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Abstract

Sum-product networks (SPNs) are expressive
probabilistic models with a rich set of exact
and efficient inference routines. However, in
order to guarantee exact inference, they require
specific structural constraints, which compli-
cate learning SPNs from data. Thereby, most
SPN structure learners proposed so far are te-
dious to tune, do not scale easily, and are
not easily integrated with deep learning frame-
works. In this paper, we follow a simple “deep
learning” approach, by generating unspecial-
ized random structures, scalable to millions of
parameters, and subsequently applying GPU-
based optimization. Somewhat surprisingly,
our models often perform on par with state-of-
the-art SPN structure learners and deep neural
networks on a diverse range of generative and
discriminative scenarios. At the same time, our
models yield well-calibrated uncertainties, and
stand out among most deep generative and dis-
criminative models in being robust to missing
features and being able to detect anomalies.

1 INTRODUCTION

Intelligent systems should both be able to deal with un-
certain inputs, as well as express uncertainties over their
outputs. Especially the latter is a crucial point in auto-
matic decision-making processes, such as medical di-
agnosis and planning systems for autonomous agents.
Therefore, it is no surprise that probabilistic approaches
have recently gained great momentum in deep learning,
which has led to a variety of probabilistic models such as
variational autoencoders (VAEs) [45, 28], generative ad-
versarial nets (GANs) [24], neural auto-regressive den-
sity estimators (ARDEs) [29, 52, 51], and normalizing
flows (NFs) [18, 27].

However, most of these probabilistic deep learning sys-
tems have limited capabilities when it comes to infer-
ence. First, they have to resort to approximate inference
in most inference scenarios, e.g., marginalization and
conditioning for ARDEs, NFs. Moreover, some models
do not allow to evaluate the likelihood, either because
they lack of a probability density (e.g. GANs) or eval-
uating it is intractable (e.g. VAEs). Furthermore, even
when tractable approximations can be carried out, there
is no guarantee that these computations yield a calibrated
estimation of the underlying uncertainty in data, or even
conform to human expectations [10, 34].

In this landscape, sum-product networks (SPNs) [11, 41]
are a promising avenue, as they are a class of deep prob-
abilistic models permitting exact and efficient inference.
In particular, SPNs are able to compute any marginaliza-
tion and conditioning query in time linear of the model’s
representation size. This property is a hallmark of SPNs,
distinguishing them from the other probabilistic mod-
els mentioned above. Nevertheless, despite their attrac-
tive inference properties, SPNs have received compar-
atively limited attention in the deep learning commu-
nity. A major reason for this is that the structure of an
SPN needs to obey certain constraints, in order to fa-
cilitate tractable inference. This requires either to care-
fully design the structure by hand or to learn it from data
[13, 20, 36, 46, 37, 53, 2, 14, 50, 42, 15, 33]. The spe-
cial structural requirements of SPNs are opposed to the
usual homogeneous structures employed in deep learn-
ing, and hinder a seamingless integration into deep learn-
ing frameworks. Additionally, learning SPN structures
has proven hard to scale, precluding them from being
used on e.g. large scale image tasks.

In this paper, we investigate how important structure
learning in SPNs actually is. To this end, we introduce
a simple and scalable method to construct random and
tensorized SPNs (RAT-SPNs), waiving the necessity for
structure learning: we first construct a random region
graph [13, 36], which we subsequently populate with ar-



rays of SPN nodes. This strategy essentially dictates a
random hierarchical tensorial decomposition [48], lead-
ing to SPNs with reduced sparsity. RAT-SPNs map well
onto deep learning frameworks like Tensorflow [1], scale
to millions of parameters, and automatically taking ad-
vantage of GPU-parallelization.

For density estimation, i.e. the generative case, we use
the classical expectation-maximization (EM) algorithm
[12], which has recently been derived for SPNs [38].
Since EM is free of tuning-parameters and rapidly in-
creases the likelihood, it is a natural choice for this task.
We show that this simple strategy yields test-likelihoods
surprisingly close to ID-SPN [46], one of the most so-
phisticated SPN learners available.

In addition, we show that RAT-SPNs, when trained dis-
criminatively, yield classifiers competitive to deep neural
nets. So far, no principled discriminative SPN structure
learner is available while discriminative parameter learn-
ing has been mainly applied to images — relying either on
powerful feature extraction [19] or specialized structures
[3, 48, 43]. Our discriminative RAT-SPNs are domain-
agnostic and thus applicable in a much wider setting.

Most importantly, we demonstrate that RAT-SPNs de-
liver well-calibrated uncertainties: they can be used to
reliably detect anomalies and are robust under missing
data. In contrast to deep classifiers, hybrid discrete-
generative RAT-SPNs can explicitly quantify when they
are not confident about their predictions. Furthermore,
generative RAT-SPNs are not fooled by certain out-of-
domain image detection tests on which VAEs, NFs, and
ARDE:s consistently fail [10, 34].

The start off by reviewing the required background
and discussing related work. Subsequently, we intro-
duce RAT-SPNs and our proposed tensorized learning
schemes. Then, we thoroughly evaluate RAT-SPNs em-
pirically w.r.t. current SPN learning approaches and deep
neural nets for generative and discriminative modeling.
Finally, we conclude and discuss future work.

2 BACKGROUND & RELATED WORK

We denote random variables (RVs) by upper-case letters,
e.g. X, Y, and their values by corresponding lower-case
letters, e.g., x, y. Similarly, we denote sets of RVs by
upper-case bold letters, e.g., X, Y and their combined
values by corresponding lower-case letters, e.g., X, y.

An SPN § over X is a probabilistic model defined via
a directed acyclic graph (DAG) containing three types
of nodes: input distributions, sums and products. All
leaves of the SPN are input distribution functions over
some subset Y C X. Inner nodes are either weighted

sums or products, denoted by S and P, respectively,
ie. S = ZNECh(S) wsnN and P = HNech(P) N, where
ch(-) denotes the children of a node. The sum weights
ws,N are assumed to be non-negative and normalized:

wsn >0, > ywsn = 1.

The scope of an input distribution N is defined as the
set of RVs Y for which N is a distribution function,
ie. sc(N) := Y. The scope of an inner (sum or
product) node N is recursively defined as sc(N) =
Un'een(ny S€(N'). To allow for efficient inference, SPNs
should satisfy two structural constraints [11, 41], namely
completeness and decomposability. An SPN is complete
if for each sum S it holds that sc(N’) = sc(N”), for
all N',N” € ch(S). An SPN is decomposable if it
holds for each product P that sc(N') N sc(N”) = 0,
for all N’ # N” € ch(P). In that way, all nodes in
an SPN recursively define a distribution over their re-
spective scopes: the leaves are distributions by definition,
sum nodes are mixtures of their child distributions, and
products are factorized distributions, assuming (condi-
tional) independence among the scopes of their children.

Besides representing probability distributions, the
crucial advantage of SPNs is that they permit ef-
ficient inference. For example, SPNs allow to
compute arbitrary marginal distributions: In partic-
ular, let S(x) be a distribution over X represented
by SPN S, and let X = {X;,...,X;,} be a
set of RVs to be marginalized. The marginal dis-
tribution over Z = X \ X can be computed as
S(Z) = fxil .. fIiM S(l‘il, . ,l‘iM,Z) dax;, ... dxz,,.
As shown in [40], the integrals can be iteratively
swapped with sums and distributed over products
in the SPN, i.e. “pulled down” to the SPN leaves.
Consequently, any marginalization task reduces to the
corresponding marginalizations at the leaves (each
leaf marginalizing only over its scope), and evaluating
the internal nodes as usual in a bottom-up pass [40].
When the SPN uses only single-dimensional leaves,
marginalization becomes particularly easy, by simply
setting leaves corresponding to marginalized RVs to
1. Arbitrary conditional distributions can be computed
in a similar manner. It is important to note that these
inference scenarios are rendered tractable by the above
mentioned structural constraints — completeness and
decomposability — which are critical aspects when
learning SPNs.

Indeed, SPN structure learning is a central topic in the
literature, starting from [41], where an SPN structure tai-
lored to images was proposed, based on recursive axis-
aligned splits. Dennis and Ventura [13] improved this
architecture by using non axis-aligned splits, using k-
means applied to the transposed data matrix. Peharz



et al. [36] introduced a bottom-up approach to learn
SPN structures, using an information-bottleneck method.
Gens and Domingos [20] proposed a general high-level
scheme called LearnSPN which follows a hierarchical
co-clustering approach, i.e. it alternately clusters data in-
stances — corresponding to sum nodes — and splits vari-
ables — corresponding to product nodes — using inde-
pendence tests. Since then, there have been several im-
provements of the basic LearnSPN scheme, such as reg-
ularization by employing multivariate leaves [53], em-
ploying an efficient SVD-approach [2], generating com-
pacter networks by merging tree-structures into general
DAGs [42], learning product nodes via multi-view clus-
tering over variables [26] or lowering their complexity
by approximate independence testing [16], and learning
SPN structures over hybrid domains [33]. Rooshenas
and Lowd [46] refined LearnSPN by learning leaf dis-
tributions using Markov networks represented by arith-
metic circuits [32]. The resulting SPN learner, called
ID-SPN, is state-of-the-art in density estimation on bi-
nary data, when considering single models (ensembles
can improve results [30, 17]). In [48], a convolutional
SPN tailored to image data was proposed, and Butz et
al. [8] proposed a convolutional SPN variant interleaved
with the structure proposed in [41].

While structure learning is indisputably a relevant topic
in SPNs, the “antithesis” has received surprisingly little
attention: How important is detailed structure learning
in SPNs really? Akin to deep neural networks, can we get
decent models by just scaling up a random SPN structure
and applying simple parameter estimation techinques?
The current success of deep learning makes this approach
arguably worth exploring. Moreover, the special struc-
tural requirements of SPNs have probably hindered their
wider use in practice, and in particular combinations with
other deep learning models remain relatively unexplored.
Random SPNs, as introduced in this paper, are therefore
a promising direction for probabilistic deep learning.

3 RANDOM SUM-PRODUCT
NETWORKS

In order to construct our random and tensorized SPNs
(RAT-SPNs), we use the notion of a region graph [13, 36]
as an abstract representation of the network structure.
Given a set of RVs X, a region R is defined as any non-
empty subset of X. Given any region R, a K-partition
P of R is a collection of K non-overlapping sub-
regions R, ..., Rk, whose union is again R, i.e. P =
{Rl,...,RK}, Vk: Ry # 0, Vk #1:RyNR; =
0, U,Rr = R. In this paper, we consider only 2-
partitions, which causes all product nodes in our SPNs to
have exactly two children. This assumption, frequently

Algorithm 1 Random Region Graph
1: procedure RANDOMREGIONGRAPH(X, D, R)
2: Create an empty region graph R
3 Insert X in R
4: forr=1...Rdo
5 SPLIT(R, X, D)

1: procedure SPLIT(R, R, D)

2 Draw balanced partition P = {R1,R2} of R
3 Insert R{,Ryin R

4: Insert Pin R

5 if D > 1 then

6 if |R1| > 1 then SPLIT(R,R;, D — 1)

7 if |Rz| > 1 then SPLIT(R, Rz, D — 1)

made in the SPN literature, simplifies SPN design and
seems not to impair performance.

A region graph R over X is a connected DAG whose
nodes are regions and partitions such that i) there is ex-
actly one region R = X without parents (i.e. X is the
root region), ii) all leaves of R are regions, iii) all chil-
dren of regions are partitions and all children of partitions
are regions (i.e. R is bipartite), iv) if P is a child of R,
then (Jg,.p R" = R and v) if R is a child of P, then
RcP

Given a region graph, we can easily construct a cotre-
sponding SPN as follows: Populate each leaf-region with
a collection of [ input distributions, and all other regions
with a collection of sum nodes. For the root region we
create C' sum nodes, and for all internal regions, we cre-
ate S sum nodes. Finally, for all partitions, take all cross-
products of nodes contained in the child-regions, and
connect these products as children of all sums in the par-
ent region. Pseudo-code for this procedure is provided in
the supplementary.

We denote the C' sum nodes in the root region as S.(X),
¢ = 1,...,C. For density estimation, we assume
C = 1, in which case the single root readily repre-
sents a correctly normalized density S(X) := §1(X).
For classification, the C' > 1 roots represent class-
conditional distributions S.(X) =: SX|Y = y),y €
{1,...,C}. A sample x is classified by applying Bayes’
rule: S(Y |x) = S&I P — f(’;‘(:f;; Sl The
class-prior P(Y') can be estimated from the empirical
class-distribution, or just be fixed to, e.g., uniform. The
marginal data-likelihood S(x) = . S(x|y) P(y) is
also a useful quantity, as it allows us to detect outliers:
In the case that a classifier is fed with a sample which is
far from any training data, we can expect S(x) to be low.

We construct random regions graphs — and thus RAT-
SPNs — with the simple procedure depicted in Algo-



rithm 1: We randomly divide the root region into two
sub-regions of equal size (possibly breaking ties) and
proceed recursively until depth D, resulting in an SPN
of depth 2D. This recursive splitting mechanism is re-
peated R times. An example of a RAT-SPN is illustrated
in the supplementary.

It is easy to verify that the number of sum-weights in
RAT-SPNs is given as Ws =

ifD=1,

RCT? W
R(CS%+4 (2P~1 —2)§3 4 2P~181?)if D > 1.

Similarly, we can count the parameters of the input dis-
tributions, which we assume to factorize into univariate
distributions. In this case, it follows that the total number
of parameters for the input distributions is

Wo = RI|X|P, ()

where P is the number of parameters per univariate dis-
tribution.

We implemented Alg. 1 in Python and the correspond-
ing RAT-SPNs in Tensorflow.!*? The input distributions
are Gaussians for real data and categorical for discrete
data. All computation are performed in the log-domain
to avoid numerical underflow. Sum-weights, which are
required to be non-negative and normalized, are re-
parameterized via log-softmax layers. To perform sum-
mations in the log-domain, we use the log-sum-exp trick.
In this paper, we consider both generative and discrimi-
native learning, as discussed in the following.

3.1 GENERATIVE LEARNING

For generative learning, we assume that we have a train-
ing set X = {x1,...,xx} of i.i.d. samples drawn from
an unknown distribution P*(X), which we wish to ap-
proximate. The canonical approach to generative learn-
ing is maximizing the log-likelihood

N
1
LL(w) = + Zl log S(xn), 3)
where w denotes all parameters of the SPN, i.e. sum-
weights and parameters of the input distributions. Note
that by construction, S(X) is already a correctly normal-
ized distribution over X.

To optimize (3), we use the standard Expectation-
Maximization (EM) algorithm [12], which has been re-
cently derived for SPNs in [38]. EM rapidly and mono-
tonically increases the likelihood, is free of tuning-
parameters and can be implemented via simple forward

"https://github.com/cambridge-mlg/
RAT-SPN
https://github.com/SPFlow/SPFlow

and backward evaluations to compute the required ex-
pected sufficient statistics — see [38] for details. Due
to these convenient properties, we use EM for the gen-
erative case. Note that the concave-convex procedure
proposed in [54] coincides with EM updates for sum-
weights, but is in general distinct for input distributions.

3.2 DISCRIMINATIVE LEARNING

For discriminative learning, we focus on classification.
Let X = {(x1,¥1),.--,(Xn,yn)} be a training set of
inputs x,, and class labels y,,. We train RAT-SPN classi-
fiers by minimizing the cross-entropy

CE( ) _ 1 zN:l S?/n(xn) 4)
s Nn:l * Xy Sy (xn)’ (

which is equivalent to maximizing the conditional log-
likelihood ), 10g S(yy, | X5, ), when assuming a uniform
class prior. Furthermore, we can readily combine (3)
and (4) into a hybrid generative-discriminative [4] loss

LL(w)

H(w) = ACE(w) — (1 — ) W,

4)
which trades off cross-entropy and log-likelihood. For
A = 1, we retrieve pure discriminative learning, while
for A = 0, we retrieve pure generative learning. For
0 < A < 1, we are allowing our RAT-SPN classifiers
to also capture the distribution over X, a crucial fea-
ture to deal with uncertainty over inputs, e.g., in pres-
ence of missing values. The likelihood LL is obtained by
marginalizing the class variable Y, as illustrated above.
For discriminative learning, we use Adam with default
hyper-parameters and a fixed batchsize of 100.

3.3 PROBABILISTIC DROPOUT

The size of RAT-SPNs can be easily controlled via the
structural parameters D, R, S and I. As usual in deep
learning, we design RAT-SPNs structures to be overpa-
rameterized. In order to prevent overfitting, we perform
early stopping by monitoring the loss on a validation set.
We monitor the objective of interest on a validation set,
i.e. the log-likelihood for the generative case or the clas-
sification rate for the discriminative case, and save the
current model whenever we get an improvement over the
previous best model. Furthermore, we propose two vari-
ants of the dropout heuristic [49] for RAT-SPNs: at in-
puts and at sum nodes.

Dropout at inputs essentially marks input features
as missing at random. Following the probabilistic
paradigm, we simply wish to marginalize over these
missing features. Fortunately, this is an easy task in



SPNs, as we only need to set the input distributions cor-
responding to a dropped-out features to value 1. A simi-
lar criterion was used in a convolutional variant of SPNs
[48], which drops out small image patches, however.

We introduce dropout at sum nodes, by setting their
child-products to 0 (in fact —oco in log-domain) with a
certain probability. This effectively introduces artificial
information to the latent variables associated to the mix-
tures represented by sum nodes [38] by setting the prob-
ability of a random subset of states to 0.

4 EXPERIMENTS

We evaluated RAT-SPNs on a wide range of tasks and
real world benchmarks. First, we investigated their ca-
pability as density estimators in the generative setting,
comparing them to state-of-the-art SPN learners, VAEs
and Masked Autoencoders (MADEs) [21]. Second, we
compared RAT-SPNs with deep neural networks in the
discriminative setting, over a diverse set of classification
domains. Moreover, we analysed the uncertainties repre-
sented by RAT-SPNs, as employed for anomaly detection
and classification under missing inputs, two scenarios on
which current deep architectures fall short [34, 10].

4.1 GENERATIVE LEARNING: RAT-SPNs ARE
COMPARABLE TO STATE-OF-THE-ART

For the generative setting, we evaluated RAT-SPNs on
20 benchmark datasets, commonly used to compare
SPN learners [20]. The main objective in this experi-
ment is not necessarily to yield new state-of-the-art log-
likelihoods on these datasets. Rather, we aim to investi-
gate to which extent sophisticated SPN learning schemes
are actually able to significantly improve over our simple
approach, using random over-parametrized SPN.

To this end, we compared RAT-SPNs; LearnSPN [20],
the most prominent SPN structure learner; LearnSPN-
RGVS [16], an extension to LearnSPN, which ap-
proximates the statistical tests for product nodes in a
random fashion; and OBMM [44], using LearnSPN-
like randomly generated structures and Bayesian pa-
rameter learning.’ Consequently, we compared RAT-
SPNs against full structure learning (LearnSPN), a
randomly-flavored variant (LearnSPN-RGVS), and ran-
dom structure with sophisticated parameter learning
(RandSPN+OBMM). Additionally, we report state-of-
the-art log-likelihood as achieved by ID-SPN [46] for
structure learning, MADEs with 8 variable orderings

30BMM is the only other approach, which also employs
random structures. However, it does not compile to compu-
tation graphs and does not make use of deep neural learning
techniques.

Table 1: Average test log-likelihoods on 20 datasets.
Best results for each dataset are in bold (within SPN
learners using single-dimensional leaves). Within the
group LearnSPN/RAT-SPN/ID-SPN, results which are
not significantly worse than the best, are marked with o.

LearnSPN RGVS OBMM RAT—SPN‘ ID-SPNH MADE VAE
nltcs -6.11  -637 -6.07  0-6.01| o0-6.02|| -6.04 -599
msnbc -6.11  -6.11  -6.03  0-6.04| 0-6.04|| -6.06 -6.09
kdd-2k 0-2.18 - 214 0-213| o-2.13|| -2.07 -2.12
plants 1299 -16.78 -15.14  -13.44| -12.54|| -12.32 -12.34
jester 53.48 -54.97 -53.86 0-52.97| 0-52.86|| -52.23 -51.54
audio 0-40.50 -41.94 -40.70 ©0-39.96| 0-39.79|| -38.95 -38.67
netflix -57.328 -59.84 -57.99 -56.85| -56.36|| -55.16 -54.73
accid. 30.04 -40.23 -42.66 -35.49| -26.98|| -26.42 -29.11
retail o-11.04 -11.34 -11.42 0-10.91| o-10.85|| -10.81 -10.83
pumsb. -24.78 -42.42 -45.27 -32.53|  -2241 -22.3 -25.16
dna -82.52 -99.27 -99.61 -97.23|  -81.211| -82.77 -94.56
kosarek  0-10.99 -11.49 -11.22 0-10.89| o0-10.6 - -10.64
msweb -10.25 -11.00 -11.33 -10.12 -9.73|| -9.59 -9.727
book 0-35.89 -35.67 -3555 0-34.68| o-34.14| -33.95 -33.19
emovie 0-52.49 -64.46 -59.50  -53.63| o-51.51 -48.7 -47.43
web-kb 0-158.204 -167.55 -165.57 0-157.53|0-151.84(|-149.59 -146.9
reut.52 0-85.07 -97.27 -108.01 0-87.37| 0-83.35|| -82.80 -81.33
20ng -155.93 — -158.01 -152.06| -151.47(|-153.18 -146.9
bbc 0-250.69 -269.03 -275.43 0-252.14|0-248.93||-242.40 -240.94
ad 0-19.73 -57.55 -63.81 -48.47| 0-19.05|| -13.65 -18.81

[21] and VAEs with 5 importance weighted samples [6].
IDSPN additionally uses SPN leaves with direct variable
interactions, and MADEs and VAEs are more flexible
density representations which, however, facilitate only
sampling and evaluating (a lower bound of) the density.

We cross-validated the split-depth D € {1,2,3,4} and
the number of sum-weights Ws € {103, 10, 10°}. In or-
der to yield a particular Ws, we used (1) to select appro-
priate values for R, S and /. These values were picked a-
priori such that they were roughly balanced and approx-
imately yielded a targeted Ws (see supplementary), but
not tuned to the validation set. We used soft EM for 100
epochs and used early stopping for regularization. No
dropout was applied in the generative case.

Average test log-likelihoods are presented in Tab. 1. The
largest log-likelihood among direct competitors is in bold
for each dataset. We furthermore tested for statistical
significance within the group RAT-SPN, LearnSPN, and
ID-SPN* where we denote with o results which are not
significantly worse than the best one (according to a two-
sample t-test, p = 0.05).

The results in Tab. 1 are surprising, as the log-likelihoods
of RAT-SPN are often close to the ones of ID-SPN. In
fact, ID-SPN is significantly better than RAT-SPN on
only 7 out of 20 datasets. Moreover, RAT-SPNs are only
on 5 datasets more than 5% worse, relative to ID-SPN.
Given that RAT-SPNs do not use any structure learn-
ing at all, while ID-SPN is a highly sophisticated struc-

“For RGVS, CCCP, and OBMM, we unfortunately had no
sample-wise results, so no significance test could be conducted.



dataset domain C  #feat. #train #val. #test
mnist image 10 784 54k 6k 10k
f-mnist image 10 784 54k 6k 10k
imdb text 2 200 20k Sk 25k
theorem logic 6 51 3670 1224 1224
20ng text 20 50 13568 1508 3770
higgs physics 2 28 M IM M
wine chem. 2 11 3899 1299 1299

Table 2: Overview of classification datasets.

ture learner, the difference is indeed surprisingly small.
On three datasets RAT-SPNs even perform better than
ID-SPN, although not significantly. Moreover, RAT-
SPNs almost consistently outperform OBMM, except on
’msnbe’. On 8 datasets, OBMM performs more than 5%
worse, relative to RAT-SPNs. Given that OBMM is the
only other approach using random structures, we find
that RAT-SPNss establish state-of-the-art for SPNs with
random structures. One should note, that this compari-
son to OBMM is not entirely fair, since RAT-SPNs ex-
plore much larger structures, and are also not restricted
to trees. However, our hypothesis for this paper was that
overparameterized SPNs with simple parameter learning
deliver satisfying results. We find that the results in Ta-
ble 1 confirm this hypothesis.

4.2 DISCRIMINATIVE LEARNING: RAT-SPNs
ARE COMPETITIVE WITH NEURAL NETS

Next, we evaluated the discriminative performance of
RAT-SPNs. This time, the natural competitors are deep
neural networks, as discriminative structure learning for
SPNs has been largely unexplored so far. To this end, we
apply RAT-SPNs to 7 classification tasks from various
domains. Tab. 2 summarizes the characteristics of these
datasets. See supplementary for additional details.

Due to their random nature, RAT-SPNs are domain ag-
nostic, i.e. they do not have an inductive bias tailored to-
wards any particular type of data, as opposed to e.g. con-
volutional neural networks for images. Clearly, incor-
porating convolutional structures in SPNs would be ad-
vantageous for ‘mnist’ and ’fashion-mnist’, as demon-
strated in [48, 8]. However, the model-agnostic character
of RAT-SPNs allows their use in a wider range of prob-
lems, and in particular their performance would not de-
grade if the pixels of ’(fashion-)mnist’ were scrambled.
As input distributions we used Gaussians with variance
fixed to 1.

We compared RAT-SPNs to multi-layer perceptrons
(MLPs) with rectified linear units, trained MLPs in two
variants, namely a standard variant using only dropout
(MLPd) — like in RAT-SPNs — and a variant (MLP+) also

dataset GMM RAT-SPN MLPd ‘ MLP+
mnist 97.37 098.29 98.05 | 098.52
f-mnist 88.08 89.43 89.89 90.63
imdb 075.65 075.90 07572 | 075.83
theorem 055.64 05547 057.76 | 056.21
20ng 47.61 048.49 04849 | 048.97
higgs 74.14 73.82 76.36 76.45
wine 077.21 077.14  077.83 | 079.45

Table 3: Test classification accuracy, best values among
GMM, RAT-SPN, and MLPd in bold. Results which are
not significantly different (according to McNemar’s test)
from the best are denoted by o.

employing Xavier-initialization [22] and batch normal-
ization [25]. The latter includes two additional training
techniques, which have evolved over decades, while sim-
ilar techniques for RAT-SPNSs are not yet available. Thus,
MLPd might serve as a fairer comparison to RAT-SPNs.

For both RAT-SPNs and MLPs, we cross-validated the
“depth” (number of hidden layers for MLPs, and split-
depth D for RAT-SPNs), and the “width” (number of
hidden units for MLPs, and parameters R, S and I for
RAT-SPNs). Thereby, we first selected suitable ranges
for the MLP’s hyper-parameters and then matched the
sizes of the RAT-SPN. Thus, the comparison is fair in
terms of considered depth and number of model param-
eters. The complete hyperparameter configurations are
reported in the supplementary.

All models were trained for 200 epochs, optimizing
cross-entropy using Adam in its default setting and a
batchsize of 100. For regularization, we applied early
stopping and dropout-rates {0.25,0.5,0.75,1.0}, inde-
pendently for inputs and hidden layers/sum layers. For
“higgs’, we only trained one epoch due to the large num-
ber of samples, i.e. we effectively considered an on-
line setting. We further compared to Gaussian mixture
models (GMMs) with a massive number of components,
namely 1000, 2000, 4000, and 8000. In this way, GMMs
provide a “shallow” classification baseline for SPNs. The
number of components was cross-validated as well as the
dropout-rates at the inputs — dropout was applied in sim-
ilar fashion as for RAT-SPNs. For the covariance matri-
ces, we used the unity matrix.

Tab. 3 summarizes the classification performances on
the test sets. We see that RAT-SPNs compare well to
MLPd. Out of the 7 dataset, RAT-SPNs win 2 times
against MLPd and have one draw (the number of correct
examples for 20ng was indeed exactly the same). More-
over, RAT-SPNs are only twice significantly worse than
MLP+. We see that GMMs tend to perform slightly bet-
ter than RAT-SPNs on datasets with few variables. On
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Figure 1: Classification accuracy of hybrid RAT-SPNs
and MLP+ over percentage p of missing inputs, on mnist
(top) and fashion-mnist (bottom). For better readability,
only the accuracy range 50%-100% (resp. 60%-100%)
is shown for mnist (resp. fashion-mnist).

the datasets with many variables, however, RAT-SPNs
perform considerably better. This is consistent with the
well-known fact that GMMs do not scale well to high-
dimensional spaces. Overall, we see that RAT-SPNs
deliver decent classifiers when trained discriminatively.
So far, most works on discriminative parameter estima-
tion for SPNs were tailored to images, exploiting either
powerful pre-extracted features [19] or using specialized
structures [48, 3]. Our results are the first, which inves-
tigate the effectiveness of SPNs when trained end-to-end
using entirely random structures. We do not only scale
SPN training to the regime of deep neural learning, but
also demonstrate it to be competitive with deep networks.

Howeyver, as shown next, RAT-SPNs have several advan-
tages over deep neural networks, due to the fact that they
represent a tractable full joint distribution over both in-
puts X and class Y. Since a purely discriminative model,
i.e. optimized only for cross-entropy, is not RAT-SPNs
are not encouraged to capture the distribution over inputs
X well, we performed hybrid generative-discriminative
post-training on our RAT-SPN classifiers. Specifically,
we applied Adam for 20 additional epochs, optimizing
the hybrid objective (5) for various setting of 0 < A < 1.
For X close to 0, we get higher test-likelihoods and lower
classification accuracies (generative flavor) than for A
close to 1 (discriminative flavor). This trade-off, illus-
trated in the supplementary, is consistent with literature
on hybrid generative-discriminative learning [39, 47].

4.3 RAT-SPNs ARE ROBUST UNDER MISSING
FEATURES

When input features in X are missing at random, we ide-
ally want to marginalize them [31]. As SPNs allow effi-

Figure 2: Examples of outliers (respective top row) and
inliers (respective bottom row) for 'mnist’ and ’fashion-
mnist’, for each class. Samples in the left column were
classified correctly, while samples in the right columns
were classified incorrectly.

cient marginalization, they should be robust under miss-
ing features, especially for smaller A (more generative
character). To this end, we discard pixels with probabil-
ity p in the test samples for mnist and fashion mnist and
classify them using RAT-SPNs. Note that marginalizing
missing features amounts to probabilistic dropout used
during training, i.e. simply setting corresponding input
distributions to 1. Similarly, we might expect MLPs
to perform robustly under missing features, by applying
(classical) dropout during test time. Alternatively, miss-
ing data can be treated with e.g. k-nearest neighbor im-
putation. This, however, requires one to store the whole
training set and to solve an expensive nearest neighbor
search for each test sample.

Fig. 1 summarizes the classification results when vary-
ing the fraction of missing features p between 0.0 and
0.99. As one can see, RAT-SPNs are more robust than
MLP+ using dropout. This effect becomes stronger with
smaller A, i.e. for models with a “more generative fla-
vor”. A particularly interesting choice is A = 0.2: here
the corresponding RAT-SPN starts with an accuracy of
97.61% for no missing features and degrades very grace-
fully: for a large fraction of missing features (> 60%)
the advantage over MLP+ is dramatic.

4.4 RAT-SPNs KNOW WHAT THEY DON’T
KNOW

Besides being robust under missing features, an impor-
tant feature of (hybrid) generative models is that they
are naturally able to detect outliers and peculiarities by
monitoring the marginal likelihood over inputs X. Our
aim in this section is to demonstrate that RAT-SPNs read-
ily provide well-calibrated uncertainties for this purpose.
We first focus on classification, where the marginal like-
lihood of RAT-SPNs offer a principled outlier signal, un-
like deep neural classifiers. Second, we investigate the
ability of RAT-SPNs to perform anomaly detection on
certain image datasets, which have recently been identi-
fied as being problematic cases for deep generative mod-
els [34, 10].
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Figure 3: Histograms of test log-likelihoods for *mnist’,
’svhn’ and ’semeion’ data for RAT-SPN (top) and cor-
responding computations performed for MLP+ (“mock-
likelihood”) (bottom). Both models were trained on
’mnist’. The likelihoods of RAT-SPNs yield a strong sig-
nal whether a sample is in-domain or out-of-domain.

For the classification setting, we evaluated the marginal
likelihoods on the test set for both mnist” and ’fashion-
mnist’, using the respective RAT-SPN post-trained with
A = 0.2. For illustrative purposes, we divided the test
samples into correctly and incorrectly classified ones.
From both groups, we selected two examples for each
class, namely the one with the lowest input probabil-
ity (outlier) and the one with the highest input prob-
ability (inlier). This yielded 4 groups of 10 samples
each: outlier/correct, outlier/incorrect, inlier/correct, in-
lier/incorrect. These samples are shown in Fig. 2 (a
higher resolution version is provided in the supplemen-
tary).

Albeit qualitative, these results are interesting: For
’mnist’, one can visually confirm that the outlier digits
are indeed peculiar, both the correctly and the incorrectly
classified ones. For instance, in the outlier/incorrect
group the 0’ and ’3’ have been apparently cut off dur-
ing pre-processing, and the ’6’ is not recognizable for
humans. In the inlier/incorrect group we have rather am-
biguous examples, which seems to be the major cause
of misclassification. This is reflected by the fact that the
predictive uncertainty (cross-entropy of the class distri-
bution) was highest in this group, and that in 8 out of 10
cases the correct class had the second highest probability
(see supplementary). Similar results hold for ’fashion-
mnist’.

For a more quantitative analysis, we used a variant of
transfer testing proposed by Bradshaw et al. [5]. This
technique is quite simple: we feed a classifier trained on
one domain (e.g. 'mnist’) with examples from a related
but different domain, e.g. street view house numbers
(’svhn’) [35] or the handwritten digits of ’semeion’ [7],
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Figure 4: Histograms the log-likelihoods of RAT-SPNs
on the native data set (blue: train, orange: test) and
out-of-domain (ood) data set (green). Top: Native
data ’fashion-mnist’, out-of-domain data 'mnist’. Bot-
tom: Native data ’cifar10’, out-of-domain data ’svhn’.
Cf. Fig. 2 in [34] for results for VAEs and GLOW.

converted to “mnist” format (28 x 28 pixels, grey scale).
While we would expect that most classifiers perform
poorly in such setting, an Al system should be aware that
it is confronted with out-of-domain data. While Brad-
shaw et al. applied this technique to output uncertainties,
it is clearly also applicable to input uncertainties, i.e. the
marginal probability of features X.

Fig. 3(top) shows histograms of the log-probabilities
over inputs for the RAT-SPN post-trained with A =
0.2, when fed with ’mnist’ test data (in-domain),
’svhn’ test data (out-of-domain) and ’semeion’ (out-of-
domain). The likelihood histograms provide a strong sig-
nal whether a sample comes from in-domain or out-of-
domain. In fact, the samples from 'mnist’ and ’semeion’
can be perfectly discriminated, i.e. the highest input
probability in ’semeion’ is smaller than the lowest input
probability in *mnist’. The samples of *'mnist’ and ’svhn’
overlap by less than 1%. Consequently, RAT-SPNs — and
other tractable joint probability models — have an extra
communication channel to inform us whether we ought
to trust their predictions.

However, a potential caveat might be: Does this result in-
deed stem from the fact that we model a full joint distri-
bution, or merely from the fact that we average outputs of
a classifier?® Thus, as a sanity check, we performed the
likewise computations in the trained MLP+. One might
suspect that the result, although not interpretable as log-
probability, still yields a decent signal to detect outliers.
In need of a name for this exotic quantity, we name it

3 Assuming uniform class prior, marginalizing the class vari-
able from the RAT-SPN corresponds to averaging its outputs.



mock-likelihood. Fig. 3(bottom) shows histograms of
this mock-likelihood: although more spread, histograms
for out-of-domain data are highly overlapping and do not
yield a clear signal for out-of-domain vs. in-domain.

We apply a similar line of reasoning for outlier detection
in the generative case, and investigated if RAT-SPNs are
susceptible to the “likelihood mirage” affecting several
deep generative models such as VAEs, ARDEs and NFs:
In [10, 34], it has recently been noted that samples from
certain test image datasets are not only hard to be rec-
ognized as out-of-domain, but are consistently deemed
to be even more likely than in-domain samples. In [34]
this effect has been reported for VAEs, PixelCNNs [52],
GLOW [27] for image data that is clearly — at least for
humans — very different from the target test. This be-
havior is quite unexpected, since VAEs, PixelCNNs and
GLOW - in contrast to MLP classifiers — are generative
models and trained to maximise the likelihood over fea-
tures X. Note that likelihood has classically been con-
sidered a proper score for anomaly detection [9, 23].

We replicate the experimental setting of [34] by training
a generative RAT-SPN on the training sets of ’fashion-
mnist’ and ’cifar10’. We then evaluate the likelihood of
in-domain test samples (belonging to the same dataset)
and of out-of-domain samples coming from "mnist” and
’svhn’, respectively. Fig. 4 reports the histogram of the
log-likelihoods RAT-SPNs used to score train and test in-
domain and out-of-domain samples for ’fashion-mnist’
— “mnist’ (top) and ’cifar10” — ’svhn’ (bottom).

Differently from VAE, PixelCNN and GLOW (cf. [34]
for corresponding plots), RAT-SPNs are not assigning
higher likelihoods to out-of-domain samples and clearly
discriminate among inliers and outliers. This is evi-
dent for mnist’ against 'fashion-mnist’ and slightly less
prominent in the other case where ’svhn’ likelihood his-
togram overlaps slightly more with ’cifar10’ ones. In any
case, this clearly highlights the ability of RAT-SPNs to
properly calibrate uncertainties when compared to cur-
rent deep generative models based on neural networks,
which fall prey to the “likelihood mirage”.

S CONCLUSION

We have proposed a simple approach to employ SPNs for
deep learning, and demonstrated that tractable models
like SPNs can get surprisingly far even without sophis-
ticated structure learning. Specifically, our simple and
scalable approach to construct a random but valid SPN
structure, tensorize it, and combine it with simple train-
ing mechanisms like soft EM or Adam delivers results
comparable to state-of-the-art, both in the generative and
the discriminative setting. This represents a tremendous

simplification of learning SPNs and in turn paves the way
to a wider use of tractable probabilistic models in the
deep learning community.

By implementing RAT-SPNSs in Tensorflow, we automat-
ically make use of GPU computations leading to con-
siderable speed-ups compared to traditional SPN learn-
ing on CPUs. For example, one epoch on 'mnist’ takes
roughly a minute for a RAT-SPN with depth 2 and 1.2M
parameters, using a GTX 1080Ti. This is a speedup of
45X compared to a single CPU. However, a compara-
ble MLP with 1.2M parameters only needs slightly more
than 1 sec/epoch. This is not surprising, as MLPs rely on
highly parallelized matrix multiplications and efficient
non-linearities. On the other hand, RAT-SPNs bring en-
hanced sparsity in the weight matrix to establish consis-
tency across any marginals and, therefore, make the com-
putation less efficient on GPUs. Moreover, they employ
expensive log-sum-exp computations, used to avoid nu-
merical underflow. To speed-up RAT-SPNs, one can ap-
proximate them in each region with a sparsified variant.
This avoids to generate all cross-products reducing the
number of operands involved. One could also perform
operations in the linear domain, together with a smart
rescaling approach to avoid numerical underflow. Fur-
thermore, we are currently investigating approaches us-
ing specialized hardware such as FPGAs for SPNs.

Overall, the ideas and results presented in this paper are
promising directions for probabilistic deep learning. As
demonstrated, SPNs are capable connectionist models
with additional advantages like calibrated anomaly de-
tection, treatment of missing features, or most impor-
tantly, the power of tractable probabilistic inference. Ex-
ploring these feature jointly with deep neural networks,
e.g. as calibrated loss layers, is the perhaps the most
promising avenue for future work.
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