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Abstract

Periodicity is often studied in timeseries mod-
elling with autoregressive methods but is less
popular in the kernel literature, particularly
for multi-dimensional problems such as in tex-
tures, crystallography, quantum mechanics, and
robotics. Large datasets often make modelling
periodicity untenable for otherwise powerful
non-parametric methods like Gaussian Pro-
cesses (GPs) which typically incur an O(N3)
computational cost, while approximate feature
methods are impeded by their approximate ac-
curacy. We introduce a method that efficiently
decomposes multi-dimensional periodic kernels
into a set of basis functions by exploiting multi-
variate Fourier series. Termed Index Set Fourier
Series Features (ISFSF), we show that our ap-
proximation produces significantly less gener-
alisation error than alternative approximations
such as those based on random and determin-
istic Fourier features on regression problems
with periodic data.

1 INTRODUCTION

The phenomena of periodicity permeates a vast number
of natural and artificial processes [9, 16, 4]. However, it
is rare to come across its enquiry in machine learning and
more specifically with regard to periodic kernels, kernel
methods on manifolds, and their feature-space approxima-
tions. Almost all existing work focuses on non-parametric
full-kernel methods. Although non-parametric methods
[45] are exceptionally flexible methods for statistical mod-
elling, they inherently lack scalability. A particular non-
parametric method using kernel functions, is the GP [36].

However, the inability to truly scale GP inference to
large datasets is a major limitation of such methods.

While there have been various efforts to approximate
GPs with lower rank solutions based on inducing points
[40, 17] these methods are still constrained by their data-
dependence. Inspired by the applicability of feature-space
kernels for scalable GP regression [23] we note the real-
world significance of effective periodic kernel represen-
tations for tasks such as texture in-painting [48], pre-
dictive representations of infinitely periodic crystal lat-
tices and machine-learning aided discovery of materials
[32, 37, 11], and in robotics for problems involving pe-
riodic systems [30, 10]. Scalable multivariate periodic
kernel approximations, unaddressed in the literature, mo-
tivates the main contribution of this paper.

Specifically, in our contributions we provide:

• Fourier series approximations of multivariate station-
ary periodic kernels with an efficient sparse construc-
tion; and

• a general bound for the cardinality of the resulting
full and sparse feature sets as well as an upper bound
to the truncation error for the multivariate feature
approximation.

We compare in detail the proposed method against recent
state-of-the-art kernel approximations in terms of both the
kernel approximation and, more importantly, predictive
generalisation error. Empirical results on real datasets and
robot simulations further demonstrate that deterministic
index set based features provide significantly improved
convergence generalisation properties by reducing both
the data samples and the number of features required for
equivalently accurate predictions.

2 RELATED WORK

While much work has been done for data-independent ker-
nel approximations such as RFFs, as opposed to Nyström
[46, 14], there is limited work on such approximations of



periodic kernels. Two recent works [41, 42] explore ap-
proximations for periodic kernels in univariate timeseries
where some response varies periodically with respect to
time. However, it is not clear how to tractably generalise
such decompositions into multiple dimensions where the
response varies periodically as a function of multiple in-
puts.

The work of [33, 34] termed Random Fourier Features
(RFFs) is the idea of explicit data-independent feature
maps using ideas from harmonic analysis and sketch-
ing theory. By approximating kernels these maps allow
scalable inference with simple linear models. Various
approximations to different kernels have followed and
include polynomial kernels [31, 29], dot-product ker-
nels [21], histogram and γ-homogenous kernels [25, 44],
and approximations based upon the so-called triple-spin
[6, 24, 50, 12], operator-valued kernels [5].

A recent work of note, quasi-Monte Carlo features (QMC)
[49], uses deterministic sequences on the hypercube to
approximate shift invariant kernels. In [42], the key idea is
that periodic kernels can be harmonically decomposed in a
deterministic manner using Fourier series decompositions.
However, while tractable in the univariate case, it is not
immediately extensible to multiple dimensions due to
exponential complexity in the number of approximating
coefficients.

Connected to our index set based features are quadra-
ture rule based kernel approximations. Often based on
grid based solutions, these similarly have exponential de-
pendencies on the input dimension [8, 28, 27] which are
countered to some extent via other assumptions such as
additivity [28]. Also, works on quadrature are explored
only for very specific families of kernels (sub-Gaussian,
Gaussian) and explore numerical optimizations therein
(e.g. butterfly algorithm, structured matrices). Our work
is further distinct in that we explore the use of the feature
set for parametric Bayesian modelling (regression) in lin-
ear feature space as opposed to the non-parametric form
in kernel space. ISFSF are specifically constructed for the
space of periodic kernels in the sense of the data lying on
some manifold rather than requiring an explicit warping
of the input data using standard aperiodic kernels; this
has not been investigated previously in the multivariate
case. ISFSF can naturally be seen as using an unweighted
quadrature scheme, akin to MC and QMC Fourier Fea-
tures. Thus, our sparse feature construction would directly
benefit from quadrature rules applied to periodic spaces
[19, 22, 18] however this is not the focus of our study in
this paper and deserves future independent investigation.

We compare our body of work with the highy perform-
ing Halton and generalised Halton sequence [35]. We
also stress that our method is inherently different from

methods such as the Spectral Mixture kernel [47] which
operate in the full kernel space. Our goal is to represent
kernels for inference in a fashion similar to Sparse Spec-
tral Gaussian Processes [23] which make them further
amenable to Bayesian inference in streaming domains
under hard computational constraints such as in robotics
[13]. Specifically we may perform inference in O(NM2)
time for M features where M � N .

3 PRELIMINARIES

Notation. Let R represent the set of real numbers, Z
the set of integers, Z+

0 the set of non-negative integers,
and N+ the set of positive integers. For any arbitrary set
Y 6= ∅, let YD be its Cartesian product Y×...×Y repeated
D-times where D ≥ 1, D ∈ N. Let TD := [a, b]D repre-
sent the D-dimensional torus, or the circle with D = 1.
Throughout this paper,D represents the spatial dimension
and R ∈ Z+

0 is the maximum refinement. The refinement
may be interpreted as the multidimensional set of integers
that support the the fundamental frequency in the Fourier
series expansion for each dimension. In the next section
we introduce univariate Fourier series with an illustra-
tive example for deriving an expansion for a univariate
periodic kernel.

3.1 UNIVARIATE FOURIER SERIES FOR
KERNELS

We demonstrate first how one constructs a stationary pe-
riodic kernel with its corresponding Fourier series de-
composition. This step is crucial because it is required
to obtain Fourier series coefficients corresponding to the
kernel being approximated. It is possible to construct a
periodic kernel from any stationary kernel by applying
the warping u(x) = [cos(x), sin(x)] to data x and then
passing the result into any standard stationary kernel[26].
By performing the warping to a stationary kernel with the
general squared distance metric ‖x− x′‖2 and replacing
x with u(x) we have:

‖u(x)− u(x′)‖2

= (sin(x)− sin(x′))2 + (cos(x)− cos(x′))2

= 2(1− cos(x− x′)).
(1)

Example. Consider the well known Squared Exponen-
tial (SE) kernel [36] κSE(x− x′) = exp

(
− ‖x−x

′‖2
2l2

)
with lengthscale l. After performing (1) we recover the
periodic SE kernel: κperSE(x, x′) = exp

(
− cos(wτ)−1

l2

)
,

where τ = x − x′ and ω is the fundamental periodic
frequency.

Firstly, κperSE is both periodic and symmetric over τ .
Since it is periodic, the kernel can be represented as a



Fourier Series over the interval [−L,L] where L is the
half period ω = π

L is the fundamental frequency. Note
the Fourier series representation of some function:

f(t) ≈ Fk[f(t)] =

∞∑
k=−∞

cke
ikωt, (2)

with coefficients

c0 =
1

2L

∫ L

−L
f(t)dt, (3)

ck =
1

2L

∫ L

−L
f(t)e−ikωtdt, ∀k ∈ N+. (4)

This reduces to a series of cosines from (2) for even func-
tions, such as stationary periodic kernels. The Fourier
series is defined at integer multiples k of the fundamental
periodic frequency ω where k ∈ N+. To find the kth

coefficient ck, we evaluate the integral:

ck =
1

2L

∫ L

−L
el
−2(cos(ωτ)−1)e−ikωτdτ

=
e−l
−2

2L

∫ L

−L
el
−2(cos(ωτ)) cos(kωτ)dτ

=
2πIk(l−2)

el−2 ,

(5)

using substitution ω = π
L , L = π, where In(z) is the

Modified Bessel function of the first kind of integer order
n and argument z. We obtain the solution using the special
function identity In(z) = 1

π

∫ π
0
ez cos(θ) cos(nθ)dθ [1]

which collapses the integral.

We now have a representation of the kernel as an infinite
Fourier series κ(τ) ≈ Fk[κ(τ)]:

κperSE(τ) = Fk[κ(τ)] =

∞∑
k=−∞

Ik(l−2)

exp(l−2)
cos(kωτ).

(6)
Thus, for the periodic SE kernel, we have Fourier series
feature coefficients q2

k,

q2
k =


Ik(l−2)
exp(l−2) if k = 0,
2Ik(l−2)
exp(l−2) if k = 1, 2, ...,K,

(7)

where K is the truncation factor of the Fourier series, I
is the modified Bessel function of the first kind. These
coefficients q2

k are used on a per-dimension basis for the
multivariate feature construction.

3.2 FOURIER SERIES IN MULTIPLE
DIMENSIONS

Our goal is to represent multi-dimensional periodic ker-
nels. In the space of the full kernel, such a composition

can be represented as a product ofD independent periodic
kernels on each dimension since is known that product
compositions in the space of the kernel have an equivalent
cartesian product operation in the feature space [39]. We
have various results from harmonic theory on weighted
subspaces of the Wiener algebra [3, 20] which allow us
to use sparse sampling grids (i.e. index sets) to efficiently
represent multivariate periodic kernels. That is to say,
if we have functions with Fourier series coefficients that
decay sufficiently fast, we can obtain sufficiently accurate
approximations with vastly less terms.

Consider a sufficiently smooth multivariate periodic func-
tion f : TD → C, D ∈ N+. A function f can formally
be represented as its multivariate Fourier series:

f(x) =
∑
k∈ZD

f̂ke
2πjk·x, (8)

with its Fourier series coefficients f̂k,k ∈ ZD defined as
f̂k :=

∫
TD f(x)e2πjk·xdx. In essence this results in a

tensor product of univariate Fourier series. Let ΠI denote
the space of all multivariate trigonometric polynomials
supported on some arbitrary index set I ⊂ ZD, which is
a finite set of integer vectors. We denote the cardinality
of the set I as |I|. Practically, we are interested in a good
approximating Fourier partial sum SIf ∈ ΠI supported
on some suitable index set I. One may think of index
sets as a multi-dimensional indicator variable. In order to
construct such an index set we must have a construction
rule or weight function w which tells us which index set
coordinates to discard.

More formally, we define weighted function spaces of
the Wiener algebra: Aw(TD) := {f ∈ L1(TD) :∑
k∈ZD f̂ke

2πjk·x,
∑
k∈ZD w(k)

∣∣∣f̂k∣∣∣ < ∞} where we

assume the function f is in the function space Lp(TD) :=
{f : TD → C

∫
TD
∣∣f(x)

∣∣p dx < ∞} with 1 ≤ p ≤ ∞,
and we define a weight function w : ZD → [1,∞], which
characterises the decay of Fourier coefficients f̂k of all
functions f ∈ Aw(TD) such that f̂k decreases faster than
the weight function in terms of k. That is to say that the
decay of the coefficients defines the smoothness of the
function f we are approximating with a partial sum. In
the next section we will introduce explicit index sets with
their corresponding weight function.

3.3 INDEX SETS

While a naive multivariate Fourier series expansion of a
univariate Fourier series appears plausible, for explicit
tensor products the cardinality grows exponentially fast in
dimension D and is therefore computationally intractable
in terms of cardinality of the supporting index set. This
computational burden is amplified when we consider the



Figure 1: Visualisation of two common instances of the
LPB index set in D = 2. The left image depicts a sparser
index set while the right image depicts a dense tensor
index set. Each solid square represents an index set coor-
dinate Ii = [r1, r2] for integer refinement r.

expanded representation required for the separable feature
decomposition when the products of harmonic terms of
the Fourier series themselves must be expanded into sums
of cosines. It would thus be desirable to; i) maintain high
function approximation accuracy; and ii) minimise the
total number of coefficients.

To this end we introduce a variety of D-dimensional
weighted index sets I with their formal definitions. At a
high level, one may think of an index set as a generalisa-
tion of indicator variables for multi-dimensional tensors
which mask only the most important frequencies for the
multivariate Fourier series decomposition. The reason
index sets are useful is because it is often unnecessary
to completely expand all supporting integers due to ex-
ponentially decaying coefficients of the function one is
approximating. For instance, in Figure 1, we can see two
index sets. On the right is the full tensor product index set
which is dense in the refinement R, while the left index
set has significantly fewer components. If the function we
are trying to approximate has coefficients that decay suffi-
ciently fast under the coverage of the sparser index set we
make a significant saving in the number of terms needed
to represent the function. There are various explicit index
sets [51, 15, 43, 38], and the first set we introduce is the
lp-ball (LPB), 0 < p ≤ ∞ index set ID,γ,p=1

LPB (R). This
is a generalised index set and it is constructed with the
following weight function,

wD,γLPB (k) = max
(
1, ‖k|lD,γp ‖

)
, for 0 < p ≤ ∞ (9)

with construction parameter γ = (γd)
∞
d=1 ∈ [0, 1]N

+

controlling the approximation depth for a given dimension

d, and where,

‖k|lD,γp ‖ =


( D∑
d=1

(
γ−1
d |kd|

)p)1/p

for 0 < p <∞,

max
d=1,...,D

γ−1
d |kd| for p =∞.

(10)
We also have the Energy Norm Hyperbolic Cross (ENHC)
index set ID,γ,ζENHC (R)with sparsity parameter ζ ∈ [0, 1). It
has weight function,

wD,γ,ζENHC (k) = max(1, ‖k‖1)
ζ
ζ−1

D∏
d=1

max(1, γ−1
d |kd|)

1
1−ζ .

(11)
The ENHC is more suitable for approximating functions
of dominating mixed smoothness.

4 INDEX SET FOURIER SERIES
FEATURES

The goal of our work is to show how multivariate Fourier
series representations of kernels with sparse approxima-
tion lattices allow efficient and deterministic feature de-
compositions of multivariate periodic kernels. Formally,
we define the shift invariant multivariate periodic kernel
approximation as a Fourier series expansion supported on
an arbitrary index set I:

κper(x,x
′) ≈

∑
k∈I

f̂ke
2πjk·(x−x′) = 〈Φ̂(x), Φ̂(x′)〉CM ,

(12)
for some explicit feature map Φ̂ and multivariate Fourier
series coefficients f̂k.

We now continue with our feature construction which we
term Index Set Fourier Series Features (ISFSF) and intro-
duce an additionally sparse construction feature count for
no loss of accuracy.

4.1 ISFSF FEATURE CONSTRUCTION

This section presents our main contribution for approxi-
mating multi-dimensional periodic kernels. We have seen
that simply using multivariate Fourier series is not suffi-
cient for tractable decomposition due to an exponential
tensor product in the refinement level. Using index sets for
multivariate Fourier series we present a feature construc-
tion using frequency grids, and noting that the resulting
feature admits an additionally sparse construction.

We can write the general form of the product expansion
for any particular ith index set coordinate Ii from some
index set I as:

%(Ii) =

D∏
d=1

q2
rd

cos(rdωd(xd − x′d)), (13)



Algorithm 1: ISFSF feature construction

Input :I ∈ ZD frequency index set, |I| <∞
C = |I| set cardinality (Lemma 1, 2)
J = number of rows in Ξ
x ∈ RD raw data to embed into features
Ξ ∈ RJ×D cartesian product sign matrix
ω ∈ RD fundamental frequencies

Initialize: Φ̂I ∈ R2CJ

for i := 1, ..., C: do
set Ii as the ith set coordinate
ρi =

∏D
d=1 qrd

for j := 1, ..., J: do
set Ξj as jth row of Ξ
ri =

[
r1, r2, ..., rD

]
prod = (ri � ω �Ξj)x

T

append (Φ̂I ,
√

ρi
J [cos(prod), sin(prod)])

end
end
Output :Φ̂I

where ωd is the dth dimension’s fundamental frequency,
Ii is the ith index set coordinate, and rd is the dth dimen-
sion integer refinement for a given Ii. For our feature
expansion we are interested in the data-dependent trigono-
metric term made up of a product of data-dependent
cosines. It is these that allow us to decompose the se-
ries into a sum of cosines. For this we require the prod-
uct of cosines trigonometric identity cos(u) cos(v) =
1
2 [cos(u − v) + cos(u + v)]. Applying this identity re-
cursively to (13), we obtain the following decomposable
form:

%(Ii) =
1

J

J∑
j=1

ρi cos
(
(r � ω �Ξj)∆

T
)
, (14)

with

ρi =

D∏
d=1

q2
rd
, (15)

r =
[
r1, r2, ..., rD

]
, (16)

ω =
[
ω1, ω2, ..., ωD

]
, (17)

Ξ =
[

+ 1_(+1,−1)(D−1)
]
, (18)

∆ =
[
x1 − x′1, x2 − x′2, ..., xD − x′D

]
, (19)

where J = 2(D−1) is the number of rows in Ξ, ρi refers
to the product of per-dimension Fourier series coefficients
corresponding to a given Ii, (+1,−1)(D−1) is the (D −
1)-times Cartesian combination of the ordered integer
set (+1,−1), U_Λ denotes a horizontal concatenation
between matrix U of length |Λ| and every element in
some ordered set Λ, and � refers to the element-wise

(Hadamard) product. To clarify Ξ, observe how a two
dimensional cosine product cos(A) cos(B) expands to
cos(A + B) + cos(A − B) giving Ξ =

[
+1 +1
+1 −1

]
. In

three dimensions one obtains cos(A+B+C) + cos(A+
B − C) + cos(A − B + C) + cos(A − B − C) giving

Ξ =

[
+1 +1 +1
+1 +1 −1
+1 −1 +1
+1 −1 −1

]
. Noting equation (12) and using the

relation e−jτ ·ωk = cos(ω · τ ) − j sin(ω · τ ) and the
fact that real kernels have no imaginary part, we can
exploit the cosine difference of angles identity cos(u −
v) = cos(u) cos(v)+sin(u) sin(v) to obtain the complete
decomposed feature as:

Φ̂full
I (x) =

[√ρi
J

cos
(
(ri � ω �Ξj)x

T
)
,√

ρi
J

sin
(
(ri � ω �Ξj)x

T
)]C,J
i=1,j=1

,

(20)

where x = [x1, x2, .., xD].

The feature construction algorithm is depicted explicitly
in Algorithm 1 and consists of two loops that iterate over
the index set coordinates Ii and each row of the carte-
sian combination sign matrix Ξ. The construction is
embarrassingly parallelizable and is straightforward to
implement.

It is useful to determine computational budget of the fea-
ture map and for this it is necessary to determine the
number of features in the expanded feature map. To do
this we can give the cardinality CI of the resulting de-
composed feature map Φ̂full

I (x) over index set I.
Lemma 1. Cardinality of Index Set Fourier series feature
map for some arbitrary index set I(R). Let CI =

∣∣I(R)
∣∣

be the cardinality of some given index set of refine-
ment R, and let the dimension D ∈ N+ be given. Let
C full

Φ̂
=
∣∣∣Φ̂full
I (x)

∣∣∣ denote the cardinality of the decom-
posed feature. The following holds (see supplementary
for proof): ∣∣I(R)

∣∣ ≤ ∣∣∣Φ̂full
I (x)

∣∣∣ ≤ CI2D.

4.2 SPARSE CONSTRUCTION

Although suitable, the decomposable form for the multi-
variate Fourier series features can be improved. An ideal
feature representation should not just approximate our
kernel well but should do it efficiently. For ISFSF, this
involves the data-dependent term cos(·), occurrences of
which we want to minimise. Scrutinising the product form
in (13), the term rd is an integer r ∈ Z+

0 which clearly
contains the value 0. This means that for all refinement co-
ordinates at the 0th refinement for any dimension we have



cos(0·) = 1, therefore the “feature” is simply 1 times
some data-independent coefficient. Furthermore, since
any single cos(·) term in the product (13) contributes to
a multiplier of 2 features before exponentiation due to
the trigonometric product identity recursion, we do not
unnecessarily want to include features that will simply
evaluate to a constant. We now define a masking function
κ over some function g(r) with r ∈ Z+

0 :

κ
(
g(r)

)
=

{
1 for r = 0,

g(r) otherwise.
(21)

This mask acts to identify which redundant harmonic
terms to ignore in the feature construction stage. Con-
tinuing the decomposition as in the previous section, the
sparse feature decomposition is thus:

Φ̂sparse
I (x) =

[√ρi
J
κ
(

cos
(
(ri � ω �Ξj)x

T
))
,√

ρi
J
κ
(

sin
(
(ri � ω �Ξj)x

T
))]C,J

i=1,j=1
,

(22)

We now give an improved cardinality for the decomposed
sparse ISFSF feature map. We emphasise this improved
feature map cardinality is for exactly the same reconstruct-
ing accuracy. To determine the cardinality of the sparse
feature map, let:

η(Ii) =

D∑
d=1

[
Ii 6= 0

]
, (23)

define a function that counts for a particular coordinate
Ii the non-zero indexes. Essentially, this counts which
cos(·) terms to keep, which always occur at coordinates
with per-dimension refinement not equal to 0.

Lemma 2. Cardinality of sparse Index Set feature map
for arbitrary index set I(R). Let CI =

∣∣I(R)
∣∣ be

the cardinality of some given index set of refinement
R, and let the dimension D ∈ N+ be given. Let
Csparse

Φ̂
=
∣∣∣Φ̂sparse
I (x)

∣∣∣ then denote the cardinality of the
decomposed index set Fourier series feature. The follow-
ing holds (see supplementary for proof):

∣∣I(R)
∣∣ ≤ ∣∣∣Φ̂sparse

I (x)
∣∣∣ =

|I|∑
i=1

2η(Ii) ≤
∣∣∣Φ̂full
I (x)

∣∣∣ ≤ CI2D.

4.3 MULTIVARIATE TRUNCATION ERROR

To better understand the effect of Fourier series approx-
imations on kernels we can analyse the truncation er-
ror as a function of kernel hyperparameters. We know
that the univariate truncation error [41] for k ∈ N+ is

∣∣cos(ωkτ)
∣∣ ≤ 1, and

∑∞
k=0 q

2
k = 1, since the sum of the

coefficients converges to 1. We extend this to the multi-
variate case by considering the tensor index set product
expansion. We have

∏D
d=1

∣∣cos(ωdrdτd)
∣∣ ≤ 1. Since

max(κ(τ )) = 1 we obtain the multivariate truncation
error:

ε(R, l) = 1−
D∏
d=1

[R−1∑
r=0

q2
rd

]
, (24)

where R is the refinement, l is the kernel lengthscale.
qrd refers to the approximated kernel’s Fourier coeffi-
cient at refinement index r, with subscript d referring
to evaluation on the dth dimension. A visualization of
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Figure 2: Visualisation of the multivariate truncation error,
for the periodic SE kernel, for refinements R = [0, 20],
dimensions D = {2, 12} and isotropic lengthscales ls =
{0.1, 1.0}.

the truncation error for different dimensions, for the peri-
odic Squared Exponential kernel, is presented in Figure
2. An intuitive explanation is, that with the same refine-
ment factor (and therefore the same number of features),
larger lengthscales are easier to approximate than smaller
lengthscales. This can be understood from the frequency
domain perspective in which a kernel with the smaller
lengthscale has a larger spectrum of frequencies. Our
kernel Gram approximation as well as downstream er-
ror corroborate these results - data that requires larger
lengthscales converge in predictive error faster with fewer
features.

5 EXPERIMENTS

We evaluate three aspects of our proposed periodic ker-
nel approximation with the ENHC index set. First, we
compare our approximation with the full kernel in terms
of Gram matrix reconstruction. Second, we compare our
features to state of the art approximations on large scale
real world textured image data. Next, we perform a com-
parison of predictive qualities against an analytic periodic
function in higher dimensions. Finally, we demonstrate
the kernel on predicting a periodic trajectory of various
walking robots used commonly in Reinforcement Learn-
ing and Control tasks.
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Figure 3: Reconstruction error on simulated data with
the normalised Frobenius error between Fourier Feature
methods (RFF, Hal, GHal) with periodic warpings, and
Index Set Fourier Series with various index sets. Row
1: D = 3, ls = {0.5, 1.0, 1.5}, Row 2: D = 9, ls =
{1.5, 2.0, 2.5}. ENHC with weighting γ = 2

3 for D = 9.

Figure 4: Reconstruction error on real texture datasets
using learned hyperparameters. Note how smaller length-
scales in Pores and Rubber require more features than
larger lengthscales in Tread.

5.1 QUALITY OF KERNEL APPROXIMATION

We first analyse the proposed feature in terms of the re-
construction error between a true Gram matrix K, using
the analytic periodic kernel, and its approximated Gram
matrix K̃i,j = κ̂(xi, yj). For all comparisons the met-

ric we use is the normalized Frobenius error ‖K̃−K‖F‖K‖F
using N = 4000 uniformly drawn samples from [−2, 2].
The primary comparison in Figure 3 compares the ef-
fects of various index set constructions, RFFs, QMC (Hal-
ton, Generalised Halton), and the following index sets:
Energy Norm Hyperbolic Cross (ENHC), Total Order
(TOT), Hyperbolic (HYP), and Euclidean (EUC). The
supplementary contains an extended comparison of in-
dex set parameters, dimensionality, and nuances of the
reconstruction. The first observation we can make from
Figure 3 is that for lower dimensions D ≈ 3 the best
performing features are those with the Euclidean degree
or Total order index sets. Of the index sets the Hyperbolic

and Energy Norm Hyperbolic Cross perform the worst in
particular for smaller lengthscales. Overall the index sets
all perform significantly better than the warped Fourier
Feature methods, amongst which, the original MC based
RFF performs the worst and the standard Halton sequence
appears to perform marginally better than the generalised
Halton.

As the number of dimensions increases the Total and
Euclidean index sets become intractable due to their
heavy dependency on cross-dimensional products of data-
dependent harmonic terms. Considering FF methods, the
approximation accuracy of the standard Halton sequence
falls behind even RFFs while the generalised Halton re-
mains consistently ahead. As we have seen, as the di-
mensionality increases, the Total and Euclidean index
sets have no parameterisation that allows them to scale
properly; indeed their flexibility is due entirely being a
specific instance of the LPBall index set which can give
sparser Hyperbolic index sets. On the other hand, the
ENHC can be parameterised by sparsity ζ and weighting
γ giving additional flexibility.

An interesting observation in the Frobenius norms of the
real texture datasets is the errors and the connection be-
tween the truncation error defined in 24. We can see how
the smaller lengthscales (Pores and Rubber) result in more
difficult inference in terms of number of features required
for better predictions, than larger lengthscales (Tread) -
this can be seen in the generalisation experiments in the
next section where we evaluate predictive error on an
increasing range of features.

We conjecture that the significantly improved Gram ma-
trix approximation performance of ISFSF is not just from
our deterministic construction, but also due to a large
suppression of negative covariances which we have ob-
served in reconstruction plots. This is a known issue for
RFFs with Gaussian Processes which can negatively af-
fect predictive uncertainties. An extended discourse on
this behaviour is provided in the supplementary.

5.2 GENERALISATION ERROR

We evaluate predictive performance with Root Mean
Square Error (RMSE) and Mean Negative Log Loss
(MNLL). The MNLL accounts for the model’s predic-
tive mean and uncertainty. It is defined as MNLL =
1
N

∑N
i=1

1
2 log(2πσ∗i )) +

(µ∗i−f
∗
i )2

2σ∗i
where σ∗i , µ∗i , and f∗i

are respectively the predictive standard deviation, predic-
tive mean, and true value at the ith test point. This section
demonstrates the generalisation performance of a single
multidimensional periodic kernel on image texture data.
We use images from [48] with the same 12675 train and
4225 test set pixel locations x ∈ R2. A Bayesian Linear



Figure 5: Predicted missing area for the Pores and Rubber
datasets. Left to right, each column represents predictions
made using ISFSF, RFF, and GHAL. Top to bottom, each
row represents an increasing number of features used at
49, 201, 793 respectively.
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Figure 6: Comparison of predictive RMSE and MNLL
with our method alongside Fourier Feature methods, for
increasing number of components.

Regression [2] model is used as the regression model. We
fix the hyperparameters across different kernel represen-
tations in order for the comparison to be consistent for
the same underlying kernel. Overall, for the same ker-
nel, both qualitatively and quantitatively the results show
clear advantages of ISFSF over the alternative feature
methods. The visual effect is demonstrated in in Figure 7
and empirically in Figure 5.

Textures. In both the pores and rubber datasets we can
see the RMSE and MNLL for the ISFSF based features
(using the ENHC) perform the best in all cases. The
RMSE performs exceedingly well even with only 49 fea-
tures almost equaling the performance of RFF and QMC
methods which require 794 features. In both RMSE
and MNLL, the ISFSF with 201 features outperforms
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Figure 7: Higher dimensional comparison of predictive
RMSE and MNLL with our method using the ENHC
alongside Fourier Feature methods, for increasing number
of components. We train on 8000 points from [-5,5] and
test on 4000 points.

FF based methods using 794. In the pores dataset the
generalised Halton marginally outperforms all methods
in the case of 794 features, and the Halton at 94 features.
For the tread dataset the resulting performance is interest-
ing because for all features, the RMSE performances are
alike across all methods with the ISFSF slightly outper-
forming for lower features. The asymptotic performance
of both ISFSF and Fourier feature methods are similar
and for rubber and tread become marginally worse as we
increase the feature count. This is expected because the
datasets contain small amounts of non-stationary infor-
mation which the stationary periodic RBF is unable to
completely capture. As the feature count increases, the
modelling fidelity of the approximated kernel increases
resulting in the slightly larger error.

High Dimensional Tensor Function. To analyse the
method’s efficacy in higher dimensions we perform ex-
periments on the D dimensional tensor-product func-
tion GD(x) :=

∏D
d g(xd) from [20] where the one-

dimensional function g is defined as

g(x) :=8
√

6π/(6369π − 4096)
(
4 + sgn(x mod 1)− 1

2
)

(sin(2πx)3 + sin(2πx)4)
)

(25)

In this experiment we also observe improved perfor-
mance of the ISFSF over standard Fourier Feature meth-
ods. Since we know the function is stationary, we observe
a steady convergence in predictive accuracy unlike the
non-stationary texture datasets. As we increase the di-
mensionality the predictive error degrades slightly; this is



Figure 8: "Hopper" multi-jointed robot with visualisation
of joint and robot trajectories.

Figure 9: "Ant" multi-jointed robot with visualisation of
joint and robot trajectories.

expected when we consider multivariate truncation error
which is affected by dimension.
Periodic trajectory tracking of jointed robots.
Robotics is an area in which various hardware platforms
of interest are often constructed with jointed actuators.
We demonstrate an application of multivariate periodic
kernels for periodic motion tracking in two simulated
jointed robots commonly used in Reinforcement Learning
(RL) and Control tasks [10]. We consider the problem
of regressing on the vertical trajectory of the robot as a
function of the input joints. 500 timesteps of trajectory
were collected alongside a 6 ("Hopper", Figure 8) and 16
("Ant", Figure 9) dimensional position and orientation
vector of the joints from a pre-learned policy for the
"Hopper" and "Ant" environments [7]. 300 steps were
used for training. Simulation was performed in the open
source simulator PyBullet. The results are visualized in
Figure 10. For both "Hopper" and "Ant" robots, we can
see a significant improvement of the ISFSF features over
the standard periodic kernel formulation. This is most
significant in the RMSE, and holds in the MNLL. The
early convergence of predictions suggest that ISFSFs
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Figure 10: Periodic trajectory prediction error for increas-
ing number of features on various robots.

are both better able to represent the signal as well as the
uncertainty of the prediction, as evidenced in the MNLL.
An explanation for the faster convergence of the "Ant"
task for both feature methods could be observed in the
lengthscale of the kernels used in both - "Ant" uses an
isotropic lengthscale of 13 and "Hopper" an isotropic
lengthscale of 0.5. These results suggest that ISFSF may
be used to improve policy learning in RL, as well as play
a role in improved system identification and prediction of
periodic systems.

6 CONCLUSION

Feature approximations have been a large component of
scaling kernel methods such as GPs. An important issue
with kernel approximation methods is their efficiency in
their approximation and has been a focus of more deter-
ministic construction methods. Having effective periodic
kernel approximations enables numerous applications in
various domains in a much more efficient manner. Cru-
cially, we introduce effective sparse approximation to
multivariate periodic kernels using multivariate Fourier
series with sparse index set based sampling grids for effi-
cient feature space periodic kernel decompositions. We
demonstrate experimentally on a range of datasets that our
features result in predictive models of greater accuracy
with vastly less components. Future directions include
how to construct kernel-dependent index sets as well as
direct application to learning policies for jointed robotic
systems.
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