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Abstract

We introduce a methodology for the design
of parametric mechanisms, which are multi-
agent systems inhabited by strategic agents,
with knobs that can be adjusted to achieve spe-
cific goals. We assume agents play approximate
equilibria, which we estimate using the proba-
bly approximately correct learning framework.
Under this assumption, we further learn approx-
imately optimal mechanism parameters. We do
this both theoretically, assuming a finite design
space, and heuristically, using Bayesian opti-
mization (BO). Our BO algorithm incorporates
the noise associated with modern concentra-
tion inequalities, such as Hoeffding’s, into the
underlying Gaussian process. We show experi-
mentally that our search techniques outperform
standard baselines in a stylized but rich model
of advertisement exchanges.

1 INTRODUCTION

Mechanism design is concerned with the design of multi-
agent systems that achieve certain objectives, assuming
strategic behavior on the part of the participating agents.
As mechanisms are in effect games, a standard assump-
tion is that agents exhibit equilibrium behavior.

This paper is concerned with parameterized mechanism
design, where the designer has at their disposal a parame-
terized mechanism, each parameter setting of which in-
duces a different game, and is interested in setting the
parameters so that the ensuing equilibria exhibit certain
properties. For example, an online auctioneer (the mecha-
nism designer) wishing to maximize revenue (the objec-
tive) can set reserve prices (the parameters), prices below
which a bid cannot win, to try to maximize their revenue,
assuming, for example, Nash-equilibrium bidding.

But an application domain like online auctions (e.g., ad-
vertising auctions) comes with a twist: an analytical de-
scription of the game is not available, because the game
dynamics are too complicated (e.g., users of all differ-
ent demographics are coming and going, stochastically).
Only a simulator of these so-called simulation-based [1],
or black-box [2], games is available, but simulations are
expensive. Still, the mechanism designer can query the
simulator a few times to determine the quality of the cur-
rent parameter settings, before moving on to try some
others. The question we address in this paper is: how
should a mechanism designer (e.g., an auctioneer) set pa-
rameters (e.g., reserve prices), given access only to data
(or to a simulator capable of generating data) about the
game under different settings.

A key source of the expense in most mechanism design
simulators is the internal computation characterizing the
agents’ strategic behavior. It is generally assumed that
agents’ play an equilibrium, but equilibrium computa-
tion is notoriously difficult [3]; and adding insult to in-
jury, an analytical description of these games is not avail-
able, so the games themselves must first be learned from
data. The construction of empirical games (i.e., games
learned from data) that well estimate the correspond-
ing simulation-based games, and the search for equilib-
rium within is called empirical game-theoretic analysis
(EGTA) [4, 5]. When mechanism design depends on
EGTA, it is called empirical mechanism design (EMD).

The contributions of this paper comprise a novel method-
ology for learning equilibria from data using the probably-
approximately correct (PAC) learning framework [6], and
thus contribute to the literature on EGTA. We also note
that EMD, where the parameter-induced games are acces-
sible only via a black box, is an instance of black-box op-
timization. Hence, we review standard search routines for
black-box optimization problems, such as Bayesian op-
timization [7], and then instantiate them using the piece-
wise constant noise that characterizes PAC learners. In
total, our methodology makes it possible to carry out



EMD on very rich games, at times obtaining theoretical
guarantees about the quality of the mechanisms learned.

To demonstrate, we apply our methods to two mecha-
nism design problems. First, we study a relatively simple
environment—symmetric first-price auctions—where an-
alytical solutions are available. We show that we can,
more quickly than our baselines, recover a near-revenue-
maximizing reserve price, assuming all bidders play the
unique Bayes-Nash equilibrium. Second, we study a rich
model of electronic advertisement exchanges, where bid-
ders bid for the opportunity to display advertisements to
users that arrive stochastically. This domain is much more
difficult to analyze, because an equilibrium must be com-
puted empirically. We use our novel EGTA methodology
to construct empirical games and their equilibria, and then
we wrap our search heuristics around this equilibrium
computation. We show that our inner equilibrium-finding
methodology is effective, and further that our method-
ology discovers better solutions to the outer mechanism
design problem more quickly than our baselines.

Related Work. Mechanism design is concerned with
the design of games in which the strategic behavior of
participants leads to desired outcomes. Traditional mecha-
nism design lies within the realm of game theory, itself an
area of economics. However, with the advent of strategic
autonomous agents, particularly in e-commerce settings,
there has been a surge of interest in mechanism design
within the computer science community [8, 9]. In AI, at
least two variants of mechanism design have been defined.
The first is automated mechanism design [9, 10, 11],
where a mechanism is automatically created by an al-
gorithm that searches through a space of mechanisms
constrained by standard mechanism design criteria, such
as individual rationality and incentive compatibility. The
second is EMD, where the designer is interested in op-
timizing a mechanism’s parameters relative to some ob-
jective of interest, under the assumption of equilibrium
play. One distinguishing feature of our EMD work vis à
vis the existing literature is that we formulate the search
for a mechanism’s optimal parameters as a black-box op-
timization problem, and leverage Bayesian optimization
techniques to perform the ensuing search.

2 EMPIRICAL GAME-THEORETIC
ANALYSIS

Before we tackle the mechanism design problem, we fo-
cus on a related search problem, the search for equilibria,
which is a key source of the expense in evaluating po-
tential mechanisms. Generally speaking, an equilibrium
in a game is achieved when agents’ strategies are in a
steady state; none has any incentive to deviate from their

prescribed behavior. There are many such equilibrium
concepts, one very notable one being that of Nash [12].
Nash equilibria, however, are not guaranteed to exist (in
finite games), except in mixed strategies (i.e., by allow-
ing for the possibility randomization), and mixed strategy
equilibria are notoriously difficult to compute [3].

An alternative to Nash that is easier to compute are
sink equilibria [13]. The sink equilibria are the sinks
(i.e., strongly connected components without any outgo-
ing edges) of what is called the game’s better-response
graph (BRG). This is a directed graph whose nodes are
strategy profiles (one strategy per agent), and where each
edge indicates that an agent would deviate from that node
to the one to which it points. It turns out that sink equi-
libria are not readily amenable to approximation,1 so we
take as our solution concept the larger set of all strongly
connected components (SCCs) of a game’s BRG.

We begin this section by formally defining games, better-
response graphs, and the set of SCCs as an equilibrium.
We restrict our attention to finite games (and graphs).

Definition 2.1 (Normal-Form Game). A normal-form
game Γ

.
= 〈P, {Sp}p∈P ,u(·)〉 consists of a set of agents

P , with strategy set Sp for agent p ∈ P . Let S .
= S1 ×

· · · × S|P | be the strategy profile space of Γ, and then u :

S → R|P | is a vector-valued utility function (equivalently,
a vector of |P | scalar utility functions up). Given such a
game Γ, we define its size |Γ| .= |P |

∏|P |
p=1 |Sp| .

Example 2.1. The Prisonsers’ Dilemma game and its cor-
responding better-response graph are shown in Figure 1.
Nodes are labelled by strategy profiles (e.g., CC), and
edges are labelled by color, with red (blue) corresponding
to the row (column) player.

C D
C 3, 3 0, 5
D 5, 0 1, 1

CC

DC CD

DD

Figure 1: Prisoners’ Dilemma’s better-response graph.

For the next few definitions, we fix a game Γ.

Definition 2.2 (ε-Better Response). An ε-better response
for agent p at strategy profile s is a strategy profile s∗ =
(s1, . . . , s

∗
p, . . . , s|P |) where agent p plays s∗p ∈ Sp, and

all agents other than p play sj , the strategy played by
agent j 6= p at s, such that up(s∗) + ε ≥ up(s).

1A counterexample appears in the supplemental material.



Definition 2.3 (ε-Better Response Graph). An ε-better
response graph, Bε(Γ) = (V, Eε), is a directed graph
with a node for each strategy profile s ∈ S, and an edge
(s, s′) iff s′ is an ε-better response for some agent at s.

Definition 2.4 (Strongly Connected Component). Let
G = (V,E) be a directed graph. A strongly connected
component (SCC) of G is a set of nodes U ⊆ V s.t.
∀u, v ∈ U,∃ a path from u to v, and one from v to u.

An ε-SCC equilibrium is a SCC of an ε-better response
graph. We denote by SCCε(Γ) the set of all ε-SCC equi-
libria of Γ. Similarly, an ε-sink equilibrium is a SCC of
an ε-better response graph without any outgoing edges.

Approximating Equilibria Recall that our goal is to
learn equilibria from data. To do so, we start by approxi-
mating a simulation-based game from data. But given an
approximation of one game by another, there is not neces-
sarily a connection between their equilibria. In particular,
there may be equilibria in one game with no correspond-
ing equilibria in the other, as small changes to the utility
functions can add or remove equilibria. Nonetheless,
we now show the SCC equilibria of games that are close
enough to one another are themselves close. We formalize
this idea using the concept of a uniform approximation.

Given compatible games—games with the same agents
sets P and strategy profile spaces S—with utility func-
tions u and u′, respectively, define ‖Γ− Γ′‖∞

.
=

‖u(·)− u′(·)‖∞
.
= maxp∈P,s∈S |up(s)− u′p(s)|. Now

Γ′ is said to be a uniform ε-approximation of Γ when-
ever ‖Γ− Γ′‖∞ ≤ ε. Uniform approximations bound
between utility deviations in Γ and Γ′ uniformly over all
players and strategy profiles.

Theorem 2.1 (Approximate Equilibria). Let ε > 0. If
Γ′ is a uniform approximation of Γ, then SCC0(Γ)  
SCC2ε(Γ

′) SCC4ε(Γ), where A B means that for
all A ∈ A, there exist B ∈ B, such that A ⊆ B.

We show Thm. 2.1 via a lemma concerning the edge set of
the better-responses graphs of uniform approximations.

Lemma 2.1 (ε-BRG edges containment.). Let ε > 0. If
‖Γ− Γ′‖∞ ≤ ε, then E0(Γ) ⊆ E2ε(Γ′) ⊆ E4ε(Γ).

Proof. If (s, t) ∈ E0(Γ), then there exists p such that
up(t) ≥ up(s). The following chain of reasoning then
holds: u′p(t) + ε ≥ up(t) ≥ up(s) ≥ u′p(s)− ε, where
the first and last inequalities follow from the uniform
approximation assumption. Hence, u′p(t) ≥ u′p(s) −
2ε, and thus (s, t) ∈ E2ε(Γ̃). Now, starting from the
assumption that (s, t) ∈ E2ε(Γ̃), the following chain of
reasoning also holds: up(t) + ε ≥ u′p(t) ≥ u′p(s) −
2ε ≥ (up(s) − ε) − 2ε = up(s) − 3ε. Hence, up(t) ≥
up(s)− 4ε, and thus (s, t) ∈ E4ε(Γ).

Proof of Theorem 2.1. We must show that any SCC of
B0(Γ) remains strongly connected in B2ε(Γ

′). Consider
Z ∈ B0(Γ). Since all the edges in E0(Γ) are also present
in E2ε(Γ′), it follows that any path connecting two nodes
in Z is preserved in E2ε(Γ′). Consequently, Z remains
strongly connected in B2ε(Γ

′). Similarly, any SCC of
B2ε(Γ

′) remains strongly connected in B4ε(Γ).

This theorem establishes perfect recall by the approximate
game, in the sense that the approximate game contains
all true positives: i.e., all (exact) equilibria of the original
game. It also establishes approximately perfect precision,
in the sense that all false positives in the approximate
game are approximate equilibria in the original game.

Learning Games We now move on from approximat-
ing games to estimating them with guarantees. We are
interested not only in estimating the game’s parameters,
by which we mean its utility functions; we are also inter-
ested in estimating the value of a mechanism designer’s
objective function, defined on these utilities. We use f to
refer to the designer’s objective, with f(s) denoting the
value of this objective at strategy profile s.

Definition 2.5 (Empirical Normal-Form Game). Con-
sider a black-box game Γ whose utilities may depend on
random draws over X from a distribution D . Assuming
samples X ∼ Dm, a black-box game simulator would
output u(xj , s), for each xj , based on which a mecha-
nism designer could compute f(u(xj , s)). We define the
empirical utility function ûX(s)

.
= 1

m

∑m
j=1 u(xj , s),

the corresponding empirical normal-form game Γ̂X
.
=

〈P, {Sp}p∈P , ûX(·)〉, and the empirical objective func-
tion f̂X(s)

.
= 1

m

∑m
j=1 f(u(xj , s)).

Assume that the range of f is [c−, c+] and take ∆
.
=

c+ − c−. Under these assumptions, Hoeffding’s inequal-
ity [14] upper bounds the probability that the absolute dif-
ference between the empirical and expected mean exceeds
ε as PX∼D

(∣∣∣Ex∼D [f(u(x, s))]− 1
m

m∑
j=1

f(u(xj , s))
∣∣∣ ≥

ε
)
≤ 2e−2ε2m/∆2 . To obtain a uniform guarantee, we can

apply a union bound to Hoeffding’s inequality:

Theorem 2.2 (Hoeffding Finite-Sample Uniform Conver-
gence Bounds for Designers’ Objectives). Consider a
simulator S of a game Γ whose utilities may depend on
random draws over X from a distribution D such that for
all x ∈ X and s ∈ S, it holds that f(u(x, s)) ∈ [c−, c+]
with ∆

.
= c+ − c−, and take ε .= ∆

√
ln(2|Γ|/δ)/2m. Then

PrX∼Dm

(∥∥∥fD − f̂X
∥∥∥∞ ≤ ε) ≥ 1− δ.

The exact same argument can be used to obtain uniform
convergence bounds on utilities, as well as objective func-
tion values. This theorem, and its utility counterpart, thus



establish that black-box games can be uniformly well-
approximated with high probability, and that objective
functions are likewise well-approximable.

All of these estimations can be accomplished very simply,
by simulating the game m times, and then averaging the
ensuing utilities across simulations. The requisite number
of samples m is a function of a user-specified desired
accuracy ε and failure probability δ.

Note that Hoeffding’s is one of many possible choices
of concentration inequalities that can be used learn em-
pirical games and their properties. Hoeffding requires
bounded noise, but this is not an inherent limitation of our
methodology. We could obtain similar results under var-
ied noise assumptions; e.g., we could assume (unbounded)
subgaussian or subexponential noise, and substitute the
appropriate Chernoff bounds.

3 BLACK-BOX OPTIMIZATION WITH
NOISY MEASUREMENTS

In this section, we define two generic black-box opti-
mization problems, and two corresponding algorithmic
solutions. The first algorithm is primarily of theoretical
interest; the second is heuristic, but more practical. Later,
using the fact that empirical mechanism design is an in-
stance of black-box optimization, we apply our heuristic
approach to two EMD applications.

Definition 3.1 (Optimization with noisy measurements
(OwNM)). Given a design space Θ, an objective function
F : Θ → R, a noise model D , and a measurement
operator M : Θ → PF , where PF is the space of all
possible probability distributions over the range of F ,
find θ∗ ∈ arg maxθ∈Θ F (θ).

In this paper, we are concerned with a specific form of
measurements, which produce piecewise constant uni-
form noise. This noise model is that which results from
probably approximately correct (PAC)-style guarantees
of the form, “accuracy is achieved up to additive error ε
with probability 1− δ” [6].

More formally, we assume the measurement operator
M returns F̂ (θ) along with an additive error bound ε that
holds with probability 1−δ. In other words, the algorithm
outputs a 1 − δ confidence interval [c1, c2] of width 2ε
centered at F̂ (θ). Now assuming the range of F (θ) is
[c−, c+], and letting ∆

.
= c+ − c−, we take as a sample

measurement of the pdf pF (x) the following:

p̂F (x) =


δ

∆−2ε c− ≤ x < c1
1−δ
2ε c1 ≤ x ≤ c2
δ

∆−2ε c2 < x ≤ c+
0 otherwise

, (1)

Figure 2: The Gaussian approximation of a 90% confi-
dence interval on [0.1, 0.6] where F ranges over [0, 1].

Intuitively, this distribution captures our complete igno-
rance about the value of the objective function, except that
it lies somewhere in the interval [c1, c2] with probability
1 − δ, and elsewhere with probability δ. This model is
only valid if both lower and upper bounds of the objec-
tive function are known and finite, but we use this same
information to achieve our PAC guarantees anyway.

Algorithm 1 PAC-OwNM

1: procedure PAC-OWNM(Θ, F,D , ε, δ,∆)→ (θ̂∗, F̂ (θ̂∗))
2: input: Finite design space Θ, designer’s parame-

terized black-box objective function F , distribution
D , error tolerance ε, failure probability δ, range ∆.

3: output: Maximizing parameter θ̂∗ and designer’s
approximate black-box objective value F̂ (θ̂∗).

4: m←
⌈

(∆/ε)
2 ln(2|Θ|/δ)/2

⌉
. Hoeffding bound

5: X ← Dm . Draw m samples from D
6: for θ ∈ Θ do
7: F̂ [θ]← MEASURE(θ, F,X)
8: end for
9: θ̂∗ ← arg maxθ∈Θ F̂ [θ]

10: return (θ̂∗, F̂ [θ̂∗])
11: end procedure

Exhaustive Search In the special case where the pa-
rameter space is finite and is searched exhaustively, it
is straightforward to extend PAC guarantees on multiple
independent measurements to a global guarantee across
the search space. Algorithm 1 presents such an exhaustive
search, and Theorem 3.1, which again invokes Hoeffd-
ing’s inequality, describes the guarantee it achieves.

Consider a design space Θ and an objective function F :
Θ 7→ [c−, c+], with ∆

.
= c+− c−. Let F̂1(θ), . . . , F̂m(θ)

be a sequence of m i.i.d. samples of F (θ) drawn from
distribution D . Hoeffding’s inequality [14] upper bounds
the probability that the absolute difference between the
empirical mean and its expected value exceeds ε as
PX∼D

(∣∣∣ED [F (θ)]− 1
m

∑m
j=1 F̂j(θ)

∣∣∣ ≥ ε
)
≤ 2e

−2ε2m/∆2 .



Theorem 3.1. Consider an OwNM problem s.t. θ∗ ∈
arg maxθ∈Θ F (θ), and assume the measurement noise is
uniform piecewise constant. Algorithm 1 applied to such
a problem outputs parameter θ̂∗ and value F̂ [θ̂∗] such

that
∣∣∣F (θ∗)− F̂ [θ̂∗]

∣∣∣ ≤ ε with probability at least 1− δ,

where δ =
∑
θ∈Θ 2e−2ε2m/∆2 .

Proof. Algorithm 1 explores the entire parameter space.
By applying a union bound to Hoeffding’s inequality, it
follows that all confidence intervals (CI) hold simultane-
ously, with probability 1− δ.

The algorithm then returns the maximum measurement,
namely F̂ [θ̂∗]. We can bound the difference between this
output and the optimal value F (θ)∗ as follows: −ε ≤
F (θ∗)− (F (θ̂∗) + ε) ≤ F (θ∗)− F̂ [θ̂∗] ≤ (F̂ [θ∗] + ε)−
F̂ [θ̂∗] ≤ ε. On the left, we used the CI around F̂ [θ̂∗] and
the fact that F (θ∗) is optimal; on the right, we used the CI
around F̂ [θ∗] and the fact that F̂ [θ̂∗] ≥ F̂ [θ∗]. Therefore,∣∣∣F (θ∗)− F̂ [θ̂∗]

∣∣∣ ≤ ε.
To summarize, given ε, δ, and ∆, Algorithm 1 calculates
the requisite number of samples m to ensure that the
output is accurate up to ε with probability 1− δ.

Heuristic Search Algorithm 1 exhaustively searches
the whole design space. But this is impossible for un-
countable and continuous spaces, and becomes computa-
tionally prohibitive very fast even for finite spaces. Hence,
we seek a methodology that can find a good approxima-
tion of θ∗ using limited computational resources. That is
the search problem we address presently.

Definition 3.2 (Budget-constrained optimization with
noisy measurements (BCOwNM)). Given a design space
Θ, an objective function F : Θ → R, a noise model
D , and a measurement operator M : Θ → PF , where
PF is the space of all possible probability distributions
over the range of F , approximate θ∗ ∈ arg maxθ∈Θ F (θ)
invoking M no more than some budget B ∈ N times.

Bayesian optimization (BO) is a common tool used to
solve BCOwNM problems. BO works by constructing
and maintaining a probabilistic model of the objective
function. This model is used to decide where to take the
next measurement, until the budget is exhausted.

Most implementations of BO employ a Gaussian Process
(GP) to model the uncertainty surrounding the objective
function. Technically, a GP is a collection of random vari-
ables, any finite number of which are jointly distributed by
a Gaussian [15]. BO with a GP model has been shown to
outperform state-of-the-art global optimization methods
in a number of benchmark problems (e.g., [7]).

Standard GPs can handle measurements with i.i.d. Gaus-
sian noise by adding a diagonal term to the co-variance
matrix [15]. But there is no easy way to incorporate gen-
eral noise models into GPs. We incorporate piecewise
constant uniform noise into a GP, heuristically, using the
Gaussian that best approximates p̂F (x), by minimizing
the Kullback-Leibler divergence, DKL.
Definition 3.3 (Best Approximating Gaussian). Given a
continuous (discrete) random variable x with pdf (pmf)
p, the best approximating Gaussian q∗ is one s.t. q∗(x) ∈
arg minq(x)DKL [p(x), q(x)].

The following proposition is straightforward.
Proposition 3.1. Given any distribution p̂F (x) in the
form of Equation 1, the best approximating Gaussian
has mean µ∗ = c1 and variance σ∗ = 0 when c1 = c2,
otherwise they are given by:

µ∗ =
α

2

(
c21 + c2+ − c2− − c22

)
+
β

2

(
c22 − c21

)
σ∗ =

√
α

2

(
c31 + c3+ − c3− − c23

)
+
β

3
(c32 − c31)− µ∗2

where α .
= δ

∆−2ε̂ and β .
= 1−δ

2ε̂ . It is easy to show that
µ∗ and σ∗ are precisely the mean and variance of p̂F (x).

For any valid confidence interval (i.e., one that lies com-
pletely within the range of the function F ), the square
root operand is necessarily positive, which means that
a real-valued solution always exists. The singular case
where ε̂ = 0 occurs only if c1 = c+ or c2 = c−.

There are (at least) two ways to utilize Proposition 3.1
within BO. The first is to assume Gaussian noise with
mean µ∗ and variance σ∗. This is the best possible white
noise approximation. We refer to this approach as GP-N .

One shortcoming of GP-N is that repeated measurements
at the same value of θ are likely to produce very similar
confidence intervals that do not significantly improve the
accuracy of the probabilistic model. Nonetheless, we
consider GP-N as a basline. As an alternative heuristic
approach, we assume Gaussian noise with mean µ∗ and
variance 0, thereby avoiding repeated measurements. We
refer to this approach as GP-M.

GP-M may seem incorrect as compared to GP-N , but
the width of the confidence interval is independent of θ
and known, given the mean of the GP, so it is possible to
recover the correct posterior at any point by adding to the
posterior at that point a diagonal matrix that encodes the
disregarded variance. But as we use the GP only to guide
the search, this correction is not required.

The main advantage of GP-M over the more straight-
forward GP-N approach is improved exploration. As
a second heuristic approach in this same spirit, we con-
sider a third variant, which we call GP , in which the



variance is again zero, but the mean is set to the mean of
the confidence interval, namely F̂ . This approach, while
simple and intuitive, is not the best possible Gaussian
approximation, since µ∗ need not equal F̂ .

Algorithm 2 EMD Measure

1: procedure EMD MEASURE(Γθ, f,X)→ F̂ (θ)
2: input: Parameterized black-box game Γθ, de-

signer’s objective function f , and m samples X .
3: output: Designer’s approximate black-box,

worst-case objective value F̂ (θ).
4: for p ∈ P and s ∈ Sθ do
5: ûp(s)← 1

m

∑m
j=1 up(xj , s)

6: end for
7: Γ̂θ ← 〈P,Sθ, û(·)〉
8: SCCε(Γ̂θ)← FINDSCCS(Γ̂θ, ε)
9: F̂ (θ)← min

Z∈SCCε(Γ̂θ)
min
s∈Z

f(s; Γ̂θ)

10: return F̂ (θ)
11: end procedure

4 EMPIRICAL MECHANISM DESIGN

Next, we describe how EMD can be viewed as an instance
of black-box optimization. We then proceed to apply the
aforementioned BO heuristics to two EMD applications.

Let Θ be an abstract design space over which a mecha-
nism designer is free to choose parameters θ ∈ Θ. Condi-
tioned on θ, we denote by Γθ the ensuing θ-parameterized
game where, in Definition 2.1, we augment all strate-
gies and utilities to depend on θ. We thus define Γθ

.
=

〈|P |,Sθ,uθ(·)〉, where Sθ and uθ(·) denote the depen-
dency of strategies and utilities on θ.

Overloading notation, we write f(s(θ); Γθ) to denote the
value of the designer’s objective in game Γθ at strategy
profile s(θ). In optimizing f , the designer assumes that
players will play at (or near) equilibrium. So, as θ varies,
the value of f likewise varies, as s(θ) potentially moves
from one equilibrium to another.

While solution concepts are meant to be predictive—that
is, to predict the outcome of a game—most yield sets of
equilibria, rather than unique predictions. Accordingly, a
mechanism designer often faces a choice. In this work,
we assume they choose a worst-case outcome, minimiz-
ing the value of f over the set E(Γθ) of equilibria of
Γθ. We denote this worst-case objective by FE(θ; Γθ) =
mins∈E(Γθ) f(s; Γθ). More generally, for ε ≥ 0, letting
Eε(Γθ) denote the set of equilibria of Γθ up to ε, we de-
fine FE

ε (θ; Γθ) = minZ∈Eε(Γθ) mins∈Z f(s; Γθ). (N.B.
We usually write s ∈ Sθ, suppressing the dependency of
strategies on θ, because strategies always depend on θ,
and θ is usually clear from context.)

The worst-case EMD problem is to optimize the black-
box, worst-case objective function FE(θ; Γθ). Our ap-
proach to this problem is to learn the designer’s objective
f up to some additive error ε, and then optimize the cor-
responding objective FE

ε (θ; Γθ). We now argue that this
approach is reasonable, assuming SCCs as the equilibria.

Definition 4.1 ((θ, ε)-approximable objective func-
tion). Let Γθ and Γ′θ be two θ-parameterized
games, and let f be a designer’s objective. If
maxθ∈Θ,s∈Sθ |f(s; Γθ)− f(s; Γ′θ)| ≤ ε, then we say
that the objective f is ε-approximable.

The conditions of Definition 4.1 do hold always hold.
For example, consider two simultaneous auctions with
reserve prices for two complementary goods. Here, a
small change to one reserve price could cause revenue to
drop to zero, if bidders no longer value either good.

The next theorem states that, for ε > 0, when f is ε-
approximable, a solution to the ε-worst-case EMD prob-
lem is an ε-approximate solution to the exact problem,
assuming SCC as the equilibrium.

Theorem 4.1. Let θ∗ optimize F SCC(θ; Γθ), and let θ∗ε
optimize F SCC

ε (θ; Γθ), for ε > 0. If f is ε-approximable,
then

∣∣F SCC(θ∗; Γθ)− F SCC
ε (θ∗ε ; Γθ)

∣∣ ≤ ε.
We show Theorem 4.1 via an intermediate lemma, which
shows that when f is ε-approximable, FE

ε (θ; Γ) well
approximates FE(θ; Γ), assuming E = SCC: i.e.,
FE(Γ)

.
= F SCC(θ; Γ) = minZ∈E(θ;Γ) mins∈Z f(s; Γ).

Lemma 4.1. If f is ε-approximable, then for all θ ∈ Θ,∣∣F SCC(θ; Γθ)− F SCC
ε (θ; Γ′θ)

∣∣ ≤ ε.
Proof. First, note that the strongly connected components
of a graph partition its vertices. Therefore, for all ε ≥ 0, it
holds that F SCC

ε (θ; Γθ) = min
Z∈SCCε(Γθ)

min
s∈Z

f(s; Γθ) =

min
s∈Sθ

f(s; Γθ). Now F SCC(θ; Γθ) − F SCC
ε (θ; Γ′θ) =

min
s∈Sθ

f(s; Γθ) − min
s∈Sθ

f(s; Γ′θ) ≤ min
s∈Sθ

f(s; Γθ) −
min
s∈Sθ

(f(s; Γθ)− ε) = ε. A similar argument shows that

F SCC(θ; Γθ)− F SCC
ε (θ; Γ′θ) ≥ −ε.

(Proof of Theorem 4.1). First, observe the following:
F SCC(θ∗; Γθ) ≥ F SCC(θ′; Γθ) ≥ F SCC

ε (θ′; Γ′θ)− ε. The
first inequality follows from the fact that θ∗ maximizes F ,
and the second, from Lemma 4.1. Via analogous reason-
ing, F SCC

ε (θ′; Γ′θ) ≥ F SCC
ε (θ∗; Γ′θ) ≥ F SCC(θ∗; Γθ)− ε,

assuming θ′ maximizes F SCC
ε .

Note that Theorem 4.1 also holds for the best-case EMD
problem, assuming SCC as the equilibrium, which is to
optimize F SCC = max

Z∈SCCε(Γθ)
max
s∈Z

f(s; Γθ).



In sum, it suffices to approximate f up to ε to obtain an ε-
approximation of F SCC(θ; Γ). Furthermore, it suffices to
optimize F SCC

ε (θ; Γθ) up to ε to obtain an ε-approximate
solution to the worst-case EMD problem. Such estimates
can be computed with high probability via Algorithm 1,
using the measurement procedure defined in Algorithm 2.
But to obtain the usual guarantees, the number of samples
m calculated in Line 4 of Algorithm 1 must be updated to⌈

(∆/ε)
2 ln(2(|Θ|+|Γ|)/δ)/2

⌉
to account for a union bound

over both the mechanism’s and the game’s parameters.

5 EXPERIMENTS

In this section, we present experimental results using our
equilibrium estimation and BO search methodology. We
note that all BO algorithms use a Mattern Kernel [15]
in the underlying Gaussian Process and the expected im-
provement [7] acquisition function. We use GP-N , GP ,
and uniform sampling over the range [0.5, 1.5]8 as our
baselines. Note that uniform sampling is a competitive
search strategy for hyper-parameter optimization [16].

We experiment with our methodology in two settings. The
first is in first-price auctions where analytical solutions are
known, and the condition of Definition 4.1 holds, as the
revenue curve is a known to be a continuous function of
the reserve price. The second is in a setting with no known
analytical solutions, and with no guarantees as to whether
condition of Definition 4.1 holds or not. Nonetheless,
we report anecdotally that an empirical analog of the
condition is often met in our experiments.

First-price Auctions

As our first application domain, we consider first-price
auctions in the standard independent, private value
model [17]. There is one good up for auction, and n
bidders, with bidders’ values drawn from some joint distri-
bution G. Bidders submit bids b1, . . . , bn, and the highest
bidder wins and pays their bid. As a proof of concept, we
apply our BO search heuristics in this domain, in attempt
to maximize revenue as a function of a reserve price, r,
below which the good will not be sold.

In this controlled setting, analytical solutions are known
in certain special cases. For example, when bidders’ val-
uations are drawn i.i.d. uniformly on [0, 1], the (unique)
symmetric Bayes-Nash strategy is s(v)

.
= 1(v ≥

r) [r
n
/vn−1 + (n−1)(vn−rn)/nvn−1] [17]. Assuming n =

2 bidders play this equilibrium, the optimal reserve price
is 1/2, which yields a revenue of 5/12.

Figure 3 depicts a comparison of GP-M and GP against
the baselines, GP-N and uniform sampling, for ε ∈
{0.02, 0.01}. We note that a similar behavior was ob-
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Figure 3: FPA search for optimal reserve price, δ = 0.1

served for ε = 0.03. Specifically, we plot a running
maximum of revenue as a function of the number of re-
serve prices searched. Each point is an average over 30
trials, where a single trial consists of exploring 20 dif-
ferent reserve prices with different initial random points.
All the BO heuristics are initialized with the same three
initial random points.

Our BO heuristic GP-M consistently outperforms uni-
form sampling and GP-N (whose predicted anomalous
behavior was explained in Section 3), taking fewer mea-
surements to achieve near-optimal values of revenue. The
close performance between GP-M and GP can be ex-
plained by the fact that δ is so small that the mean of a
measurement’s confidence interval is close to µ∗.

Advertisement Exchange

In this section, we illustrate our EMD methodology in
a one-shot advertisement exchange game,2 a game rich
enough that analytic solutions are not readily available,
but nonetheless amenable to analysis through sampling
and simulation. The game is designed to model a scenario
common in electronic advertisement platforms, such as
Google’s AdWords c© and Amazon Sponsored Brands c©.

We begin by describing, at a high-level,3 the elements
and dynamics of the game, and the strategies used by
agents. We conclude with experiments showing that our
algorithms more quickly accrue higher revenue than a
baseline in an 8-dimensional parameter space.

AdX game in a nutshell. In the AdX game, agents play
the role of advertising networks competing in an exchange
for opportunities to show Internet users impressions (i.e.,

2A simplification of TAC AdX [18].
3A complete mathematical formalization of this game is

provided in the supplemental material.



advertisements) needed to fulfill advertising campaigns.
These impression opportunities (henceforth, impressions)
are sold in real-time sequential auctions, as users arrive,
but agents submit their bids in advance, placing different
bids for different classes of users.

Users are characterized by attributes: e.g. GENDER, IN-
COME, AGE, etc., each of which is characterized by a
set of attribute values: e.g., {YOUNG,OLD}. Each user
belongs to a market segment, which is a list of values for
(not necessarily all) attributes: e.g., 〈FEMALE,YOUNG〉.

A market segment M matches another market
segment M ′ if all the attribute values in M ′ are
present in M . For example, the market seg-
ments 〈FEMALE,YOUNG,HIGH INCOME〉 and
〈FEMALE,YOUNG, LOW INCOME〉 both match
〈FEMALE,YOUNG〉; however, 〈FEMALE〉 does not
match 〈FEMALE,YOUNG〉, since attribute value YOUNG
is missing from the former.

In the AdX game, agents target some market segments,
but not others, as described by their (single) adver-
tising campaign. Each advertising campaign Cj =
〈Ij ,Mj , Rj〉 demands Ij ∈ N impressions in total, pro-
cured from users belonging to any market segment M ′

that matches the campaign’s desired market segment Mj .
A campaign’s budget Rj ∈ R+ is the maximum amount
the advertiser is willing to spend on those impressions.
From the agent’s point of view, the budget maps to its
potential revenue.

To a first approximation then, agent j’s goal, is to procure
at least Ij impressions matching market segment Mj to
fulfill Cj’s so that it can earn revenue, which depends on
Rj . More specifically, the value of a number of procured
impressions z is determined via a sigmoidal function that
maps z to a percentage of the budget: i.e., small values
of z yield a small percentage of Rj , while values close to
Ij yield values close to Rj . The non-linearity inherent in
this function models complementarities, because it incen-
tivizes agents to focus either on completely satisfying a
campaign’s demand, or not to bother satisfying it at all.

The AdX game is a one-shot game. To play, agents submit
bids and spending limits for each market segment. Then,
simulated users arrive at random, from the various market
segments. For each user that arrives from market segment
M , a second-price auction with a publicly known reserve
price rM ∈ R+ is held among all agents whose bids
match M , and who have not yet reached their spending
limit inM . Agent j’s utility is computed as the difference
between its revenue and its expenditure for all auctions.

Strategies. Designing bidding strategies for electronic
ad exchanges (and ad auctions, more generally) is an ac-

tive research area (e.g. [19, 20, 21]). The goal of these
experiments is not to investigate the performance of state-
of-the art bidding strategies, though this is certainly an
interesting future research direction, but rather to test the
methodology developed in this paper. Toward this end, we
devised two heuristics which, we call Walrasian Equilib-
rium (WE) and Waterfall (WF). Detailed descriptions of
these heuristics are provided in the supplemental material.
Here, we present only their main ideas.

At a high level, both heuristics work by building an off-
line model of the market induced by the AdX game, which
is then used to compute an allocation (assignment of im-
pressions to campaigns) and prices (for impressions),
based on which bids and limits are determined. The
strategies differ in how this outcome—the allocation and
prices—are computed. In a nutshell, the WE strategy
searches for an outcome which forms a near-Walrasian
equilibrium, i.e., an outcome whose prices provide little
incentive for agents to relinquish their allocation. The
study of equilibria and near-equilibrium computation in
combinatorial markets (ad exchanges, being one example)
is an active research area (e.g., [22, 23, 24]) with promis-
ing applications (e.g., [25, 26, 27]). The WF strategy
works by simulating the arrival of impression opportuni-
ties in a fixed order that is endogenously determined by
the campaigns present in the market. We call this strategy
Waterfall because impressions are allocated to campaigns
in descending order of budget-per-impression, and from
market segments in ascending order of second-highest
budget-per-impression. Hence, the final bid prices can be
visualized as a descending waterfall-like structure.

Experimental setup. We assumed three user attributes:
gender, age, and income level, each with two values. We
then simulated a fixed number of impression opportuni-
ties, namely K = 500, distributed over 8 market seg-
ments, corresponding to all the possible combinations of
attribute values: {MALE, FEMALE}×{YOUNG,OLD}×
{LOW INCOME,HIGH INCOME}. The distribution π
over these impression opportunities was constructed from
statistical data at www.alexa.com [18].

Each agent’s campaign Cj = 〈Ij ,Mj , Rj〉 is de-
termined as follows: A market segment Mj is
drawn uniformly over all 20 possible market seg-
ments corresponding to combinations of user at-
tributes of size 2 (e.g., 〈MALE,YOUNG〉) and 3 (e.g.,
〈MALE,YOUNG, LOW INCOME〉). Given Mj , the de-
mand Ij := KπMj/N, where KπMj

is the expected
size of market segment Mj , and N is the number of
agents in the game. Given Ij , the budget Rj is a noisy
signal of the demand modeled by a beta distribution:
Rj ∼ Ij(B(α = 10, β = 10) + 0.5).
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Figure 4: AdX search for optimal reserve prices, δ = 0.1

The task is to find an 8-dimensional vector of reserve
prices r ∈ R8, consisting of one reserve price per market
segment, that maximizes the auctioneer’s revenue, up to
a desired accuracy ε and specified failure probability δ.
We experiment with N = 4 agents, and two possible
strategies; in particular, for all p, Sp = {WE, WF}. Since
by construction these strategies never bid higher than
a campaign’s budget-per-impression, Rj/Ij = B(α =
10, β = 10) + 0.5 ∈ [0.5, 1.5], we bound the search for
each reserve price to this same range, and hence search
the space [0.5, 1.5]8.

Even in this bounded region, the complexity of this task
is substantial: for each candidate vector of reserve prices,
we must first learn the corresponding game it induces,
and then solve for the equilibria of this game. In this
paper, we use Algorithm 2 for this purpose, which finds
the set SCCε using Tarjan’s algorithm [28], and then re-
turns the minimum revenue among all SCCε equilibria.
This is a computationally intensive task. Indeed, it took
approximately 5 days to obtain these results using 4 ma-
chines, each with an E5-2690v4 (2.60GHz, 28Core) Xeon
processor, and 1,536 GB of memory.

Experimental results. Figure 4 summarizes our AdX
results. Specifically, we plot a running maximum of rev-
enue as a function of the number reserve prices evaluated
so far. Each plot is an average over 30 trials, where a
single trial consists of exploring 100 different vectors of
reserve prices, initialized at random. To ensure a fair com-
parison, all search algorithms are fed the same 10 initial
points during each trial. These results are compared to uni-
form sampling. As in the first-price auction experiment,
our BO heuristic GP-M outperforms uniform sampling
and GP-N , taking fewer measurements to achieve higher
values of revenue. GP-M’s performance is on par with
that of GP , which once again can be explained by a suf-

ficiently small value of δ. Note, however, the apparent
difficulty in optimizing revenue in this game; GP-M and
GP take significantly more measurements to outperform
the baselines. Nonetheless, these results show that, even
under a fairly constrained budget, our BO heuristics are
effective as compared to our baselines.

6 CONCLUSION

Our methodology tackles the fundamental problem of
optimizing a designer’s objective function in parametric
systems inhabited by strategic agents. The fundamental
assumptions are: 1) players play equilibria among an a
priori known set of strategies, which in general depend on
the parameters of the system; and 2) there is no analytical
description available of either the strategies or the system,
but only a simulator capable of producing data about game
play. This framework captures modern, computationally
intensive systems, such as electronic advertisement ex-
changes. The challenge then is two-fold: first, one must
learn equilibria of a game for a fixed setting of parame-
ters, and second, one must search the space of parameters
for those that maximize the designer’s function.

Our main contribution is a PAC-style framework to solve
the former, while for the latter we enhance standard search
routines for black-box optimization problems to include
piecewise constant noise, precisely the kind of noise that
characterizes PAC learners. We prove theoretical guar-
antees on the quality of the learned parameters when the
parameter space is finite. We also demonstrate the practi-
cal feasibility of our methodology, first in a setting with
known analytical solutions, and then in a stylized but rich
model of advertisement exchanges with no known ana-
lytical solutions—precisely the kind of setting for which
we devised our methodology—and show that we can find
solutions of higher quality than standard baselines.

One potential criticism of this work is that SCC is not a
well-motivated solution concept. Our main motivation in
using SCC was to demonstrate our rich methodology, end-
to-end. For this purpose, we sought a solution concept that
was both approximable and relatively easy to compute.
SCC is both approximable (sink is not) and amenable
to fast computation (Nash is not). An interesting future
research direction is to investigate the trade-offs between
approximability and computability using other popular
solution concepts, such as Nash equilibrium.
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