction trees. In Proceedings
of the 10th international conference on Uncertainty in
artificial intelligence, pages 367–373.

Jones, E., Oliphant, T., Peterson, P., et al. (2001). SciPy:
Open source scientific tools for Python.

Kivinen, J. and Warmuth, M. K. (1997). Exponentiated
gradient versus gradient descent for linear predictors.
Information and Computation, 132(1):1–63.

Kraft, D. (1988). A software package for sequential
quadratic programming. Forschungsbericht- Deutsche
Forschungs- und Versuchsanstalt fur Luft- und Raum-
fahrt.

Lee, J., Ihler, A., and Dechter, R. (2018). Join graph
decomposition bounds for influence diagrams. In Pro-
ceedings of the 34th Conference on Uncertainty in Ar-
tificial Intelligence (UAI), pages 1053–1062.

Liu, Q. and Ihler, A. (2011). Bounding the partition func-
tion using Hölder’s inequality. In Proceedings of the
28th International Conference on Machine Learning,
ICML ’11, pages 849–856.

Liu, Q. and Ihler, A. (2012). Belief propagation for struc-
tured decision making. In Proceedings of the 28th
Conference on Uncertainty in Artificial Intelligence,
pages 523–532.

Marinescu, R., Dechter, R., and Ihler, A. (2014).
AND/OR search for marginal MAP. In Uncertainty in
Artificial Intelligence (UAI), pages 563–572, Quebec
City, Canada.

Marinescu, R., Lee, J., Dechter, R., and Ihler, A. (2018).
And/or search for marginal map. Journal of Artificial
Intelligence Research, 63:875–921.

Mateescu, R., Kask, K., Gogate, V., and Dechter, R.
(2010). Join-graph propagation algorithms. Journal of
Artificial Intelligence Research, 37:279–328.

Mauá, D. D. (2016). Equivalences between maximum
a posteriori inference in bayesian networks and max-
imum expected utility computation in influence dia-
grams. Int. J. Approx. Reasoning, 68(C):211–229.

Mauá, D. D., de Campos, C. P., and Zaffalon, M. (2012).
Solving limited memory influence diagrams. Journal
of Artificial Intelligence Research, 44:97–140.

Moral, S. (2018). Divergence measures and approximate
algorithms for valuation based systems. In Informa-
tion Processing and Management of Uncertainty in
Knowledge-Based Systems. Applications, pages 591–
602. Springer International Publishing.

Nielsen, T. D. and Jensen, F. V. (1999). Welldefined
decision scenarios. In Proceedings of The 15th Con-
ference on Uncertainty in Artificial Intelligence, pages
502–511.

Nilsson, D. and Hohle, M. (2001). Computing bounds on
expected utilties for optimal policies based on limited
information. Dinar Research Report.

Oliphant, T. E. (2015). Guide to NumPy. CreateSpace
Independent Publishing Platform, USA, 2nd edition.

Ping, W., Liu, Q., and Ihler, A. T. (2015). Decomposition
bounds for marginal MAP. In Proceedings of Advances
in Neural Information Processing Systems 28, pages
3267–3275.

Shachter, R. D. (1986). Evaluating influence diagrams.
Operations research, 34(6):871–882.

Shenoy, P. P. and Shafer, G. (1990). Axioms for probabil-
ity and belief-function propagations. In Proceedings of
The 4th Conference on Uncertainty in Artificial Intelli-
gence, pages 169–198.

Sontag, D., Globerson, A., and Jaakkola, T. (2011). Intro-
duction to dual decomposition for inference. Optimiza-
tion for Machine Learning, 1(219-254):1.

Yuan, C., Wu, X., and Hansen, E. A. (2010). Solving
multistage influence diagrams using branch-and-bound
search. In Proceedings of the 26th Conference on Un-
certainty in Artificial Intelligence, pages 691–700.

	INTRODUCTION
	BACKGROUND
	INFLUENCE DIAGRAMS
	VALUATION ALGEBRA
	DECOMPOSITION BOUNDS

	A WEIGHTED MINI-BUCKET BOUND FOR IDS
	BOUND DERIVATION
	OPTIMIZING THE UPPER BOUND

	EXPERIMENTS
	COMPARING ON INDIVIDUAL INSTANCES
	COMPARING WMBE-ID VS. JGDID

	CONCLUSION

