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Abstract

We present an integrated approach for struc-

ture and parameter estimation in latent tree

graphical models. Our overall approach

follows a “divide-and-conquer” strategy that

learns models over small groups of variables

and iteratively merges onto a global solu-

tion. The structure learning involves combi-

natorial operations such as minimum spanning

tree construction and local recursive group-

ing; the parameter learning is based on the

method of moments and on tensor decomposi-

tions. Our method is guaranteed to correctly

recover the unknown tree structure and the

model parameters with low sample complex-

ity for the class of linear multivariate latent

tree models which includes discrete and Gaus-

sian distributions, and Gaussian mixtures. Our

bulk asynchronous parallel algorithm is imple-

mented in parallel and the parallel computation

complexity increases only logarithmically with

the number of variables and linearly with di-

mensionality of each variable.

1 INTRODUCTION

Latent tree graphical models are a popular class of latent

variable models, where a probability distribution involv-

ing observed and hidden variables are Markovian on a

tree. Since the structure of (observable and hidden) vari-

able interactions is approximated as a tree, inference on

latent trees can be carried out exactly through a simple

belief propagation [Pearl, 1988]. Therefore, latent tree

graphical models present a good trade-off between model

accuracy and computational complexity. They are appli-

cable in many domains [Durbin et al., 1999, Choi et al.,
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2012a,b, Wang and Li, 2013], where it is natural to ex-

pect hierarchical or sequential relationships among the

variables through a hidden-Markov model.

The task of learning a latent tree model consists of two

parts: learning the tree structure and learning the pa-

rameters of the tree. We list the challenges in learning a

latent tree model as follows:

1. Challenge 1: Consistent structure learning. The

location and the number of latent variables are hid-

den and the marginalized graph over the observable

variables no longer conforms to a tree structure.

2. Challenge 2: Consistent parameter estimation.

Parameter estimation in latent tree model is typi-

cally carried out through Expectation Maximization

(EM) or other local search heuristics [Choi et al.,

2011]. These methods have no consistency guar-

antees, suffer from the problem of local optima and

are not easily parallelizable.

3. Challenge 3: Computational complexity of

structure learning. Complexity of existing algo-

rithms are typically polynomial with the number

of variables p (i.e., observed nodes) as discussed

in Anandkumar et al. [2011], Choi et al. [2011].

These methods are sequential in nature and there-

fore are not scalable for large p.

4. Challenge 4: Efficient structure and parame-

ter estimation in parallel. Existing methods treat

structure learning and parameter estimation sequen-

tially – the parameter estimation can only be done

after completion of structure learning. Therefore it

is highly inefficient if the goal is to estimate only a

small subset of variables/nodes.

Choi et al. [2011] addressed challenge 1 using recursive

grouping algorithms for Gaussian and discrete variables

only. It remains unclear how to extend to variables in

high-dimensions. As for challenge 2, there is no work

for guaranteed parameter estimation of latent tree mod-

els: although Anandkumar et al. [2012b] proposed ten-



sor decomposition mechanisms for simple latent vari-

able models such as multi-view and mixture of Gaussian

models, extending those tensor decomposition mecha-

nisms to hierarchical models such as latent trees are non-

trivial, and involves alignment of locally estimated pa-

rameters. No existing work addresses challenge 3 or im-

plements a structure learning of latent tree in time less

than polynomial with p. Lastly for challenge 4, there is

no obvious way to (and no prior work did) directly par-

allelize these sequential methods without losing global

consistency guarantees.

We close the loop of consistent learning of latent tree

model in high-dimensions via an integrated parallel ap-

proach to simultaneous structure and parameter estima-

tion. Our method overcomes all above challenges.

Benefits of integrated structure and parameter esti-

mation. The locally implemented and yet globally con-

sistent simultaneous recovery of structure and parameter

is the key to our algorithm’s efficiency. Without this inte-

gration, parameter estimation has to wait until the com-

pletion of structure recovery, making the algorithm in-

trinsically sequential and thus less efficient. Another at-

tractive feature of our method is that it is amenable for

user interaction allowing the user to provide feedback

and change the course of various stages of the algorithm

in a smooth manner: a quality not found in other graph-

ical model learning methods. More precisely, the user

can select neighborhoods for adding hidden variables,

using scores such as BIC. This is suggested in Choi et al.

[2011], but the re-estimation of parameters through EM

and sequential execution makes it expensive. In our ap-

proach, no re-estimation of parameters are needed since

the structure and parameter estimation under our frame-

work go hand-in-hand, i.e., as the structure of the tree is

obtained, parameters are dynamically estimated.

Summary of Contributions

Theoretical contributions. (1) Given enough compu-

tational resources, our method achieves consistent la-

tent tree structure learning with log(p) computational

complexity in a “divide-and-conquer” manner, improv-

ing the state-of-the-art poly(p) complexity. We present

a rigorous proof on the global consistency of the struc-

ture and parameter estimation under the “divide-and-

conquer” framework. Our consistency guarantees are

applicable to a broad class of linear multivariate la-

tent tree models including discrete distributions, con-

tinuous multivariate distributions (e.g. Gaussian), and

mixed distributions such as Gaussian mixtures. This

model class is much more general than discrete mod-

els prevalent in most previous works on latent tree mod-

els [Mossel and Roch, 2005, Mossel, 2007, Erdos et al.,

1999, Anandkumar et al., 2013]. (2) Our algorithm

guarantees consistent latent tree parameter estimation

using inverse method of moments and tensor decom-

position, the first guarantee for consistent parameter

estimation in latent tree whose sample complexity is

log(k). In contrast, the previous state-of-the-art is the

EM algorithm [Choi et al., 2011]. In addition, we ex-

tend tensor decomposition [Anandkumar et al., 2012b]

in models with simple structure to hierarchical tensor

decomposition for more complex models. (3) More-

over, we carefully integrate structure learning with pa-

rameter estimation, based on tensor spectral decompo-

sitions [Anandkumar et al., 2012b]. The locally imple-

mented and yet globally consistent recovery of struc-

ture and parameter simultaneously is the key for the ef-

ficiency of our algorithm. Without this integration, pa-

rameter estimation has to wait until the completion of

structure recovery, making the algorithm intrinsically se-

quential and thus less efficient. Finally, our approach has

a high degree of parallelism, and is bulk asynchronous

parallel [Gerbessiotis and Valiant, 1994]. Thus, we pro-

pose a parallel and an integrated method for structure and

parameter estimation without sacrificing on global cor-

rectness guarantees.

Empirical justification.We demonstrate that our algo-

rithm is fast and scalable up to thousands of nodes and

hundreds of thousands of data dimensions – for exam-

ple, it takes about 1 minute to run our method on nine

nodes each with a dimensionality of 100,000, and about

70 minutes when the number of nodes is 729 on a single

workstation. Conceivably our method can be scalable

to even larger dimensions by employing a cloud based

implementation of the method. In our experiments, we

obtain a high level of accuracy, for both structure and

parameter recovery, even as the problem dimensions in-

crease. In contrast, the EM method is stuck in local op-

tima and has bad accuracy in parameter estimation, even

for an extremely small example with nine nodes. Thus,

we demonstrate a scalable and guaranteed approach for

learning latent tree graphical models.

Application contribution. In this work, we use latent

tree model for discovering a hierarchy among diseases

based on co-morbidities exhibited in patients’ health

records, i.e. co-occurrences of diseases in patients. In

particular, two large healthcare datasets of 30K and 1.6M

patients are used to build the latent disease trees. Our al-

gorithm is used to discover hidden patterns, or concepts

reflecting co-occurrences of particular diagnoses in pa-

tients in outpatient and intensive care settings. While

such a task is currently done through manual analysis

of the data, our method provides an automated way to

discover novel clinical concepts from high dimensional,

multi-modal data. Clinically meaningful disease clusters

are identified as shown in fig 7.



Figure 1: (a) Ground truth latent tree to be estimated, numbers on edges are multivariate information distances. Filled nodes are
observed and blank nodes are hidden. (b) MST constructed using the multivariate information distances. v3 and v5 are internal
nodes (leaders). Note that multivariate information distances are additive on latent tree, not on MST. (c1) LRG on nbd[v3,MST] to
get local structure N 3. Pink shadow denotes the active set. Local parameter estimation is carried out over triplets with joint node,
such as (v2, v3, v5) with joint node h1. (c2) LRG on nbd[v5,MST] to get local structure N 5. Cyan shadow denotes the active set.
(d1)(d2) Merging local sub-trees. Path(v3,v5; N 3) and path(v3,v5; N 5) conflict. (e) Final recovery.

2 LATENT TREE GRAPHICAL MODEL

We denote [n] := {1, . . . , n}. Let T := (V , E) de-

note the ground-truth undirected tree with vertex set V
and edge set E . The neighborhood of a node vi on tree

T , nbd[vi, T ], is the set of nodes to which vi is directly

connected on the tree. Leaves which have a common

neighboring node are defined as siblings, and the com-

mon node is referred to as their parent. Let N denote the

number of samples. An example of latent tree is depicted

in Figure 1(a).

There are two types of variables on the nodes, namely,

the observable variables, denoted by X := {x1, . . . , xp}
(p := |X |), and hidden variables, denoted by H :=
{h1, . . . , hm} (m := |H|). Let Y := X ∪ H denote

the complete set of variables and let yi denote the ran-

dom variable at node vi ∈ V , and similarly let yA de-

note the set of random variables in set A. A graphi-

cal model is defined as follows: given the neighborhood

nbd[vi, T ] of any node vi ∈ V , the variable yi is condi-

tionally independent of the rest of the variables in V , i.e.,

yi ⊥⊥ yj |ynbd[vi,T ], ∀vj ∈ V\ {vi ∪ nbd[vi, T ]}.

Linear models. We consider the class of linear la-

tent tree models. The observed variables xi are ran-

dom vectors of length di, i.e., xi ∈ Rdi , ∀i ∈ [p]
while the latent nodes are k-state categorical variables,

i.e., hi ∈ {e1, . . . , ek}, where ej ∈ Rk is the j th stan-

dard basis vector. Although di can vary across vari-

ables, we use d for notation simplicity. In other words,

for notation simplicity, xi ∈ Rd, ∀i ∈ [p] is equiva-

lent to xi ∈ R
di , ∀i ∈ [p]. For any variable yi with

neighboring hidden variable hj , we assume a linear rela-

tionship: E[yi|hj ] = Ayi|hj
hj , where transition matrix

Ayi|hj
∈ Rd×k is assumed to have full column rank,

∀yi, hj ∈ V . This implies that k ≤ d, which is natural

if we want to enforce a parsimonious model for fitting

the observed data. If two observable variables interact

through at least a hidden variable (i.e., there is at least a

hidden variable along the path between the two nodes),

we have E[yay
⊤
b ] =

∑
ei

E[hj = ei]Aya|hj=ei
A⊤

yb|hj=ei
.

We see that E[yay
⊤
b ] is of rank k since Aya|hj=ei

or

Ayb|hj=ei
is of rank k. We consider the class of tree

models where it is possible to recover the latent tree

model uniquely.

Assumption 2.1 (Structure Identifiable Condi-

tion [Choi et al., 2011]). Each hidden variable has

at least three neighbors (which can be either hidden or

observed).

Remark: Our structure identifiable condition ensures a

minimal latent tree with no redundant nodes. Therefore

our goal is to consistently learn the set of identifiable la-

tent tree model.

Assumption 2.2 (Parameter Identifiable Condition). (1)

The pairwise correlation matrix E
[
xax

⊤
b

]
, between

neighboring observable variables xa and xb, is of rank

k. (2) Any two variables connected by an edge in the tree

model are neither perfectly dependent nor independent.

Remark: (1) When two observed nodes are directly con-

nected according to the structure learned, the conditional

probability decomposes into k factors. This assump-

tion is mild and applies to various applications where

observed nodes have intrinsic memberships (low dimen-

sional representation) through which they interact with

other nodes. (2) This condition is necessary for the iden-

tifiability of parameters as stated in Choi et al. [2011].

Learning objective. Our goal is to learn the ground-

truth structure T := (V , E) and parameter Ayi|hj
given

N examples of
{(

x
(j)
1 , . . . , x

(j)
p

)}N

j=1
.



3 APPROACH OVERVIEW

The overall approach is depicted in Figure 1, where (a)

and (b) show the data preprocessing step, (c) - (e) illus-

trate the divide-and-conquer step for structure and pa-

rameter learning. We will describe each step in details in

the later sections.

We start with the parallel computation of pairwise multi-

variate information distances (defined in Definition 4.1)

between all pairs of observed variables. Information dis-

tance roughly measures the correlation between different

pairs of observed variables and requires SVD computa-

tions. For this example in Figure 1(a), the multivariate

information distances between pairs of {v1, . . . , v6} will

be estimated empirically via Equation (2). Note that the

tree structure is hidden and unknown.

Then, as depicted in Figure 1(b), a Minimum Span-

ning Tree (MST) over the estimated pairwise multivari-

ate information distances is constructed over observable

variables in parallel [Bader and Cong, 2006]. The local

groups (pink and cyan) are also obtained through MST

so that they are available for the structure and parameter

learning step that follows.

The structure and parameter learning is done jointly

through a divide-and-conquer strategy. Figure 1(c) il-

lustrates the divide step (or local learning), where lo-

cal structure (LRG) and parameter estimation (tensor de-

composition) is performed (Procedure 1).

Our algorithm also performs the local merge to obtain

group level structure and parameter estimates. As shown

in Figure 1(d1) and (d2), after the local structure and pa-

rameter learning is finished within the groups, we per-

form merge operations among groups, again guided by

the Minimum Spanning Tree structure. For the structure

estimation it consists of a union operation of sub-trees

(Procedure 2); for the parameter estimation, it consists

of linear algebraic operations (Procedure 3) – Since our

method is unsupervised, an alignment procedure of the

hidden states is carried out which finalizes the global es-

timates of the tree structure and the parameters.

4 STRUCTURE LEARNING

Structure learning in graphical models involves finding

the underlying Markov graph, given the observed sam-

ples. For latent tree models, structure can be estimated

via distance based methods. This involves computing

certain information distances between any pair of ob-

served variables, and then finding a tree which fits the

computed distances.

Multivariate information distances: We propose a

distance metric, that is additive on the ground truth tree,

for multivariate linear latent tree models. For a pair of

(observed or hidden) variables ya and yb, consider the

pairwise correlation matrix E
[
yay

⊤
b

]
(the expectation is

over samples). Note that its rank is k, dimension of the

hidden variables.

Definition 4.1. The multivariate information distance

between nodes i and j is defined as

dist(va, vb) := − log

k∏
i=1

σi

(
E(yay

⊤
b )
)

√
det(E(yay⊤a )) det(E(yby

⊤
b ))

(1)

where {σ1(·), . . . , σk(·)} are the top k singular values.

Remark: This is an extension of the distance mea-
sure to multivariate variables, which is not introduced
in Choi et al. [2011]. Note that definition 4.1 suggests
that this multivariate information distance allows hetero-
geneous settings where the dimensions of ya and yb are
different (and ≥ k). For finite number (N ) of samples
the empirical estimation of the multivariate information
distance is estimated as

d̂ist(va, vb) = − log

k∏
i=1

σi

(
N∑

j=1

(y
(j)
a (y

(j)
b )⊤)

)

√
det(

N∑
j=1

(y
(j)
a (y

(j)
a )⊤)) det(

N∑
j=1

(y
(j)
b (y

(j)
b )⊤))

(2)

For latent tree models, we can find information distances

which are provably additive on the underlying tree in ex-

pectation, i.e. the expected distance between any two

nodes in the tree is the sum of distances along the path

between them.

Lemma 4.2. The multivariate information distance is

additive on the tree T , i.e., dist(va, vc) = dist(va, vb) +
dist(vb, vc), where vb is a node in the path from va to vc
and va,vb,vc ∈ V .

Refer to Appendix E for proof. The empirical distances

can be computed via rank-k SVD of the empirical pair-

wise moment matrix Ê[yay
⊤
b ]. Note that the distances for

all the pairs can be computed in parallel.

To estimate the structure, we could do reverse engineer-

ing to figure out where to introduce hidden nodes or how

nodes are connected since the multivariate information

distances should be additive on the ground-truth tree. Be-

low we extend LRG in Choi et al. [2011] to be in parallel

to consistently and efficieintly estimate the structure.

Formation of local groups via MST: Once the em-

pirical distances are computed, we construct a Mini-

mum Spanning Tree (MST), based on those distances.

Note that the MST can be computed efficiently in par-

allel [Vineet et al., 2009, Michael, 2012]. We now form

groups of observed variables over which we carry out

https://drive.google.com/file/d/1ZkKVJjLrI1aMf-VevMJT1B1saXhtXcmK/view?usp=sharing


learning independently, without any coordination. These

groups are obtained by the (closed) neigborhoods in the

MST, i.e. an internal node and its one-hop neighbors

form a group. The corresponding internal node is re-

ferred to as the group leader. See Figure 1(b).

Local recursive grouping (LRG): Once the groups are

constructed via neighborhoods of MST, we construct a

sub-tree with hidden variables in each group (in paral-

lel) using the recursive grouping introduced in Choi et al.

[2011], depicted in 1(c1) and (c2). The recursive group-

ing uses the multivariate information distances and de-

cides the locations and numbers of hidden nodes. It pro-

ceeds by deciding which nodes are “siblings” or “parent

and child”, using the following property that determines

a pair of siblings or a parent and child pair.

Property 4.3 (Siblings). Define a potential function as

Φ(vi, vj ; va) := dist(vi, va)− dist(vj , va). A pair of ob-

served nodes (vi, vj) are siblings with parent vl, if the

potential function is fixed ∀va, vb in the active set

Φ(vi, vj ; va) ≡ Φ(vi, vj ; vb) = dist(vi, vl)−dist(vj , vl).

From additivity of the (expected) information distances,

we have dist(vi, va) = dist(vi, vl)+dist(vl, va) and sim-

ilarly for dist(vj , va). Thus, we have Φ(vi, vj ; va) :=
dist(vi, va) − dist(vj , va) = dist(vi, vl) − dist(vj , vl),
which is independent of node va.

Property 4.4 (Parent-Child). A pair of observed nodes

(vl, vi) is a parent (vl) and child (vi) pair , if ∀va, vb in

the active set

Φ(vi, vl; va) = dist(vi, va)− dist(vl, va) = dist(vi, vl)

Thus, comparing the quantity Φ(vi, vj ; va) for all

nodes va allows us to determine whether vi and

vj are siblings or parent-child. For instance, in

(c1), firstly the active set is {v2, v3, v5, v6}, v3 and

v6 are detected as parent and child because for all

other nodes in the active set, i.e., v2 and v5, we

have Φ(v6, v3; v2) = dist(v6, v2) − dist(v3, v2) =
Φ(v6, v3; v5) = dist(v6, v5)−dist(v3, v5) = dist(v3, v6);
secondly the active set is updated to {v2, v3, v5} (chil-

dren are deleted), v2 and v3 are detected as siblings be-

cause for all other nodes in the active set, i.e., v5, we

have Φ(v2, v3; v5) ≡ Φ(v2, v3; v5). Similarly v2 and v5
are detected as siblings and therefore v2, v3, v5 are de-

tected as siblings in the second step.

Once the siblings are inferred, the hidden nodes are in-

troduced, and the same procedure repeats to construct the

higher layers. Note that whenever we introduce a new

hidden node hnew as a parent, we need to estimate mul-

tivariate information distance between hnew and nodes in

active set Ω. This is discussed in Choi et al. [2011] in

detail.

Finite samples Our algorithm produces consistent re-

sults even when there is finite number of samples and the

estimation of dist(va, vb) is noisy (see Equation (2)).

Parent-child: In the noiseless case, if Φ(va, vb; vc) =
dist(va, vb), ∀ vc ∈ Ω\{va, vb}, then va is a leaf node

and vb is its parent. However, in the noisy case, we

modify it to if |Φ̂(va, vb; vc) − d̂ist(va, vb)| ≤ ǫ, ∀
vc ∈ Ω\{va, vb}, then va is a leaf node and vb is its

parent.

Siblings: In the noiseless case, if −dist(va, vb) <
Φ(va, vb; vc) = Φ(va, vb; v

′
c) < dist(va, vb), ∀vc, v′c ∈

Ω\{va, vb}, then va and vb are siblings. However,

in the noisy case, we modify it to if |Φ̂(va, vb; vc) −
Φ̂(va, vb; v

′
c)| ≤ ǫ, and |Φ̂(va, vb; vc)| < d̂ist(va, vb)+ ǫ,

∀vc, v′c ∈ Ω\{va, vb}, then va and vb are siblings.

The threshold in the procedure is not a simple heuristic

but is supported by theory: Lemma 7.2 provides a con-

sistency guarantee on the learning of latent tree structure

using the noisy pairwise distance. For a given precision ǫ
and a given number of variables p, we derive the number

of samples N needed for our algorithm to be consistent.

We describe the LRG in details with integrated param-

eters estimation in Procedure 1 in Section 6. In the

end, we obtain a sub-tree over the local group of vari-

ables. After this local recursive grouping test, we store

the neighborhood relationship for the leader vi using an

adjacency list N i. We call the resultant local structure

the latent sub-tree.

5 PARAMETER ESTIMATION

Along with the structure learning, we use a moment-

based spectral learning technique for parameter estima-

tion. This is a guaranteed and fast approach to recover

parameters via moment matching for third order mo-

ments of the observed data. In contrast, traditional ap-

proaches such as Expectation Maximization (EM) suffer

from spurious local optima and cannot provably recover

the parameters.

A latent tree with three leaves: We first consider an ex-

ample of three observable leaves x1, x2, x3 (i.e., a triplet)

with a common hidden parent h. We then clarify how

this can be generalized to learn the parameters of the la-

tent tree model. Let ⊗ denote for the tensor product. For

example, if x1, x2, x3 ∈ Rd, we have x1 ⊗ x2 ⊗ x3 ∈
R

d×d×d and [x1 ⊗ x2 ⊗ x3]ijk = x1(i)x2(j)x3(k).

Property 5.1 (Tensor decomposition for triplets). For

a linear latent tree model with three observed nodes

v1, v2, v3 with a common hidden parent h, we have

E(x1 ⊗ x2 ⊗ x3) =
∑k

r=1 P[h = er]A
r
x1|h
⊗ Ar

x2|h
⊗



= + +

= + +

= + + = + + = + +

h
h

x1 x2 x3

Figure 2: Parameter estimation in latent tree using hierarchical
tensor decomposition.

Ar
x3|h

, where Ar
xi|h

= E(xi|h = er), i.e., rth column of

the transition matrices from h to xi. The hidden vari-

able separates the observed variables on the latent tree,

therefore the observed variables are conditionally inde-

pendent given the hidden variable, according to the def-

inition of graphical model. The tensor decomposition

method of Anandkumar et al. [2012b] provably recovers

the parameters Axi|h, ∀i ∈ [3], and P[h].

Remark: To recover the model parameter Axi|h, we need

an empirical estimation of E(x1 ⊗ x2 ⊗ x3), computed

as Ê(x1⊗x2⊗x3) =
1
N

N∑
j=1

x
(j)
1 ⊗x

(j)
2 ⊗x

(j)
3 . We then

use tensor decomposition on Ê(x1⊗x2⊗x3) to estimate

Axi|h. Once we obtain the conditional distribution of ob-

served variable given the hidden variable P(xi|h) and the

marginal distribution of the P(h) after tensor decompo-

sition, we sample from the posterior distribution P(h|X)
for each corresponding observed example in parameter

estimation procedure.

Tensor decomposition for learning latent tree mod-

els: We employ the above approach for learning latent

tree model parameters as follows: for every triplet of

variables ya, yb, and yc (hidden or observed), we con-

sider the hidden variable hi which is the joining point of

ya, yb and yc on the tree, i.e., the node that path(ya, yb),
path(yb, yc) and path(ya, yc) go through. They form a

triplet model, for which we employ the tensor decompo-

sition procedure. However, it is wasteful to do it over

all the triplets in the latent tree. In the next section, we

demonstrate how we efficiently estimate the parameters

simultaneously as we learn the structure, and minimize

the tensor decompositions required for estimation.

The samples from the posterior distribution P(h|X) are

required for parameter estimation (tensor decomposi-

tion), although it is not required for the computation of

additive distance. The tensor decomposition for each

triplets on the tree requires sample estimation of mo-

ments on variables. When estimating parameters related

to the observed variables, no sampling is needed as sam-

ples are observed. However estimating parameters for

the internal hidden nodes requires sampling from the hid-

den variables to form the moments of the triplets.

6 INTEGRATED STRUCTURE AND

PARAMETER ESTIMATION

So far, we have described, in a high-level, procedures

of structure estimation through local recursive group-

ing (LRG) and parameter estimation through tensor de-

composition over triplets of variables, respectively. We

now introduce an integrated and efficient approach which

brings all these ingredients together. We provide merg-

ing steps to obtain a global model that is consistent, using

the sub-trees and parameters learned over local groups.

6.1 Structure with Parameter Estimation

Intuitively, we find efficient groups of triplets to carry out

tensor decomposition simultaneously, as we estimate the

structure through recursive grouping. In LRG, pairs of

nodes are recursively grouped as siblings or as parent-

child. As this process continues, we carry out tensor

decompositions whenever there are siblings presented as

triplets. If there are only a pair of siblings, we find an

observed node with closest distance to the pair. Once the

tensor decompositions are carried out on the observed

nodes, we proceed to structure and parameter estimation

of the added hidden variables. The samples of the hid-

den variables can be obtained via the posterior distribu-

tion, which is learnt earlier through tensor decomposi-

tion. This allows us to predict information distances and

third order moments among the hidden variables as pro-

cess continues. See algorithm in Procedure 1.

The divide-and-conquer local spectral parameter es-

timation is superior compared to popular EM-based

method [Choi et al., 2011], which is slow and prone to

local optima. More importantly, EM can only be applied

on a stable structure since it is a global update proce-

dure. Our proposed spectral learning method, in con-

trast, is applied locally over small groups of variables,

and is a guaranteed learning with sufficient number of

samples [Anandkumar et al., 2012b]. Moreover, since

we integrate structure and parameter learning, we avoid

recomputing the same quantities, e.g. SVD computations

are required both for structure estimation (for comput-

ing distances) and parameter estimation (for whitening

the tensor). Combining these operations results in huge

computational savings (see Section 7 for the exact com-

putational complexity of our method).

6.2 Merging and Alignment Correction

We have so far learnt sub-trees and parameters over lo-

cal groups of variables, where the groups are determined

by the neighborhoods of the MST. The challenge now is

to combine them to obtain a globally consistent estimate.



Procedure 1 LRG with Parameter Estimation

Input: Internal nodes Xint on MST, for each vi ∈ Xint,

active set Ω := nbd[vi;MST], precision ǫ
Output: for each vi ∈ Xint, local sub-tree adjacency

matrix N i, and Ê[ya|yb] for all (va, vb) ∈ N i.

1: Active set Ω← nbd[vi;MST]
2: while |Ω| > 2 do

3: for all va, vb ∈ Ω do

4: if |Φ̂(va, vb; vc) − d̂ist(va, vb)| ≤ ǫ, ∀ vc ∈
Ω\{va, vb} then

5: va is a leaf node and vb is its parent,

6: Eliminate va from Ω.

7: if |Φ̂(va, vb; vc) − Φ̂(va, vb; v
′
c)| ≤ ǫ, and

|Φ̂(va, vb; vc)| < d̂ist(va, vb) + ǫ, ∀vc, v′c ∈
Ω\{va, vb} then

8: va and vb are siblings,eliminate va and vb
from Ω, add hnew to Ω.

9: Introduce new hidden node hnew as parent of

va and vb.

10: if more than 3 siblings under hnew then

11: find vc in siblings,

12: else

13: find vc = argminvc∈Ω dist(va, vc).
14: Estimate empirical third order moments

Ê(ya ⊗ yb ⊗ yc)

15: Decompose Ê(ya ⊗ yb ⊗ yc) to get P̂r[hnew]

and Ê(yr|hnew), ∀r = {a, b, c}.

There are non-trivial obstacles to achieving this: first,

the constructed local sub-trees span overlapping groups

of observed nodes, and possess conflicting paths. Sec-

ond, local parameters need to be re-aligned as we merge

the subtrees to obtain globally consistent estimates. To

be precise, different tensor decompositions lead to per-

mutations of the hidden labels (columns permutations of

the transition matrices) across triplets. Thus, we need

to find the permutation matrix best correcting the align-

ment of hidden states of the transition matrices, so as to

guarantee global consistency.

Structure Union: We now describe the procedure to

merge the local structures. We merge them in pairs to

obtain the final global latent tree. Recall thatN i denotes

a sub-tree constructed locally over a group, whose leader

is node vi. Consider a pair of subtreesN i andN j , whose

group leaders vi and vj are neighbors on the MST. Since

vi and vj are neighbors, both the sub-trees contain them,

and have different paths between them (with hidden vari-

ables added). Moreover, note that this is the only con-

flicting path in the two subtrees. We now describe how

we can resolve this: in N i, let hi
1 be the neighboring

hidden node for vi and hi
2 be the neighbor of vj . There

could be more hidden nodes between hi
1 and hi

2. Sim-

Procedure 2 Merging and Alignment Correction (MAC)

Input: Latent sub-treesN i for all internal nodes i.
Output: Global latent tree T structure and parameters.

1: forN i andN j in all the sub-trees do

2: if there are common nodes between N i and N j

then

3: Find the shortest path(vi, vj ;N i) between vi
and vj on N i and path(vi, vj ;N j) in N j ;

4: Union the only conflicting path(vi, vj ;N i) &

path(vi, vj ;N j) according to equation (5);

5: Attach other nodes in N i and N j to the union

path;

6: Perform alignment correction as described in

Procedure 3.

ilarly, in N i, let hj
1 and hj

2 be the corresponding nodes

in N j . The shortest path between vi and vj in the two

sub-trees are given as follows:

path(vi, vj ;N i) := [vi − hi
1 − . . .− hi

2 − vj ] (3)

path(vi, vj ;N j) := [vi − hj
1 − . . .− hj

2 − vj ] (4)

Then the union path is formed as follows:

merge(path(vi, vj ;N i), path(vi, vj ;N j))

:= [vi − hi
1 − . . .− hi

2 − hj
1 . . . h

j
2 − vj ] (5)

In other words, we retain the immediate hidden neighbor

of each group leader, and break the paths on the other

end. For example in Figure 1(d1,d2), we have the path

v3 − h1 − v5 in N 3 and path v3 − h3 − h2 − v5 in N 5.

The resulting path is v3 − h1 − h3 − h2 − v5, as see in

Figure 1(e). After the union of the conflicting paths, the

other nodes are attached to the resultant latent tree. We

present the pseudo code in Procedure 2 in Appendix I.

Parameter Alignment Correction: As mentioned be-

fore, our parameter estimation is unsupervised, and

therefore, columns of the estimated transition matrices

may be permuted across different triplets over which ten-

sor decomposition is carried out. The parameter estima-

tion within the triplet is automatically acquired through

the tensor decomposition technique, so that the align-

ment issue only arises across triplets. We refer to this

as the alignment issue and it appears at various levels.

There are two types of triplets, namely, in-group and

out-group triplets. A triplet of nodes Trip(yi, yj , yl) is

said to be in-group (denoted by Tripin(yi, yj , yl) ) if its

containing nodes share a joint node hk and there are

no other hidden nodes in path(yi, hk), path(yj, hk) or

path(yl, hk). Otherwise, this triplet is out-group denoted

by Tripout(yi, yj , yl). We define a group as sufficient chil-

dren group if it contains at least three in-group nodes.

https://drive.google.com/file/d/1ZkKVJjLrI1aMf-VevMJT1B1saXhtXcmK/view?usp=sharing


Procedure 3 Parameter Alignment Correction

(Gr denotes reference group, Go denotes the list of other

groups, each group has a reference node denoted as Rl,

and the reference node in Gr isRg . The details on align-

ment at line 8 is in Appendix I.)

Input: Triplets and unaligned parameters estimated for

these triplets, denoted as Trip(yi, yj, yk).
Output: Aligned parameters for the entire latent tree T .

1: Select Gr which has sufficient children;

2: Select refer nodeRg in Gr;

3: for all a, b in Gr do

4: Align Tripin(ya, yb,Rg);
5: for all ig in Go do

6: Select refer nodeRl in Go[ig];

7: Align Tripout(Rg , ya,Rl) and

Tripout(Rl, yi,Rg);
8: for all i, j in Go[ig] do

9: Align Trip(yi, yj,Rl);

Designing in-group alignment correction with sufficient

children is relatively simple: we achieve this by includ-

ing a local reference node for all the in-group triplets.

Thus, all the triplets are aligned with the reference node.

The alignment correction is more challenging if lacking

sufficient children. We propose out-group alignment to

solve this problem. We first assign one group as a refer-

ence group, and the local reference node in that reference

group becomes the global reference node. In this way,

we align all recovered transition matrices in the same or-

der of hidden states as in the reference node. See Pro-

cedure 2 and 3 for merging the local structures and align

the parameters from LRG local sub-trees.

7 THEORETICAL GUARANTEES

Correctness of Proposed Parallel Algorithm: We now

provide the main result of this paper on global consis-

tency for our method.

Theorem 7.1 (Sample Complexity). Given samples from

an identifiable latent tree model, the proposed method

consistently recovers the structure with O(log p) sample

complexity and parameters with O(log k) sample com-

plexity, where p is the number of nodes and k is the di-

mension of hidden variable which is usually small.

The proof sketch is in Appendix G. Lemma 7.2 and

Lemma K.1 are used to prove Theorem 7.1. Note that

the sample complexity of our algorithm is dimension in-

dependent, therefore easily scalable to large d.

In order to understand the correctness of the structure

learning part of our algorithm, the following Lemma 7.2

states a guaranteed consistency of the structure learning.

Lemma 7.2 (Consistency of Structure Learning). Let

T̂ N be our estimated tree using N number of examples,

then for every η > 0, if N > C log(p/η1/3) for some

constant C > 0, the error probability for structure re-

construction is upper bounded by η, i.e.,

Pr(h(T̂ N 6= T )) ≤ η (6)

where h is a graph homomorphism – a mapping between

graphs that respects their structure.

The multivariate information distance introduced

in our paper enjoys the statistical efficiency

in Anandkumar et al. [2011] as both methods re-

quire “enough” samples to get a confident estimation of

the additive distance, which involves spectral decom-

position of the empirical covariance. Although there

seems to be a log difference, their algorithm requires

“multiplications” of the metrics when testing quarterts,

whereas we use “summations” of the metrics. Both

analyses result in the same sample complexity.

Lemma K.1 guarantees consistency of the parameter

learning part of our algorithm. Tensor decomposition

guarantees consistent estimation of the parameters with

O(log k) examples, one of the key contributions com-

pared to Choi et al. [2011] which uses EM.

Computational Complexity: Recall d is the observ-

able node dimension, k is the hidden node dimension

(k ≪ d), N is the number of samples, p is the number

of observable nodes, and z is the number of non-zero el-

ements in each sample. Let Γ denote the maximum size

of the groups, over which we operate the local recursive

grouping procedure. Thus, Γ affects the degree of par-

allelism for our method. Recall that it is given by the

neighborhoods on MST, i.e., Γ := maxi|nbd[i;MST]|.
Below, we provide a bound on Γ.

Lemma 7.3. The maximum size of neighborhoods on

MST, denoted as Γ, satisfies Γ ≤ ∆
1+

ud
ld

δ
, where δ :=

maxi{minj{path(vi, vj ; T )}} is the effective depth, ∆
is the maximum degree of T , and the ud and ld are the

upper and lower bound of information distances between

neighbors on T .

Thus, we see that for many natural cases, where the de-

gree and the depth in the latent tree are bounded (e.g. the

hidden Markov model), and the parameters are mostly

homogeneous (i.e., ud/ld is small), the group sizes are

bounded, leading to a high degree of parallelism. We

summarize the computational complexity in Table 1. De-

tails can be found in Appendix J.

The reason we emphasize parallel complexity is to show

the high “degree of parallelism” of our algorithm, one of

https://drive.google.com/file/d/1ZkKVJjLrI1aMf-VevMJT1B1saXhtXcmK/view?usp=sharing
https://drive.google.com/file/d/1ZkKVJjLrI1aMf-VevMJT1B1saXhtXcmK/view?usp=sharing
https://drive.google.com/file/d/1ZkKVJjLrI1aMf-VevMJT1B1saXhtXcmK/view?usp=sharing
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Figure 3: Comparison of structure and parameters recovery er-
ror between CLRG structure learning with EM parameter esti-
mation and our algorithm. Structure errors (green) are the same
for the two approaches. Proposed (blue) parameter estimation
performs better than EM (red) (d = 2, p = 9).

the main advantages of our algorithm over a sequential

implementation. Given two algorithms with the same se-

rial complexity, we prefer the one with higher degree of

parallelism as it could be made more efficient.

Algorithm Step Time per worker Degree of parallelism

Distance Est. O(Nz + d+ k3) O(p2)
MST O(log p) O(p2)
LRG O(Γ3) O(p/Γ)
Tensor Decomp. O(Γk3 + Γdk2) O(p/Γ)
Merging step O(dk2) O(p/Γ)

Table 1: Worst-case computational complexity of our algo-
rithm. The total complexity is the product of the time per work
and degree of parallelism.

8 EXPERIMENTS

Synthetic experiments. We compare our method with

CLRG-EM [Choi et al., 2011], where a sequential learn-

ing procedure is carried out for binary variables (d =
2) and parameter learning is carried out via EM. We

consider a latent tree model over nine observed vari-

ables and four hidden nodes. We restart EM 20 times,

and select the best result. The results are in Fig-

ure 3. We measure the structure recovery error via{
|Ĝ|∑
i=1

minj |Ĝi 6∈ Gj |/|Ĝi|
}
/|Ĝ|, where G and Ĝ are

the ground-truth and recovered categories. We measure

the parameter recovery error via E = ‖A−ÂΠ‖F , where

A is the true parameter and Â is the estimated param-

eter and Π is a suitable permutation matrix that aligns

the columns of Â with A so that they have minimum

distance. Π is greedily calculated. It is shown that as

number of samples increases, both methods recover the

structure correctly, as predicted by the theory. However,

EM is stuck in local optima and fails to recover the true

parameters, while the tensor decomposition correctly re-

covers the true parameters. We present the high per-

formance of our algorithm on the large p and d regime

where CLRG-EM is slow and easily stuck in local op-

tima, in Table 2. We achieve efficient running times with

good accuracy for structure and parameter estimation.

Struct Param Running

d p N Error Error Time(s)

10 9 50K 0 0.0104 3.8

100 9 50K 0 0.0967 4.4

1000 9 50K 0 0.1014 5.1

10,000 9 50K 0 0.0917 29.9

100,000 9 50k 0 0.0812 56.5

100 9 50K 0 0.0967 10.9

100 81 50K 0.06 0.1814 323.7

100 729 50K 0.16 0.1913 4220.1

Table 2: Algorithm performance in large d and p regime where
CLRG-EM is not amendable and in large p regime where
CLRG-EM is slow and easily stuck in local optima.

Real data experiments on NIPS and NY Times. Real

datasets experiments which estimate a hierarchical struc-

ture over words are implemented and presented in Ap-

pendix C Figure 4, 5 and 6. The relationships among

the words discovered by our algorithm match intuition.

For example in Figure 6, govern and secur are grouped

together whereas movi, studio and produc are clustered.

Healthcare data analysis. We demonstrate that our al-

gorithm works for challenging tasks such as healthcare

analytics in Appendix D. Our goal is to discover a dis-

ease hierarchy based on their co-occurring relationships

in the patient records. In general, longitudinal patient

records store the diagnosed diseases on patients over

time, where the diseases are encoded with International

Classification of Diseases (ICD) code. We use two large

patient datasets (MIMIC2 and CMS) of different sizes

with respect to the number of samples, variables and di-

mensionality. The details of the datasets are discussed

in Appendix D.1. The goal is to learn the latent nodes

and the disease hierarchy and associated parameters from

data. We validate the resulting disease hierarchy both

quantitatively and qualitatively, and verify the scalability

of our algorithm in Appendix D.
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