
Real-Time Robotic Search using Structural Spatial Point Processes

Olov Andersson∗
Dept of Computer and Info Science
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Abstract

Aerial robots hold great potential for aiding
Search and Rescue (SAR) efforts over large
areas, such as during natural disasters. Tra-
ditional approaches typically search an area
exhaustively, thereby ignoring that the density
of victims varies based on predictable factors,
such as the terrain, population density and the
type of disaster. We present a probabilistic
model to automate SAR planning, with explicit
minimization of the expected time to discov-
ery. The proposed model is a spatial point
process with three interacting spatial fields for
i) the point patterns of persons in the area, ii)
the probability of detecting persons and iii)
the probability of injury. This structure allows
inclusion of informative priors from e.g. geo-
graphic or cell phone traffic data, while falling
back to latent Gaussian processes when priors
are missing or inaccurate. To solve this prob-
lem in real-time, we propose a combination
of fast approximate inference using Integrated
Nested Laplace Approximation (INLA), and
a novel Monte Carlo tree search tailored to the
problem. Experiments using data simulated
from real world Geographic Information
System (GIS) maps show that the framework
outperforms competing approaches, finding
many more injured in the crucial first hours.

∗Equal contribution.

1 INTRODUCTION

There is rising interest in employing robots such as un-
manned aerial vehicles (UAV) for search and rescue op-
erations. Such rescue robotics is an emerging research
area (Murphy et al., 2008), tackling a range of problems
from automating logistics, aid delivery and communica-
tions deployment, down to sensor and motion planning
of individual robots.

Here we focus on how to improve victim search dur-
ing disasters by learning and planning with probabilistic
models in real-time. The aim is an automated and near-
optimal solution for surveying disaster zones that can be
used both as a component of a larger robotic system, or
as decision support for first responders. Locating injured
victims early is crucial in reducing suffering and mor-
tality rates. Many disasters such as earthquakes, flood-
ing, and even terrorist attacks have a multitude of vic-
tims and can cover large areas, where manual approaches
take valuable time away from rescuers. We seek a more
hands-off probabilistic solution, where humans encode
their domain knowledge via priors, and are then free to
focus on rescue efforts while the aerial robots do what
they do best - scout large areas.

We propose to leverage probabilistic models that reflect
the problem structure, as well as approximate inference
and planning to solve the search problem within stipu-
lated real-time requirements. To this end we separately
model the population density, injury probability and de-
tection probability. In conjunction with a terrain-based
exploration time, inferring these factors allows us to op-
timize the sequence of exploratory moves to minimize



discovery time. A priori, a densely populated area is
likely to contain more victims than a sparsely populated
one, and a field or road is both faster and easier to ex-
plore than a forest. In scenarios such as earthquakes, ar-
eas near buildings are likely to contain more victims than
roads. During a terrorist attack, whatever early informa-
tion exists can be encoded and explored first. Without
further information, the system should sample high pop-
ulation areas, and if it stumbles on victims, learn a local
adjustment in the injury model and focus on that area.
We therefore both allow strong priors on these variables,
and can revert back to a spatial process when the priors
are uninformative or inaccurate. For example, one can
automatically pull estimates of population density from
GIS covariates and learn both global and local deviations
during the search.

However, real-time inference and search in such spatial
problems is very challenging for three main reasons: i)
only a small part of the point pattern is observed early in
the search, ii) the parameter space in a spatial model is
high-dimensional and real-time sequential inference is
therefore computationally challenging, and iii) optimal
search is a computationally hard planning problem under
uncertainty, which we need to solve in real-time.

The main contributions of this paper are:
• A powerful structured spatial probabilistic model

for the disaster search domain with the possibility
to make effective use of prior information
• Real-time inference via deterministic Integrated

Nested Laplace Approximation (INLA), so the
model can be updated online
• A real-time approximation to the search planning

problem using a novel variant of Monte-Carlo tree
search (MCTS) with action abstractions (”jumps”).

To the best of our knowledge, this is the first work on
real-time learning of structured probabilistic models for
the disaster search problem. While there is considerable
work on informed exploration in robotics, it stems from
mapping or monitoring tasks (Morere et al., 2017; Singh
et al., 2009), which ignores the structure of the disaster
response problem.

Bayesian approaches have previously been used in con-
ventional search efforts for missing persons (Kratzke
et al., 2010). Automating these with UAVs have been
considered in Waharte and Trigoni (2010). However, as
these search for one entity they mainly rely on strong pri-
ors. Large-scale disaster response situations allow us to
both draw on a rich set of data from GIS, and learn based
on a large number of observations.

Just the planning part of the problem is itself computa-
tionally hard, and exhaustive coverage search or heuris-

tics seem popular in practice (Rudol and Doherty, 2008;
Goodrich et al., 2008; Xu et al., 2011). Waharte and
Trigoni (2010) found heuristics the best choice for real-
time operation. In the planning literature, MCTS was
also recently proposed for disaster response (Baker et al.,
2016), but without the proposed model learning or action
abstractions in planning.

The paper is organized as follows. We first define the
proposed structured probabilistic model and its use of
spatial point processes. In section 3, we describe how
INLA is used for real-time approximate inference. The
search planning problem and the MCTS approximation
is introduced in section 4, and finally we present results
on a range of search and rescue scenarios in section 5.

2 SPATIAL POINT PROCESS FOR
DISASTER RESPONSE

Learning a spatial process for real-time search is a dif-
ficult inference problem since only a small part of the
point pattern is observed at any given point in time. We
therefore develop a structural spatial point process model
that allows us to complement the observed point pattern
with prior knowledge, for example about the terrain or
cell phone traffic in the search area.

Let yi denote a two-dimensional vector with spatial co-
ordinates for the ith data point, e.g. the location of the ith
person. Let Y = (y1, . . . ,yn) denote the spatial point
pattern over a region of interest S ⊂ R2, for example the
observed spatial locations of n individuals over a rectan-
gular region. The simplest example of a point process
model for such data is the homogeneous Poisson process
for which points are uniformly distributed over S with
constant intensity λ.

Disaster response scenarios have a more complex
marked point pattern where a given person i) may or may
not be detected by a searching UAV, and ii) may or may
not be injured. We propose a model built up by three
interacting spatial fields:

• the population intensity λ(s),

• the detection probability r(s),

• the probability of being injured q(s),

where s ∈ S. Figure 1 displays a sample realization from
the model over a map of the town of Gamleby in Sweden.
The following subsection gives the details for each of the
fields, and how specific prior information can be used in
each of the three parts of the process.



Figure 1: Left: Map of the town of Gamleby, Sweden with buildings (orange), forest (dark green), fields (light
green), roads (light grey) and water (dark grey) marked out. Right: a sample realization from the model showing the
population intensity overlaid by persons in the area (filled dots), detected persons (green circles) and injured persons
(blue crosses). There is increased population intensity at buildings and roads, decreased population density in water,
lower detection probability in the forest and increased probability of injury due to an explosion in the southwest part
of the town. The displayed points have been thinned out by a factor 10 for visualization purposes.

2.1 POPULATION MODEL

Let Y? = (y?1, . . . ,y
?
n) denote the point pattern of per-

sons over a region S, and let Ny?(S̃) denote the number
of persons in the subset S̃ ⊂ S. We model the point pat-
tern Y? by a Log Gaussian Cox Process (LGCP, Møller
et al. (1998))

Ny?(S̃)|λ ∼ Poisson

(∫
s∈S̃

λ(s)ds

)
,

with log intensity surface given by

log λ(s) = αλ + x>λ (s)βλ + ξλ(s),

where αλ is an intercept, xλ(s) is a vector with spatial
covariates, βλ are regression coefficients and ξλ(s) is
a zero mean Gaussian Process (GP) over S. The spa-
tial covariates xλ(s) could contain any spatial prior in-
formation that helps explain the population intensity λ,
for example the location of buildings and water; such in-
formation is readily available from GIS systems. The
remaining part of λ is modeled as a GP ξλ(s) with a
smooth kernel, as people tend to cluster together. We will
throughout this paper focus on GPs with kernels from the
Matérn family with smoothness parameter ν = 1 (Ras-
mussen and Williams, 2006, Ch. 4). Finally, the Poisson
distribution can be replaced by some other suitable distri-
bution, in particular the more flexible Negative Binomial
distribution which is part of the standard INLA library.

2.2 DETECTION MODEL

The interpretation of Y? are all persons that could be
possibly observed by a UAV flying at low height and at

good sighting conditions. In practice, conditions may not
be perfect, and we model the persons actually observed
Y through the detection probability r(s) of observing a
person at point s, generating a thinned Poisson process

Ny(S̃)|r, λ ∼ Poisson

(∫
s∈S̃

r(s)λ(s)ds

)
,

where Ny(S̃) denotes the number of observed persons in
S̃. The detection probability r(s) is modeled with

log r(s) = x>r (s)βr,

where xr(s) contain prior information about for exam-
ple terrain type that might affect visibility. Technically,
r(s) is a detection rate, since positive values of x>r (s)βr
leads to values for r(s) greater than 1. However, it can
be interpreted as a detection probability when x>r (s)βr
is non-negative for all s, which, if not already the case,
could always be achieved by re-balancing the model,
through increasing αλ and modifying x>r (s) and βr.

2.3 INJURY MODEL

We assume that when the disaster strikes all persons have
a spatially varying probability q(s) of being injured. Let
w be a binary vector of length n with wi = 1 iff the ith
detected person is injured, and wi = 0 otherwise. This
is an example of marked point pattern where each ob-
served point is marked by a binary variable. We assume
a geostatistical marking process where the marking pro-
cess (injured) is independent of the point pattern process
(pattern of detected persons) and assumed to follow

wi|q ∼ Bernoulli (q(yi)) ,



where

log

(
q(s)

1− q(s)

)
= αq + x>q (s)βq + ξq(s),

where αq is an intercept, xq(s) are spatial covariates, βq
are regression coefficients and ξq(s) is a GP. The covari-
ates xq(s) could for example be large near buildings in
an earthquake scenario.

3 ONLINE LEARNING USING INLA

The Integrated Nested Laplace Approximation (INLA,
Rue et al. (2009)) is a fast and memory efficient approxi-
mate Bayesian learning algorithm which we show can be
successfully applied to our model for sequential learning
under real-time constraints.

3.1 MODEL FORMULATION ON LATTICE

When learning the model, we assume that the domain
(0, x1,max) × (0, x2,max) is rectangular and has been
split up into a1 · a2 equally sized rectangles, each with
area ∆ =

x1,maxx2,max

a1a2
. This approach was previously

used for spatial point process models with INLA by Il-
lian et al. (2012), and makes it clear that the parame-
ter space of spatial models quickly becomes very high-
dimensional since there is a parameter to be learned in
each of the a1 · a2 rectangles. Define nij as the num-
ber of detected persons in cell sij and mij as the number
of detected injured persons in sij . Conditional on the la-
tent fields, the joint distribution of the number of detected
persons and injured in visited cell sij is given by

nij |zλ, zr ∼ Poisson (∆ exp (zλ,ij + zr,ij))

mij |nij , zq ∼ Binomial

(
nij ,

exp (zq,ij)

1 + exp (zq,ij)

)
where zλ,ij , zr,ij , and zq,ij are representative values of
Zλ(s) ≡ log λ(s), Zr(s) ≡ log r(s) and Zq(s) ≡
log(q(s)/(1 − q(s))) in sij . Inference is simplified by
observing that αq,ij and βq only enter the binomial in-
jury model and that the log links in both the population
and the detection models imply that

zλ,ij + zr,ij = αλ + x>λ,ijβλ + x>r,ijβr + ξλ,ij .

To avoid identification problems between βλ and βr we
use different covariates in the population process xλ and
in the detection process xr.

3.2 INTEGRATED NESTED LAPLACE
APPROXIMATION

Inference in models with high-dimensional spatial ran-
dom fields is a challenging problem, and exact methods

such as Markov Chain Monte Carlo (MCMC) are much
too slow for real-time learning. Variational inference is a
common method in machine learning for fast Bayesian
inference, but is well known to underestimate poste-
rior uncertainty, particularly in high-dimensional spatial
problems, see e.g. Rue et al. (2009).

INLA (Rue et al., 2009) is a framework for fast accu-
rate approximation of Bayesian posterior distributions in
the class of latent Gaussian models. INLA is by now
a standard method for spatial problems in the statisti-
cal literature, but is rarely used in Robotics. To de-
scribe the class of latent Gaussian models, let z ∈ Rd be
a (high-dimensional) vector of Gaussian variables with
prior π(z|θ) = N(0, Q(θ)−1), where Q(θ) is a sparse
precision (inverse covariance) matrix. In our case z con-
tains the discretized Gaussian random fields ξλ,ij and
ξq,ij as well as the fixed effects αλ, βλ, βr, αq and βq .
The (low-dimensional) vector of hyperparameters θ con-
tains the variances and length-scales of the Matérn kernel
functions for ξλ,ij and ξq,ij . Further, let y here denote
the n observations, in our case the set of all detected per-
sons nij or injured persons mij in visited cells. INLA
assumes these observations are independent conditional
on the latent variables z, with likelihood function

π(y|z,θ) =

n∏
i=1

π(yi|zi,θ). (1)

Our likelihood for the Poisson model for nij , and for the
binomial model formi,j , are clearly both of the form (1).

INLA uses an intricate mix of several Laplace approx-
imations for the high-dimensional z combined with nu-
merical integration of the low-dimensional hyperparame-
ters θ to approximate the marginal posteriors of the latent
variables zi and the joint posterior of the hyperparame-
ters θ. The basic INLA approximation is of the form

π(zi|y) ≈
∫
π̃(zi|θ,y)π̃(θ|y)dθ, (2)

where π̃(zi|θ,y) is obtained by marginalizing a Laplace
approximation (Tierney and Kadane, 1986) of π(z|θ,y)
and

π̃(θ|y) =
π(z,θ,y)

π̃G(z|θ,y)

∣∣∣∣
z=z?(θ)

,

where π̃G(z|θ,y) is a Gaussian approximation to the full
conditional posterior of z and z? is the mode of z for a
given θ. The integral in (2) is performed numerically by
summing over a set of carefully selected support points
in θ, see Rue et al. (2009) for details. Finally, we can
produce predictions E [y∗i |y] by integrating over the ap-
proximation π(zi|y), where y∗i in this case may be e.g.
the number of injured m∗ij in non-visited cells.



The use of nested Laplace approximations makes INLA
extremely accurate for latent Gaussian models, see Rue
et al. (2009) and Teng et al. (2017) for some evidence for
LGCP models. In particular, INLA has been shown to be
much more accurate than variational approximations.

INLA is typically orders of magnitude faster than
Markov Chain Monte Carlo (MCMC) and Hamiltonian
Monte Carlo (HMC) (Rue et al., 2009; Teng et al., 2017),
and can therefore be successfully applied in a real-time
context. By exploiting the sparsity of the precision ma-
trix Q(θ) that results from conditional independencies
that appear naturally in spatial problems and efficient re-
ordering schemes (Rue and Held, 2005), INLA scales fa-
vorably as O(d3/2) in 2D, where d is the total number
of cells where the fields are evaluated. Moreover, since
our focus here is on π(zi|y) rather than hyperparameter
inference per se, we will use the Empirical Bayes (EB) to
optimize wrt θ. This gives additional speed-ups since we
can also benefit from a warm start with excellent initial
values from the previous search iteration, followed by a
fast update of the posterior π(zi|y, θ̂EB).

The core of INLA is implemented in C++ with the conve-
nient r-inla interface to the statistical programming lan-
guage R, see Rue et al. (2017) for details.

4 PLANNING EXPLORATORY MOVES

Finding the best sequence of exploratory moves is a com-
putationally hard problem. Simple coverage patterns
(Goodrich et al., 2008; Rudol and Doherty, 2008; Xu
et al., 2011), or heuristics (Waharte and Trigoni, 2010)
are common in the literature.

As we employ a sophisticated probabilistic model, it is
natural to view the decision problem as a partially ob-
servable Markov decision process, or POMDP (Åström,
1965). Only the visited regions are observed, which we
use to infer a belief over the unobserved cells using the
spatial point process.

Formally, we define the search state of our problem to be
φt = (Belt(M),pt). The matrix M = (mij) consists
of the number of injured in each of the ∆-sized cells. We
use the notation Belt(M) for the posterior distribution of
M at time t. As Belt(M) are probability distributions,
this is technically a belief-augmented MDP formulation
(c.f. Thrun et al. (2005)). We also define p ∈ {sij :
∀ (i, j)} as the position of the UAV in the cell grid, which
can be considered known by GPS at the length-scales of
our cell size. The UAV has to sequentially decide on
which cell to explore next, in the form of actions at ∈
A = {sij : ∀ (i, j)} that map to exploration of cell sij .
Cell exploration takes time Tij = x>T,ijβT , where x>T,ij
are spatial covariates for terrain type which may overlap

with those used in the detection model, and βT are user-
supplied estimates of their respective exploration time.
Each exploratory action updates the UAV position pti+1

and its belief over injured in the map Belti+1
(M).

However, the UAV is unable to teleport between cells, it
additionally takes time Tf · dist(p, sij) to reach a non-
adjacent cell sij . Clearly, a sequential exploration of ad-
jacent cells takes less time but may not discover the most
injured, resulting in a difficult trade-off.

Finally, we want to solve the optimal exploration prob-
lem

arg min
π(φ)

Eτ |π(φ)[c(τ )],

where c(τ ) is a cost function and τ = {φti ...φtN } is the
trajectory through the belief-augmented state space φt,
from current time ti until all cells have been explored
at time tN . The trajectory is uncertain as the injuries
M are partially unknown at decision time. By taking
action at = π(φt), data ot = (nij ,mij) will be ob-
served and beliefs will be updated by Belti+1(M) =
f(Belti(M), ati , oti), where the transition function f
updates the posterior of the injured in non-visited cells
according to the spatial point process model.

While maximizing information is popular in POMDP
formulations of search (c.f. Morere et al. (2017); Wa-
harte and Trigoni (2010)), not all information is equally
useful in our structured model, e.g. one may have large
uncertainty but low expectation in sparsely populated ar-
eas. At each time ti we instead minimize the total re-
maining harm to victims,

c(τ ) =

∫ tN

ti

∑
ij

m∗ij(t)h(t) dt,

where m∗ij(t) is the number of unexplored injured in cell
sij at time t, and h(t) is the rate of harm. This is inte-
grated with the trapezoid rule over the varying durations
of the discrete sequence of actions. For convenience and
without loss of generality, in the following we assume
the rate of harm (e.g. mortality rate) is constant while
undiscovered, h(t) ∝ 1.

Unfortunately, the complexity of solving POMDPs is
doubly-exponential (Thrun et al., 2005). Even with the
search discretized into a grid and a choice of four ad-
jacent cells to explore next, this problem quickly grows
infeasible for real-world sizes.

Monte-Carlo tree search (MCTS) is an approximate so-
lution to discrete sequential decision making problems.
In its purest form, MCTS is a tree search algorithm that
treats the problem of finding good branches (actions) as a
sequence of bandit problems solved by the UCB (Upper



Confidence Bounds) algorithm. The resulting UCT al-
gorithm (Kocsis and Szepesvári, 2006) effectively treats
finding good plans as an exploration problem in itself.
By preferentially sampling from promising branches, the
effective branching factor can be significantly reduced.

While most well-known for its successes in the game
of Go (Browne et al., 2012; Silver et al., 2017), MCTS
has recently found uses in other applications. Morere
et al. (2017) used MCTS to plan belief trajectories
in a POMDP for environment monitoring. However,
POMDP planning is still very expensive, and they could
only afford to plan three steps ahead. The reason is that
for each tested action in the search tree, uncertain out-
comes have to be sampled, and new beliefs inferred.

To create an effective MCTS algorithm for our search
domain we employ three modifications, i) incorpo-
rating action-abstractions, a small set of long-range
moves Amax directly to the cell sij with the maxi-
mum posterior expected number of unexplored injured,
ii) a certainty equivalence assumption where random
variables are replaced with their expected values, and
iii) using receding-horizon planning with warm-starts
and a fast domain-specific cost-to-go approximation.
The posterior expected number of unexplored injured
E
[
m∗ij |ot1 , . . . , oti

]
are computed based on the spatial

point process model as described in section 3.

We test two variants. The first, simply called MCTS,
can only move through adjacent squares AMCTS = {sij :
adj(p, sij)}, to explore, or if explored, fly through. The
second, denoted MCTSJump, additionally includes the
long-range moves from i) in the first time step ti of each
plan, i.e. AMCTSJump,ti = Amax ∪ AMCTS. An example
search pattern from MCTSJump can be seen in Figure 2.

These action-abstractions (”jumps”) can be seen as a type
of option policies (Stolle and Precup, 2002; Subramanian
et al., 2016) in reinforcement learning. Adding more ac-
tions always increases the branching factor, which results
in a difficult trade-off. We found that using the cells with
top ten expected number of injured resulted in a con-
siderable performance increase over using a random or
equally spaced subset.

The certainty equivalence assumption Belti+1(M) ≈
f(δE(M)(M), ati , oti), where δa(·) is the Dirac spike at
a, allows us to forego sampling from the outcomes to
update the belief model, which is the main bottleneck of
planning in POMDPs. A similar assumption was used by
Baker et al. (2016). This is a strong assumption, because
plans are evaluated on the premise that the future is
predictable, which means it will not value recourse, the
possibility to later change the plan if it turns out worse
than expected. However, it still replans at each step,

Figure 2: Search scenario using MCTSJump, overlaid on
heatmap for expected number of detectable injured.

and due to the spatial correlation in our problem, a poor
outcome also impacts adjacent cells, limiting recourse.

Finally, the receding-horizon formulation from iii) is
standard in control, where it is sometimes known as
model-predictive control. By cutting the planning hori-
zon from tN to tH and adding a domain-specific ap-
proximation of the remaining cost c(τ ) = c(τ ti..tH ) +
ĉtH ..tN (φtH ), computation can be greatly decreased.
Warm-starts from the previously best plan at ti−1 also
allows computation to be amortized over several itera-
tions. Here we just assume the cost-to-go decreases lin-
early to zero as for an ideal lawnmower pattern. This
allows comparison of plans of different duration, such as
jump moves from i).

As MCTS is an any-time algorithm we give it a fixed
3 second compute budget. It is implemented in C++ and
evaluates about 100 000 plans. As it does not assume any
fixed search pattern or observation order, it also allows
human operators the flexibility to take control if needed.

5 EXPERIMENTS

Here we test the proposed real-time probabilistic SAR
modeling and MCTS exploration algorithm. We use real-
world GIS data from the Swedish government, which of-
fer easy access to a wealth of data (Lantmäteriet, 2019).
We selected a 4.0x2.7km area around the town Gamleby
seen in Figure 1. It contains a variety of terrain and is
within a proposed UAV test zone, where we may be per-
mitted to test the algorithm with real UAVs.

Data was simulated using the structural spatial point pro-
cess model in section 2, discretized to 50x33 lattice cells
for search and model inference, each about the size of
a soccer field. We assume the UAV can fly at a speed
of 10m/s for long-range moves. The cell explore times



Table 1: Scenario Settings. Covariates and spatial fields in data generating process and inferred model.
B=buildings, R=roads, W=water, F=forest, Gi=Gaussian no i, S=spatial field. Deviations from truth in red.

Scenario A Scenario B Scenario C Scenario D
Population B B +R+W + S B +R+W + S B +R+W + S

Truth Detection − F F F
Injury − B + S G1 G2 +G3

Population S B +R+W + S B +R+W + S B +R+W + S
Model Detection − F F F

Injury − B + S G1 + S G2 + S

Table 2: Time until half of injured have been found (minutes)
Scenario A Scenario B Scenario C Scenario D

Lawnmower coverage pattern 835 1126 164 271
Globally greedy (on prior) 2287 167 102 279
MCTS (on prior) 572 120 88 171
MCTS (learning) 273 108 88 121
MCTSJump (learning) 241 87 69 100

are set to βT = (1, 2, 0.5, 0.5, 0.75) minutes for ter-
rain covariates ”buildings”, ”forest”, ”road”, ”field”, and
”water” respectively. This reflects a fast overhead search
with extra cost for difficult terrain such as forests need-
ing multiple angles. The detection covariate for forest
was similarly set lower. This rapid search pace also high-
lights the importance of real-time performance, and why
we capped MCTS to 3 seconds. For reference, the entire
inference and planning loop in our prototype implemen-
tation takes about 5 seconds on a Core i7 CPU, imposing
minimal overhead on the search.

To the best of our knowledge, this is the first principled
attempt at probabilistic modeling of the full structure of
the disaster response search problem, in real-time or oth-
erwise. We show the benefit of real-time learning on a
range of scenarios that map to different real-world disas-
ters. On the planning side, most principled optimization-
based approaches typically scale poorly (Waharte and
Trigoni, 2010; Morere et al., 2017) to the large scenar-
ios we envision. Simple maximum coverage approaches
(Goodrich et al., 2008; Rudol and Doherty, 2008; Xu
et al., 2011) seem most common in the literature, which
we include as baseline. As our mission area is rectan-
gular, a simple baseline coverage algorithm is a ”lawn-
mower” pattern. In terms of covering the largest area
in the shortest time, this is optimal. As heuristics were
suggested in e.g. Waharte and Trigoni (2010), we also
compare against a globally greedy strategy that always
selects the cell with highest expected number of injured.
Finally, MCTS has been proposed for search planning
in Baker et al. (2016). While they did not list computa-
tion time, their determinization approach appear similar

to our basic MCTS variant without learning, which we
use as the final baseline.

In the following we test four scenarios reflecting differ-
ent types of real-world disasters and the level of prior
information available. A summary of the scenarios, the
covariates used in the data generating process, as well as
those used for the inference models, can be seen in Ta-
ble 1. Each scenario is replicated 15 times from different
seeds, except for the first one, which used 30. In all cases,
we attempted to use reasonable values for the parameters
in the data generating process, the fixed effect parame-
ters {αλ, βλ, βr, αq , βq}, and the GP hyperparameters
{θλ, θq}, by sampling realizations of the spatial point
process and comparing to real-world expectations. When
the same covariates were also used for inference, we used
normal priors for the fixed effects, centered around the
true value but with fairly high variance. We also tested
the robustness of our methods to various inference pri-
ors, and found only minor differences in the results, see
the supplementary material. For the GP hyperparame-
ters, we used rather non-informative Gamma priors for
the range and marginal precision of the Matérn fields,
using the parameterization of Lindgren et al. (2011).

The results are shown in Table 2. In summary, lever-
aging real-time learning with the proposed model and
MCTSJump planning outperforms all baselines (p <
0.05 t-test). Learning is especially crucial when prior
knowledge is lacking or partial, as seen in Scenario A
and D. Interestingly, tree-search algorithms like MCTS
subsume locally-greedy algorithms if planning horizon
is taken to zero, and should be a dominating strategy
as the planning horizon is increased. Further, our pro-



posed MCTSJump algorithm will also always include the
globally-greedy choice in its list of action abstractions,
and can therefore be seen as a principled way of solving
this trade-off as an optimization problem, rather than as
a heuristic needing tuning to a scenario.

5.1 SCENARIO A: NO PRIOR INFORMATION
In this scenario we assume the model does not have ac-
cess to any useful spatial covariates. While in practice
some information tends to be available, this was designed
to test the capability of the model to fall back to the spa-
tial fields, to cover for unexpected situations.

The ground truth is a population distribution drawn from
GIS building covariates not available to the agent, see
Table 1. For simplicity we ignore the injury part of the
model and focus only on maximizing the number of peo-
ple found in this scenario. As can be seen from the results
in the top row of Figure 3 and Table 2, our model with
MCTS and MCTSJump significantly outperforms other
strategies. Just relying on the spatial field was sufficient
to capture the natural clustering in population data. In
this case however, the improvements offered by long-
range moves (”jumps”) was not statistically significant,
which is not surprising considering the spatial correla-
tion captured by the field only gives local information.

5.2 SCENARIO B: EARTHQUAKE
Here we simulate a classical earthquake scenario. We
generate population using all five GIS covariates, as well
as a spatial field. As this is an earthquake, both the build-
ing covariate and a spatial field was used to draw realiza-
tions of injured people. We use the same structure of the
model for inference, and reasonably uninformative pri-
ors. Figure 3 and Table 2 show that by drawing on the
GIS covariates, even corrupted by a spatial field, our al-
gorithm is significantly faster than in A, faster than com-
peting strategies, and outperforms lawnmower patterns
by a wide margin. This also showcases the advantage
of MCTSJump, which outperformed regular MCTS by
drawing on the injury covariate to make informed jumps
directly to the urban areas. It also uses jumps to complete
the map, while local MCTS can miss some areas.

5.3 SCENARIO C: TERRORIST ATTACK -
KNOWN SITE

In this scenario there has been a localized terrorist attack,
represented by a concentration in the injury field south-
west of town. We show that using the proposed model,
this can easily be encoded on the fly by first-responders,
via e.g. a Gaussian shaped covariate centered on the re-
ported site. Figure 3 shows similar but even more tar-
geted behavior than in Scenario B.

5.4 SCENARIO D: TERRORIST ATTACK -
ONE SITE UNKNOWN

Finally, we showcase all the capabilities of the structured
model by extending Scenario C. In this case, there is
a terrorist attack with one site encoded by a Gaussian
shaped covariate. However, early information during
catastrophes is often incomplete. In this case there is
also a second attack site unknown to us. The results
show the model quickly picks up on this. In particular,
MCTSJump flies to and explores the a priori known site,
then without further information will jump around and
scout high population areas. At some point it stumbles
on injured near the second site, the spatial field quickly
learns the local anomaly in injury probability, and the
planner focuses on that area. An example of this is shown
in the supplementary video material1 and Figure 4.

6 CONCLUSIONS

We present a new probabilistic framework for victim
search during a disaster response based on real-time
learning and decision making with a structural spatial
point process. The model is built from spatially refer-
enced components on which there is usually ample prior
information: i) the distribution of persons, ii) the prob-
ability of detecting a person, and iii) the probability of
injury. Learning spatial processes and acting on them in
real-time is a hard problem. We propose a novel com-
bination of approximate Bayesian learning using INLA
and an MCTS strategy adapted to the search problem.

We assess the empirical performance on simulated sce-
narios on a real map with publicly available GIS data,
displaying that both prior information and learning can
be efficiently used by our model to outperform related
strategies. We also show that the spatial fields can fill in
for missing prior information in a very adaptable manner.

The framework proposed here can be extended in many
interesting directions, for example to dynamic problems
where the intrinsic state variables evolve over time, such
as disasters involving gas leakage or rescue operations at
sea. While this work indicates that just cleverly using one
UAV can make a large difference, in future work we also
intend to extend it to search with a team of real UAVs.
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Figure 3: Comparing the proportion of injured found as a function of search time (minutes) for the different strategies
(lawnmower, MCTS, and MCTSJump). The rows correspond to each of the four scenarios A to D (top down). The
graphs show the mean proportion of injured found as a function of search time (solid line) for the three strategies
over 30 replicates, as well as the 95% confidence bands for the mean (darker regions) and 95% predictive bands for
individual proportions in individual replicated datasets (lighter regions). The final column shows that same properties,
but for the differences in proportions between MCTS and MCTSjump.
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