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Abstract

In this work, we develop a social reinforcement
learning approach to combat the spread of fake
news. Specifically, we aim to learn an inter-
vention model to promote the spread of true
news in a social network—in order to mitigate
the impact of fake news. We model news diffu-
sion as a Multivariate Hawkes Process (MHP)
and make interventions that are learnt via pol-
icy optimization. The key insight is to esti-
mate the response a user will get from the so-
cial network upon sharing a post, as it indicates
her impact on diffusion, and will thus help
in efficient allocation of incentive. User re-
sponses also depend on political bias and peer-
influence, which we model as a second MHP,
interleaving it with the news diffusion process.
We evaluate our model on semi-synthetic and
real-world data. The results demonstrate that
our proposed model outperforms other alterna-
tives that do not consider estimates of user re-
sponses and political bias when learning how
to allocate incentives.

1 INTRODUCTION
[Allcott and Gentzkow, 2017] defines fake news as “fab-
ricated articles that are intentionally and verifiably
false, and could misled readers”. [Fourney et al., 2017]
showed that during the 2016 U.S. Presidential Elections,
social media was a major source for fake news dissemi-
nation, and voting patterns were highly correlated with
the average number of users visiting websites show-
ing fake news. [Allcott and Gentzkow, 2017] found that
roughly half of the users on Facebook who viewed fake
news stories believed them. This indicates a pressing
need to combat fake news spread in social networks.

Fake news mitigation is a multifaceted problem. Much of

previous work has focused on detection of fake news us-
ing linguistic, demographic, and community based fea-
tures. There has been relatively less work on limiting the
spread of fake news. Some recent work has considered
mitigating fake news by identifying potential purveyors
of fake news to block their posts [Shu et al., 2017]. How-
ever, it may not be feasible to take forceful actions such
as censoring users posts, since it can violate users’ rights
(Bill [H.R.492, 2019]). To address this, we use an ap-
proach similar to [Farajtabar et al., 2017], which aimed
to mitigate the impact of fake news by making interven-
tions to the true news diffusion process. In addition, we
also consider the user responses as feedback to determine
the efficacy of users, and model both the news diffusion
and user responses as stochastic processes.

Stochastic point processes are widely used to model user
activities in social networks, where events are both self-
exciting and mutually-exciting. For example, in Twitter,
if a user tweets more about certain types of news arti-
cles in the past, then she is likely to tweet more about
similar articles in the future. Also, the more a user is
exposed to tweets from her followees, the more likely
she will (re)tweet similar information. And, tweets of
users with more followers tend to get retweeted more
[Rizoiu et al., 2017]. We consider different stochastic
process models for news diffusion, based on social net-
work structure, history of events, and user interactions.

Given a model of news diffusion, we aim to increase the
spread of true news among people exposed to fake news.
This is based on the conjecture that increased exposure
to true news will increase suspicion and mistrust for fake
news, leading to a potential decrease in fake news spread
in the future. Users’ perception of information credibil-
ity increases if her peers also perceive it as credible, and
increases with multiple exposures to same information
[Sharma et al., 2019, Garimella et al., 2017]. Hence, the
more a user is exposed to true news, the more she will
tend to believe such news.



To capture this, we develop a social reinforcement learn-
ing approach that learns how to incentivize users to
spread true news so that people exposed to more fake
news are also exposed to more true news. This incentive
is realized by a multi-stage intervention to the process
of true news diffusion, which increases the probability
of a user sharing true news. We assume a fixed incen-
tive budget, and hence aim to learn an optimal strategy
to efficiently allocate incentive to users.

Social reinforcement refers to the process where
acceptance and praise from others reinforces be-
haviors/preferences of an individual (see e.g.,
[Jones et al., 2011]). We propose to model feed-
back from peers to learn better incentivization policies.
Rewards on social media (i.e., ‘likes’) are a form of
acceptance and appreciation from peers, which affects
the regions of the brain responsible for decision-
making and thus leads to a change in their behavior
[Meshi et al., 2015, Crone and Konijn, 2018]. Specifi-
cally, we use the number of ‘likes’ obtained on sharing a
post since [Lee and Lim, 2015] found that users provide
a positive reinforcement by hitting the ‘like’ button.
‘Likes’ have also been used as an important feature in
classification of news as fake or true [Wang et al., 2016].

To learn how to efficiently allocate incentives, we con-
sider estimates of user feedback and user political bias.
[Silverman, 2016] observed that around 46% of the fake
news stories circulated on Facebook were on U.S. Pol-
itics and Elections and a recent analysis of Twitter
showed average user polarization was higher for tweets
marked with hashtag ‘fake news’ [Ribeiro et al., 2017].
We also know that reactions of people are more sig-
nificant for topics related to politics, than other top-
ics such as movies or weather [Kahan et al., 2017], and
that people tend to agree more with the information
that aligns with their belief, even if the information is
false [Allcott and Gentzkow, 2017]. Since the response
a user provides for a tweet is likely to depend on their
degree of political bias, we conjecture that estimates of
user response (as a function of political bias) can help
to efficiently select people to incentivize to promote true
news. To incorporate these effects, we consider a user’s
leaning towards the Democratic and Republican Parties.

We model user response using a Multivariate Hawkes
Process (MHP), whose base intensity is proportional to
their political bias, and interleave it with the news diffu-
sion processes (also modeled as an MHP). We estimate a
user’s initial political bias using a community detection
algorithm and propose a model to update the bias over
time. The goal is then to learn an intervention strategy
by selecting the optimal set of people to be incentivized
(based on bias and likely extent of response), and effi-

ciently allocate incentives among them, under a speci-
fied budget constraint. We pose the problem as a policy
optimization problem in a Reinforcement Learning (RL)
framework, with specifically designed reward function
targeted at maximizing the true news spread among peo-
ple exposed to fake news. The RL framework helps to
accommodate the objective easily in the form of rewards,
and consider reward not only from current stages but also
from future stages. By integrating the MHPs in the RL
framework, we can model both excitation events and so-
cial reinforcement.

Our setting is a cooperative multi-agent RL problem
(MARL), where the number of agents is large and the
state and action spaces are continuous, which makes the
problem more challenging. Much of the previous work
in MARL focuses on learning a separate model for each
user independently, or learning jointly by considering the
full state and action spaces across all users. However,
both these approaches are computationally intensive for
a large number of agents. We avoid this by decoupling
of the post and response processes to approximate the
joint action space more efficiently. We dynamically op-
timize the intensity for the MHP corresponding to post
events, but only estimate parameters for the response
events from historical data. By doing this, we reduce the
number of parameters and avoid noisy policy estimates.

To evaluate the performance of our model, we use two
real-world Twitter datasets. Since we have access to lim-
ited real-world data, and we cannot make real-time inter-
vention, we perform experiments on semi-synthetic data
demonstrating the results with respect to different net-
work properties for fake and true news diffusion likely
to hold in real-world. The results show that adding inter-
vention to increase the spread of true news is beneficial
for mitigating the impact of fake news relative to provid-
ing no incentive. And compared to other baselines that
do not consider estimates of user response and political
bias, our model is able to achieve increased true news
diffusion, in terms of maximizing the number of people
reached and the number of mitigated users.

2 RELATED WORK
Most of the previous work has focused on the detec-
tion of fake news using different features such as linguis-
tic, demographic, community based. [Yang et al., 2013]
studied network properties such as clustering coeffi-
cient, closeness and betweenness centrality, neighbor
based features like number of followers and followees,
to identify users likely to spread fake news on Twit-
ter. [Liu and Wu, 2018] tried to classify the propagation
path of news to detect fake news at early stages of dif-
fusion. [Shu et al., 2019] considers mitigating fake news
by identifying potential provenances and persuaders of



fake news, so that their posts can be blocked, however
this is difficult in practice due to ethical issues.

Stochastic point processes have gained popular-
ity in modeling user activities in social networks
[Farajtabar et al., 2017, Xiao et al., 2017]. Specifi-
cally, Hawkes process models [Rizoiu et al., 2017]
have been used widely since their mathematical form
naturally captures the self-exciting nature of events.
[Farajtabar et al., 2017] proposed to mitigate the impact
of fake news by making interventions to true news
diffusion process modeled as MHP, and mapping the
problem to a Markov Decision Process (MDP).

Our work is motivated by their approach, but we ex-
tend their model to incorporate a feedback component
between pairs of users modeled using a separate MHP,
and interleave it with the news diffusion MHP. We be-
lieve that feedback is important in selection of users for
efficient incentive allocation under budget constraints.
The feedback provided to users can be thought of as
a reward shaping technique, which is used in multi-
agent credit assignment and resource allocation prob-
lems where it is important to determine the contribu-
tion of each agent towards the common system goal for
learning better policies [Mannion et al., 2017]. However,
our approach is different from standard reward shaping
techniques, which consider a separate feedback for each
user in the reward function. Since that requires a sepa-
rate model for learning each agent’s policy function, it is
computationally intensive for large number of agents. To
avoid this issue, we provide user feedback as input to the
policy function approximator.

[Upadhyay et al., 2018] uses deep reinforcement learn-
ing with marked temporal point processes for incentiviz-
ing agents in personalized teaching and viral marketing
domains. Similar to our approach, they use feedback
events to improve policy learning. However, their events
are application specific and are assumed to be gener-
ated from a black box distribution. In contrast, we pro-
pose a process governing generation of feedback events,
and evaluate it using events from real data. Moreover,
[Upadhyay et al., 2018] trains a separate model for each
user independently, which is computationally intensive.
In contrast, we decouple the news diffusion and response
processes to learn an approximate model. This reduces
the size of the joint action space and helps to avoid noisy
estimates, in addition to reducing the number of parame-
ters (compared to the full joint).

Our approach to social reinforcement learning is also
related to previous work on multi-agent RL (MARL).
However, much of the work on MARL focuses on small
number of agents (< 50) (e.g., [He et al., 2016]). The
standard approaches to train a complex model for each

user independently (e.g., [Devlin et al., 2014]) are im-
practical for thousands of agents. Moreover, the joint
action space grows with the number of agents, so joint
learning (e.g., [Mannion et al., 2016] is also impractical.
Our scenario involves a large number of agents (> 1000)
in a social network, with relatively few interactions be-
tween them. We use RL to encourage users to share more
true news related posts based on our conjecture stated in
Sec 1 that with an increased exposure to true news, the
impact of fake news will decrease.

3 APPROACH
3.1 PROBLEM DEFINITION
In this work, we consider the task of combating fake
news dissemination in online social media systems. Un-
der the assumption we can characterize the diffusion of
news over the network by some stochastic process, and
that the diffusion of true news is independent from the
diffusion of fake news, our aim is to mitigate the spread
of fake news by increasing the spread of true news.

We consider the following setting. Let there be N users
and let A represent the followers network, where Aij =
1 if j = i, or j follows i, and 0 otherwise. We consider
tweets corresponding to news stories, labeled fake (F) or
true (T). We consider the act of tweeting and retweeting
by users as a news sharing event and do not differentiate
between them. The data contains a temporal stream of
events e = (t, i, c), where t is the time-stamp at which
user i (re)tweets a post with label c = F or T correspond-
ing to fake or true news. Let Fi(t) and Ti(t) be the num-
ber of times user i shares posts corresponding to fake and
true news, respectively up to time t. We use Ni(t) as a
generic notation to represent the number of times user i
shares posts by time t where N = F or T depending on
whether we are considering fake or true news. We con-
sider an observation time window of length T divided
into K stages of length ∆, where stage k corresponds to
the time interval [τk, τk+1) such that τk+1 − τk = ∆.

The impact of fake and true news can be measured in
terms of number of people who are exposed, that has also
been used in [Shu et al., 2019, Farajtabar et al., 2017].
We can compute the number of times user i is exposed to
news by time t is given as A.i · N (t). Since it is difficult
to stop the spread of fake news, we want to ensure that
users receive at least as much true news as they do fake
news (i.e., A.i · F(t) ' A.i · T (t)). We believe that an
increased exposure to true news can increase skepticism
for fake news, as explained in Sec 1.

The goal is then to incentivize users to share true news
in a targeted fashion such that the people who are ex-
posed more to fake news are also exposed to true news.
From an algorithmic perspective, we want to learn how



to efficiently allocate the incentives, assuming a budget
constraint. Specifically, we have a fixed budget that can
be provided as incentives and thus, appropriate selection
of users and efficient allocation among those is impor-
tant. The response a user receives on sharing some post
is an important indicator of her effectiveness in spread-
ing news further, and can help to determine the amount
of incentive to spend on the user. For example, in social
networks, this response can be quantitatively measured
in terms of number of “likes”1 received by the user. Our
data contains “like” events l(u, i, t) where t is the time-
stamp at which user i likes user u’s post.

We consider news related to U.S. Politics, and measure
political bias as a user’s political leaning towards com-
munities of two polarities: Democratic (D) and Republi-
can (R) Party. Each user i has bias values bRi , b

D
i ∈ [0, 1],

for R and D, respectively. To compute initial bias values,
we run a random walk based community-detection algo-
rithm [Ribeiro et al., 2017, Calais Guerra et al., 2011],
using A, with starting seeds for the two communities as
the official profiles of politicians whose political affili-
ation is already known. The bias is estimated as user’s
proximity to the two sets of seeds for D and R such that
bRi + bDi = 1.

Since we will only incentivize sharing of true news, we
evaluate our intervention strategy by computing the cor-
relation between exposures to fake and true news. We
also measure the distinct number of people mitigated and
asses the effectiveness of users selected by the strategy to
spread true news.

3.2 NEWS DIFFUSION PROCESSES
A number of diffusion models have been developed to
capture the spread of information in social networks.
Many of these models are based on stochastic processes
that use intensity functions governing the sharing rate per
user. Some intensity functions depend only on network
structure, while others take into account the effect of pre-
vious events and interactions between users. We con-
sidered several alternative processes and evaluate which
better characterizes the diffusion of news in our real data.

Generative Process Since the process of fake and true
news diffusion is the same except for parameters, we
provide a generic expression for intensity. Let λTi be
the intensity for user i sharing a post corresponding to
true news. (The process for fake news is defined anal-
ogously.) The generative process to determine time-
stamps at which user imakes posts corresponding to true
news, given their respective intensities, is described as
follows. Let {tTi,j}j≥1 be the time-stamps for user i cor-
responding to true news events. Define {tTi,j}j≥1 to be

1Information about likes is obtained using the Twitter API.

the inter-arrival times, which are assumed to be indepen-
dent for all processes. Assuming the diffusion processes

start at time 0, we can write, tTi,m =
m∑
n=1
tTi,n. Ti(t) are

the number of times user i shares posts corresponding to
true news, by time t. We have Ti(t) =

∑
m≥1

I(t ≥ tTi,m).

Let κTi be the fraction of true news tweets up to time T
by user i. These values are computed beforehand from
the data. The sampling method to generate inter-arrival
times depends on the type of diffusion process and is ex-
plained for each type below.

3.2.1 Diffusion based on Network Structure
DEG Intensity depends on the user’s number of fol-

lowers and followees: λi = κi(
N∑
u=1

Aiu +
N∑
u=1

Aui)

CEN Intensity is proportional to closeness centrality
[Chen et al., 2012]. Let δiu be the shortest distance from

i to u in A: λi = κi(
N∑
u=1

δiu)−1

Generative Process The above processes are homoge-
neous poisson processes, whose inter-arrival times are
exponentially distributed, fti

(t) = λie
−λit, with in-

verse cdf is given by F−1
ti

(u) = − lnu
λi

. Since F−1
ti

(t)
has a closed form expression, we use inverse transform
sampling to sample ti,j =

− lnuj

λi
, where j ≥ 1, uj ∼

U(0, 1). After we obtain the inter-arrival times ti,j , we

can generate the event times ti,j =
j∑

n=1
ti,n.

3.2.2 Diffusion based on History and Influence
Multivariate Hawkes Process (MHP) We consider
an N -dimensional MHP, where each dimension corre-
sponds to a user i. MHP naturally capture the phe-
nomenon of self and mutual excitations between events
discussed in Sec. 1.

λi(t) = µi +

N∑
j=1

∫ t

0

Φji (ωe−ωt) dNj(s) (1)

Here µi is user i’s base exogenous intensity. The second
term considers the effect of previous events and mutual
excitations among users, where Φ is a kernel adjacency
matrix that captures the impact user j has on user i. We
use the standard Hawkes exponential kernel ωe−ωt to
capture the decaying effect of history over time, where
ω is the hyper-parameter governing the rate of decay. µ
and Φ are estimated from the data (see Sec. 3.2.4).

Generative Process The simulations of MHP are per-
formed using “tick” python library ([Bacry et al., 2017])
that uses Ogata’s Thinning Algorithm [Ogata, 1981] to
generate event times by sampling inter-arrival times us-
ing rejection sampling. The idea is to first generate



events from a homogeneous poisson process with a rate
greater than the desired rate, and then reject an appro-
priate fraction of events generated to achieve the desired
rate [Lewis and Shedler, 1979]. After this, we assign a
dimension i ∈ [1, N ] to each of the time-stamps gener-
ated with probability proportional to λi.

3.2.3 Diffusion based on Political Bias
Apart from network properties and user interactions, we
believe that user’s political bias is an important factor
governing the probability of her sharing a post. Hence
we model political bias and its change over time based
on [Del Vicario et al., 2017]. The idea is that when two
users interact, it changes their degree of bias. Let Ai =
{j|Aij = 1} be the set of followers of user i. Let Ik be
the list of events {e = (t, i, c)}τk≤t≤τk+1

that occurred
during stage k, sorted in chronological order. Let bDi,k
and bRi,k be the bias of user i, respectively, for stage k.
We say that a user i, in stage k, has polarity pi,k = D
if bDi,k > bRi,k, and pi,k = R otherwise. We assume that
the bias is constant in the interval [τk, τk+1) and update
it at the end of stage k (time τk+1), taking into account
the cumulative effect of interactions during the interval.
See Alg. 1 in the Supplementary Material for details.

Aligned (AL) If a user i has polarityD in stage k, then
her intensity for stage k+1 will be set to her bias (at stage
k) for D, otherwise the intensity will be set to her bias
for R: λk+1

i = I(pi,k = R) bRi,k + I(pi,k = D) bDi,k

BCM Similar to AL, but the bias at stage k is
computed using Bounded Confidence Model (BCM)
[Deffuant et al., 2000, Lorenz, 2007] that has been
widely used to capture opinion dynamics in social net-
works. More details on BCM are in the Supplementary
Material.

Generative Process Given the bias values computed
for stage k, the diffusion process during stage k + 1,
for each user i, is a homogeneous Poisson process.
Therefore, we sample the inter-arrival times as tk+1

i,j =
− lnU(0,1)

λk+1
i

. For stage k + 1, we can write tk+1
i,j =

τk+1 +
j∑

n=1
tk+1
i,n .

3.2.4 Evaluation of Proposed Processes
Our goal is to quantitatively assess which of the above
processes better characterizes news diffusion in real-
world data. For this, we use a portion of the data as
training data to infer parameters, and then simulate pro-
cesses for later stages, with the assumption that param-
eters learnt from historical data (past stages) continue to
describe the process in the future. We compare character-
istics of the simulated data with the real data to evaluate
the various processes.

(a) Fake News Processes (b) True News Processes

Figure 1: Difference (expected and observed number of events)

We use two real-world datasets, Twitter 2016 and Twitter
2015 [Ma et al., 2017, Liu and Wu, 2018], with 749 and
2051 users in the networks, respectively. We observed
that in our data around 75% of the news last for 40 hours,
so we set T = 40 hours, with 40 stages of ∆T = 1 hour.

We evaluate which of the proposed processes better cap-
tures the real data. The training/test framework is shown
in Figure 2. Using the parameters learnt from the first
10 stages, we simulate the process for later stages. De-
tails regarding parameter estimation and choice of ω are
provided in the Supplementary Material. Let ND

i (t)
be the number of events of user i up to time t in the
real data, and let NP

i (t) be the number of events of
user i up to time t obtained from the simulating pro-
cess P . NP

i (t) = Fi(t) for fake news diffusion and
NP
i (t) = Ti(t) for true news diffusion defined in Section

3.2. For a given interval of length ∆, we define error EP∆
as the absolute difference between the number of events
generated from the simulated process P and the number
of events in the real data in the interval ∆, averaged over
all users:

EP∆ =
1

N

N∑
i=1

|[ND
i (t′ + ∆)−ND

i (t′)]−

[NP
i (t′ + ∆)−NP

i (t′)]|

(2)

where t′ > TPE(= 10). Figure 1 shows the error,
for each process, corresponding to different values of
∆, where we average over 10 different time intervals
for each value of ∆ by taking different values of t′ ∈
[11, 40]. We observe that MHP achieves the least er-
ror, and that it decreases with increasing interval length,
for both fake and true news diffusion. This can be at-
tributed to the fact that MHP considers history of pre-
vious events, and mutual excitations. Thus, We can say
that MHP closely models the diffusion of fake and true
news in real-world data, and use it as the process charac-
terizing news diffusion in our model described next.

3.3 INCENTIVIZATION MODEL
Let sk be the state of the network at stage k. We de-
fine actions ak ∈ RN , where aki ≥ 0 is the incentive
provided to user i to promote true news, during stage



k. Specifically, ak = π(sk−1). We learn the function
π : sk−1 → ak by using policy optimization problem
in a Markov Decision Process (MDP) ([Bellman, 1957]),
such that the reward (objective) defined in Section 3.3.2
is maximized. MDP based methods take into account the
reward achieved on applying the policy, from the current
stage as well as from the future stages. We add ak as an
intervention to the intensity function for true news diffu-
sion modeled using MHP.

λTi (t) = µTi +aki +

N∑
j=1

∫ t

0

Φji (ωT e−ω
T t) dTj(s) (3)

where τk ≤ t < τk+1 for the kth stage. Since the total
amount of incentive provided is usually limited, we im-
pose budget constraint by fixing the sum of incentives for

all users at stage k to be Ck, (
N∑
i=1

aki = Ck). We consider

ak as actions in the MDP, where the space of all possible
actions is given by Ok = {a ∈ RN |a ≥ 0, ||a||1 = Ck}

Generative Process The process to generate events af-
ter applying intervention is the same as in Sec. 3.2.2, ex-
cept the time-stamps are generated for every stage k us-
ing the corresponding intensity for the stage, similar to
the diffusion based on political bias (Sec. 3.2.3).

3.3.1 State Features
We represent the state of the network sk for stage k as
sk = (zk, ν

k). Here zFk refers to the number of previous
fake news events and zTk refers to the number of previous
true news events. νk refers to user responses in terms of
the number of likes received.

Number of Events in Previous Stages As
shown in previous work [Parikh et al., 2012,
Qin and Shelton, 2015, Farajtabar et al., 2017], a
common choice of features to parameterize point pro-
cesses is the number of events in the previous stage.
Hence, we define zFk ∈ RN and zTk ∈ RN , such that
zFk,i = Fi(τk+1)−Fi(τk) and zTk,i = Ti(τk+1)−Ti(τk).

User Response We consider the news diffusion and
response processes to be inter-leaving, and measure re-
sponse for a user at the end of each stage. Let W(t) =
[Wui(t)]

N
u,i=1,u 6=i, where Wui(t) is the number of times

user i likes the (re)tweets by user u up to time t. W k
u =

N∑
i=1,u 6=i

∫ τk+1

τk
dWui(s) is the total likes received by user

u during stage k. Hence, the feature vector representing
the feedback received by users is νk = {W k

u }Nu=1.

We cannot make real-time interventions on Twitter and
do not know apriori the response (number of likes) a
user would receive on (re)tweeting under the news dif-
fusion model. Hence we model the environment gen-
erating user responses using another MHP, motivated

by [Farajtabar et al., 2015] that modeled the number of
times user i retweets source u. We extend their ap-
proach, in our case, to model the number of likes given
by a user i to source u, by incorporating the stage (time)
dependent political bias as the base exogenous inten-
sity explained below. For each pair of users, we have
corresponding intensity modeled using MHP, given as
{ψu,i(t)}, u, i ∈ [1, N ], u 6= i).

Aligned Bias User Response

If source u and her follower i have the same political
leaning (polarity), then the probability (intensity) of i
“liking” u’s post increases, whereas if they have different
polarity, then the probability decreases. To realize this,
we adjust the base intensity depending on the bias values.

ψk+1
u,i (t) = χi + I(pi,k=pu,k)b

pi,k
i,k − I(pi,k 6=pu,k)b

¬pi,k
i,k

+

N∑
j∈A.i

∫ t

0

ωAji e
−ωt dWuj(s) (4)

where t ∈ [τk, τk+1). χi is the base intensity estimated
from the data that is independent of the history. A.i is the
set of followees of i. Using above, we try to accumulate
the response a user receives from her direct and indirect
followees, by aggregating the likes by followees of user i
to the post of user u. The more frequently the followees
of i like u’s posts, the more she tends to “like” u’s posts.
When i likes u’s post, Wui(t) gets incremented, furthur
increasing the chances of liking u’s post among follow-
ers of i. We simulate the above process for each stage
k by first computing the users u who shared true news
during stage k, i.e., users with zTu,k > 0, and then gener-
ate feedback events using ψku,i, only for those users. For
simplicity, we set w = 1.

To evaluate how well the above model captures “like”
events in the network, we use a similar setting as in
Sec. 3.2, and observed that the Aligned Bias User Re-
sponse model outperforms an alternative user response
model that does not take into account bias (see Supple-
mentary Material for more detail).

3.3.2 Reward
We use the correlation between exposures to fake and
true news ([Farajtabar et al., 2017]) to quantify our ob-
jective that people exposed more to fake news are also
exposed more to true news. As described in Sec. 3.1,
number of exposures by time t is given by A.i · Ni(t).
Hence, the number of exposures in stage k is given as
A.i · Ni(τk+1)−A.i · Ni(τk). Based on the feature rep-
resentation in Section 3.3.1, the number of exposures to
true and fake news, for stage k, is AzTk and AzFk , respec-
tively. Thus, we write the reward for stage k as,

Rk(sk) =
1

N
(AzTk )TAzFk =

1

N
(zTk )T ATA zFk (5)



3.3.3 Policy Learning and Optimization
Our goal is to learn policy π to determine the interven-
tion to be applied at each stage for true news diffusion
process such that the total expected discounted reward

for all stages, J =
K∑
k=1

γkE[Rk(sk, ak)] is maximized,

where γ ∈ (0, 1] is the discount rate. E[Rk(sk, ak)] =∑
ak∈O

Rk(sk) ·P (sk|ak), where P (sk|ak) is the probabil-

ity of being in state sk after applying intervention ak in
stage k − 1, and O is the space of possible actions.

E[Rk(sk, ak)] =
1

N
E[(zTk )TATAzFk ]

=
1

N
E[zTk ]TATAE[zFk ]

(6)

The expected reward for fake and true news diffusion
processes can be decomposed due to the independence
assumption. Due to space limitations, we provide the
details to compute E[zTk ], E[zFk ] and E[νk] in the Sup-
plementary Material.

We represent the policy as a function of state (sk), pa-
rameterized by weights θ, that is, ak+1 = π(sk; θ),
where π is the function we want to learn. Each state
is associated with a value V (sk), that is, the total ex-
pected reward when in the given state following policy

π, V (sk) = E[
K∑
j=k

γjRj |(sk, π)]. Since it is computa-

tionally expensive to compute V (sk) from future rewards
for every possible policy π, we approximate the value
as a function of the state parameterized by weights φ,
that is, V (sk) = f(sk;φ), as in [Kurutach et al., 2018,
Zheng et al., 2018]. Policy gradient methods are more
effective in high dimensional spaces, and can learn con-
tinuous policies. Thus, we use state-of-the-art advantage
actor-critic algorithm [Schulman et al., 2015] to find the
optimal policy. The details are presented in Algorithm 1.

Setup Figure 2 shows the complete training/test setup
for our model. In the figure, e[t, t′] and l[t, t′] represent
the post and like (feedback) events between time t and t′.
We use MHPλ to denote the MHP defined in Sec. 3.2.2,
and MHPψ to denote the MHP defined in Sec. 3.3.1.
We use the data from time [0, TPE(= 10)) to learn the
parameters. Then we divide the remaining data corre-
sponding to time interval [TPE(= 10), T (= 40)] into
three parts, data from [TPE(= 10), TTr(= 20)) corre-
sponds to training dataset used to learn the policy, data
from [TTr(= 20), TTe(= 30)) corresponds to evaluation
dataset used to evaluate the learnt policy by measuring
reward obtained, and data from [TTe(= 30), T (= 40)] is
used as held-out dataset for experiments in Section 4.2.

We obtain the training dataset and evaluation dataset by

generating post (tweet) and feedback events using MHPλ
and MHPψ , respectively. Generating data using MHPs
is supported by our observation that MHPλ and MHPψ
better capture the diffusion and feedback processes as
shown in Sections 3.2.4 and 3.3.1. Moreover, since we
cannot make real-time intervention to test the policy, we
use a simulated environment (using MHPs) as a proxy for
online interventions to measure the reward using eval-
uation data. In order to make the training and evalua-
tion environment similar, we use the events generated by
simulating MHPs with parameters learnt from real data.
Moreover, we compute the expected value of reward in
the future (next stage) assuming that the diffusion pro-
cess follows the MHP.

Let there be KTr stages in the training data. Given fea-
tures for stage k, we find the policy to be applied for stage
k+1. We use a multi-layer feed-forward network to learn
this policy π. Due to space constraints, we describe the
architecture for Neural Network (NN) in Supplementary
Material. After we obtain the policy as output of the NN,
we impose budget constraint by normalizing, as shown in
line 7, and compute the expected reward for stage k + 1
using ak+1 (line 8). zk

′
and νk

′
are the expected feature

vector for the state sk
′

obtained after applying the policy
(line 9), and we find the expected value of the next state
V (sk

′
) in line 10. rk represents the expected reward that

could be obtained by applying policy ak+1 given state
sk, in line 11, that comes from the Bellman Optimality
Equation [Bellman, 1957]. Instead of simply using the
expected reward to optimize the policy, we use an advan-
tage function that is obtained by subtracting the value of
state as baseline from the expected reward. This helps to
reduce the variance in estimates. Lines 15-16 show the
computation of advantage function for each state sk. In
lines 20-21, we learn the optimal parameters θ and φ, ini-
tialized randomly, using stochastic gradient descent, with
learning rates ηθ and ηφ, respectively. We use the same
NN to learn parameters θ and φ for approximating policy
and value function, respectively, however the parameters
are learnt independently of each other.

3.3.4 Evaluation
To evaluate the learnt policy, we find the intervention
a = π(s) where s = (z, ν) obtained from events in the
evaluation data. We simulate MHPλ after adding a to the
base exogenous intensity µT for true news diffusion, and
compute the following evaluation metric.

Evaluation Metric To compare the performance of
different methods, we consider the reward along with the
fraction of users exposed to fake news that become ex-
posed to true news. The latter helps to assign more im-
portance to the selection of distinct users over selection
of few users with high exposures. Let LTk and LFk be



Figure 2: Complete Framework

the sets of users exposed to true and fake news, respec-
tively, during stage k. LTk = {i|i ∈ [1, N ], zTk > 0} and
LFk = {i|i ∈ [1, N ], zFk > 0}. Define performance as

P =
K∑
k=0

Rk× |L
T
k ∩L

F
k |

|LF
k |

We measure the performance of a

method relative to that obtained by applying no interven-
tion, in order to assess the gains by making interventions.
Specifically, we report the difference between the perfor-
mance after applying the learnt policy and that without
applying a policy. Note that since we cannot make real
time interventions, we cannot explicitly test if there is a
reduction in fake news spread.

4 EXPERIMENTS
For experiments, we usedCk ∼ N ·U(0, 1), and γ = 0.7.
We compare our model, that we call MHP-U, against dif-
ferent baselines described below. To evaluate a policy on
test dataset, we simulate the network under that policy
10 times, and report the average.

4.1 BASELINES

Vanilla MHP (V-MHP) Policy is a function of user
events (tweets), similar to [Farajtabar et al., 2017]), does
not consider bias or feedback.

Exposure-based Policy (EXP) To mitigate users who
shared more posts related to fake news in past

[Farajtabar et al., 2017]: aki ∝
k∑
l=0

A zFl,i.

DEG ai ∝ degree of a user i (Section 3.2).

CEN ai ∝ closeness centrality of a user i (Section 3.2).

AVG aki = Ck

N , that is, the average budget per user.

Random (RND) aki ∝ U(0, C
k

N ]

4.2 RESULTS
Figure 3 shows the relative performance of different
methods. The correlation between fake and true news
exposures is higher for MHP-U, and it also maximizes
distinct number of users exposed to fake news. The gain
in performance comes from the feedback (MHPψ) used.

Fig 4 shows a change in performance with respect to the
ratio of decay parameter for true and fake news diffusion.
As this ratio increases, the performance decreases expo-
nentially. This is due to the fact that in the later stages,
we have less true news events compared to fake news
events. We mark the ratio corresponding to the settings
described in Section 3.2.4, with a vertical line.

(a) Twitter 2016 (b) Twitter 2015

Figure 3: Relative Performance on Twitter Datasets

The above results serve as a proof of concept that pro-
viding incentives helps to increase the spread of true
news even among the people exposed to fake news.
However, since we cannot make any real-time inter-
ventions, we compare different methods by measuring



Algorithm 1 Policy Learning and Optimization

1: Input: {sk}KTr

k=1 , µ,Φ, χ, ω, γ, ηθ, ηφ
2: Output: θ∗
3: repeat
4: for k = 1, ...,KTr − 1 do
5: ak+1 = π(sk; θ)
6: V (sk) = f(sk;φ)

7: ak+1 = ak+1

||ak+1||1 × C
k /*budget constraint*/

8: Compute E[Rk+1(ak+1)] (Eq. 5)
9: zk

′
= E[zk], νk

′
= E[νk], sk

′
= (zk

′
, νk

′
)

10: V (sk
′
) = f(sk

′
;φ)

11: rk = E[Rk+1(ak+1)] + γV (sk
′
)

12: end for
13: Lθ = 0, Lφ = 0
14: for k = 1, ...,KTr − 1 do

15: Let Dk =
K−1∑
j=k

γkrk

16: Bk = Dk − V (sk) /*Compute Advantage*/
17: Lθ = Lθ +Bk

18: Lφ = Lφ + ||V (sk)−Dk||2
19: end for
20: Jθ = Lθ, Jφ = −Lφ
21: θ = θ + ηθ∇θJθ, φ = φ+ ηφ∇φJφ
22: until |∆θ| < 0.1
23: θ∗ = θ
24: return θ∗

the impact of nodes selected on held-out dataset (Sec-
tion 3.3.3). Let S(τ) be the set of users who spread
true news according to the model by time τ , that is,
S(τ) = {i|(Ti(τ) − Ti(TTe)) > 0}. We call these as
selected users, and the remaining users are considered
missed (M(τ)) by the model. We consider τ ∈ [20, 30].
Given users in S(τ) and M(τ), we calculate the total
number of users who retweeted the posts of these users
between time [τ

′
, τ

′
+ ∆) where τ

′
= τ + g, in order

to measure the impact of the selected and missed nodes
in terms of the people actually reached out in real data.
g = {0, 2, 5, 8} indicates the gap or number of stages af-
ter which we want to measure the impact (in the future).
We considered different values of ∆ ∈ {1, 2, 3, 4, 5} and
report the average values in Table 1. We see that the im-
pact of selected nodes (S) is greater than that of missed
nodes (M) for MHP-U, and V-MHP by a large margin.

We also conducted semi-synthetic data experiments us-
ing subsets of the Twitter data to study performance with
respect to different network parameters, including de-
gree, centrality and user bias. See Supplementary Ma-
terial for detailed discussion of the results, which show
our method outperforming the baselines by a large mar-
gin in all scenarios, particularly those that closely match

(a) Twitter 2016 (b) Twitter 2015

Figure 4: Relative Performance vs Ratio of Decay

Table 1: Sum of Retweets at τ + k for Users Selected at τ

MODEL
τ

′
= τ + 0 τ

′
= τ + 2 τ

′
= τ + 5 τ

′
= τ + 8

S M S M S M S M

MHP-U 1000.5 400.8 830.2 223.3 630.8 170 553.3 140.4
V-MHP 700.4 416.6 553.7 250.4 420.9 162.2 369.1 148.8

DEG 590.6 500.3 445.3 350.1 330.3 259.8 296.6 233.4
EXP 600.2 575.7 299.1 437.8 210.5 298.8 200.2 291.7
CEN 538.5 569.9 369.2 334.6 283.7 257.6 246.1 223.3

BCEN 501.1 511.2 350.5 355.6 276.2 250.3 233.6 237.2
CLC 456.4 545.8 328.2 422.9 242.1 272.9 218.4 281.8
AVG 420.7 598.2 260.3 449.1 215.4 325.6 173.3 300.2
RND 410.1 518.4 205.7 459.2 178.7 340.2 136.1 306.4

real-world observations.

5 CONCLUSION
In this paper, we presented a social reinforcement learn-
ing approach that can be used to combat the dissemina-
tion of fake news by learning how to incentivize users
to spread more true news. Our key insight was to esti-
mate likely feedback for each user based on both their
network structure and the political bias of their follow-
ers, and then combine those estimates with the observed
events while learning an incentivization policy. Experi-
ments show that our proposed approach achieves better
performance in terms of expected reward and number of
distinct mitigated users. Our performance gain comes
from the appropriate selection of users and efficient al-
location of incentive among them. We tested the effi-
cacy of the users selected by our model and results show
that the selected users are able to achieve greater num-
ber of retweets, leading to an increased true news spread.
Moreover, in semi-synthetic experiments, we observed
that it is difficult to encourage people to spread news that
does not align with their ideology as has been observed
in [Allcott and Gentzkow, 2017], thus justifying our con-
jecture to model the likelihood of user response as a func-
tion of political bias.
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