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Abstract

We analyze belief propagation on patch poten-

tial models – these are attractive models with

varying local potentials – obtain all of the pos-

sibly many fixed points, and gather novel in-

sights into belief propagation’s properties. In

particular, we observe and theoretically ex-

plain several regions in the parameter space

that behave fundamentally different. We spec-

ify and elaborate on one specific region that,

despite the existence of multiple fixed points,

is relatively well behaved and provides insights

into the relationship between the accuracy of

the marginals and the partition function. We

demonstrate the inexistence of a principle re-

lationship between both quantities and provide

sufficient conditions for a fixed point to be op-

timal with respect to approximating both the

marginals and the partition function.

1 INTRODUCTION

The marginals and the partition function can be esti-

mated in a straight-forward manner for tree-structured

models but require efficient approximation methods if

the graphical model contains loops. One such method

is Belief Propagation (BP) that exploits the structure of

probabilistic graphical models in order to approximate

the marginal distribution and the partition function.

BP often provides accurate approximations and has

been successfully applied in many applications includ-

ing speech- and image-processing, social network anal-

ysis, and error-correcting codes, despite the lack of con-

vergence and performance guarantees (Koller and Fried-

man, 2009; Pernkopf et al., 2014). The approxima-

tion accuracy may be severely affected by the existence

of multiple fixed points with varying accuracy. Al-

though obtaining and combining all fixed points is a

well-established practice in the optimization literature

(Braunstein et al., 2005; Kroc et al., 2007), the compu-

tation of all fixed points is a hard problem in its own for

models with more general potentials (Knoll et al., 2018b;

Srinivasa et al., 2016).

BP is directly related to the Bethe free energy (Yedidia

et al., 2005) and there is fairly substantial literature that

provides provable convergent algorithms by operating on

the Bethe free energy. In particular, this includes meth-

ods that aim to obtain (Welling and Teh, 2003) or at least

approximate (Shin, 2012; Weller and Jebara, 2014) the

global minimum of the (non-convex) Bethe free energy.

The approximated partition function, i.e., the Bethe par-

tition function, bounds the exact partition function for

attractive models (Ruozzi, 2012), which implies that the

global minimum of the Bethe free energy provides the

most accurate partition function. Similar properties are

not known for the marginal accuracy and, except for

rather simple models (Knoll et al., 2018b), it remains an

open question whether accurate marginals are to be ob-

tained at the global minimum of the Bethe free energy.

In this work, we analyze the difference between accu-

rate marginals and an accurate partition function. There-

fore, we go beyond well-established models (e.g., attrac-

tive models with identical or random potentials) and in-

troduce a rich class of attractive models with inherent

structure: patch potential models. These models exhibit

many interesting phenomena and provide deep insights

into the relationship between the approximation quality

of the marginals and the partition function.

We discuss the properties of the solution space and em-

pirically show that: (i) three different regions with fun-

damentally different properties exist; (ii) although it is

often infeasible to obtain and combine all fixed points,

there exists one region which allows us to do so; (iii) we

observe that no principle relationship exists between the

approximation quality of the marginals and the partition



function and present fixed points that provide the most

accurate Bethe partition function but not the most accu-

rate marginals.

We formally define a well-behaved region that has only

exponentially many (in the number of patches) fixed

points, provide conditions for the existence of this re-

gion, and show why all fixed points are stable. The fact

that only a limited number of fixed points exist, all of

which are stable, further allows us to obtain the exact

marginals and partition function by repeated (potentially

in parallel) application of BP.

Moreover, we theoretically demonstrate how the accu-

racy of the marginals can be expressed as a ratio of Bethe

partition functions. This result further clarifies why the

fixed point that provides the most accurate marginals

need not be the fixed point that provides the most ac-

curate partition function. Additionally, we provide suf-

ficient conditions for the global minimum of the Bethe

free energy to provide the most accurate marginals.

This paper is structured as follows: In Sec. 2 we review

some background on probabilistic graphical models, in-

troduce BP, and provide the connection to the Bethe ap-

proximation. In Sec. 3 we specify the models considered

in this paper. Then, in Sec. 4 we focus on patch potential

models and discuss different performance regions. We

provide formal arguments in Sec. 5 that explain the em-

pirical observations and lead to novel insights into the

relationship of the marginal accuracy and the value of

the Bethe free energy before finally concluding the paper

in Sec. 6.

2 BACKGROUND

This section serves as a brief introduction to probabilistic

graphical models. We further introduce the BP algorithm

and show how it connects to the Bethe approximation.

2.1 PROBABILISTIC GRAPHICAL MODELS

First, we consider an undirected graph G = (X,E) that

consists of a set of N nodes X = {X1, . . . , XN} and of

a set of undirected edges E, where any edgde (i, j) ∈ E

joins two nodes Xi and Xj . Note that we consider only

graphs with single edges between the same pair of nodes,

i.e., (j, i) = (i, j). For each node Xi ∈ X we denote the

set of neighbors by ∂(i) = {Xj ∈ X : (i, j) ∈ E}. A

subgraph Gi = (Xi,Ei) is induced by the nodes Xi ∈
Xi ⊂ X and contains the edges Ei = {(i, j) ∈ E :
Xi, Xj ∈ Xi}; a subgraph is connected if there is a path

from Xi to Xj for each pair of nodes {Xi, Xj} ∈ Xi.

Then, an undirected probabilistic graphical model U =
(G,Ψ) is defined by an undirected graph G = (X,E)

and by a set of K potentials Ψ = {Φ1, . . . ,ΦK}. The

random variables Xi ∈ X are in a one-to-one correspon-

dence with the nodes and take values xi ∈ X . In this

work, we focus on pairwise models, where all potentials

consist of two variables at most and the joint distribution

PX(x) factorizes according to

PX(x) =
1

Z
∏

(i,j)∈E

Φ(xi, xj)
∏

Xi∈X

Φ(xi). (1)

The normalization function Z is the partition function

and is of central interest in this work. The partition func-

tion can be obtained my minimizing the (Gibbs) free en-

ergy F , with minF = − lnZ (Yedidia et al., 2005).

Another important quantity is the marginal distribution

PXm
(xm) =

∑

xi:Xi∈{X\Xm}

PX(x), (2)

where the singleton marginals PXi
are of particular

interest. Note that the above problems are in fact

equivalent, as F obtains it minimum precisely for the

marginal distribution but require a summation over all

x ∈ XN configurations and are therefore intractable in

general (Cooper, 1990).

2.2 BELIEF PROPAGATION

Belief propagation (BP) is an iterative method to obtain

the marginal distribution and the partition function on

tree-structured graphs and to approximate these quanti-

ties for graphs that contain loops. Identical principles

are also applied in the sum-product algorithm in infor-

mation theory and in the Bethe-method in physics; ex-

cellent overviews include e.g., (Kschischang et al., 2001;

Mezard and Montanari, 2009).

BP recursively exchanges messages between random

variables: let us denote the current iteration by n, then

the messages from Xi to Xj are updated according to

µn+1
ij (xj) ∝

∑

xi∈X

Φ(xi, xj)Φ(xi)
∏

Xk∈{∂(i)\Xj}

µn
ki(xi). (3)

The messages require some normalization, e.g., so that
∑

µij = 1. The set of messages µn contains the mes-

sages along all edges at iteration n; if the update equa-

tion (3) does not change the values of the messages, i.e.,

if µn+1 = µn, then BP is converged to a fixed point with

the corresponding fixed point messages µ◦.

The approximate singleton marginals P̃Xi
(xi) and pair-

wise marginals P̃Xi,Xj
(xi, xj) are computed by

P̃Xi
=

1

Zi

Φ(xi)
∏

Xk∈∂(i)

µ◦
ki(xi) (4)



P̃Xi,Xj
=

1

Zij

Φ(xi)Φ(xj)Φ(xi, xj)·
∏

Xk∈{∂(i)\Xj}

µ◦
ki(xi)

∏

Xl∈{∂(j)\Xi}

µ◦
lj(xj) (5)

and are normalized by Zi, Zij ∈ R. The set of all ap-

proximated marginals constitutes the pseudomarginals

P̃B = {P̃Xi
, P̃Xi,Xj

: Xi ∈ X, (i, j) ∈ E}. (6)

Note that there are possibly multiple fixed points (cf.

Sec. 3): we index all fixed points by m = 1, . . . ,M
and denote the pseudomarginals that belong to a certain

fixed point by P̃m
B . We say that a fixed point m is stable

if a neighborhood exists such that BP converges to P̃m
B if

initialized inside this neighborhood.

2.3 BETHE APPROXIMATION

BP is closely related to some concepts from statistical

mechanics; in particular fixed points of BP correspond

to stationary points of the Bethe free energy FB that is

constrained by the the set of valid pseudomarginals

L = {P̃Xi
, P̃Xi,Xj

:
∑

xi

P̃Xi
= 1,

∑

xj

P̃Xi,Xj
= P̃Xi

}.

The Bethe free energy FB(P̃B) = EB(P̃B) − SB(P̃B)
is a function of singleton- and pairwise marginals and

is defined by the average energy EB(P̃B) and the Bethe

entropy SB(P̃B) according to

EB(P̃B) := −
∑

Xi

∑

xi

P̃Xi
(xi) lnΦ(xi)

−
∑

(i,j)∈E

∑

xi,xj

P̃Xi,Xj
(xi, xj) lnΦ(xi, xj). (7)

SB(P̃B) := −
∑

(i,j)∈E

∑

xi,xj

P̃Xi,Xj
(xi, xj) ln P̃Xi,Xj

+
∑

Xi

(|∂(Xi)| − 1)
∑

xi

P̃Xi
(xi) ln P̃Xi

(xi). (8)

Moreover, the Bethe free energy relates to the the Bethe

partition function according to

ZB(P̃B) = exp
(

−FB(P̃B)
)

(9)

An excellent treatment of free energy approximations

and how this relates to BP can, e.g., be found in (Yedidia

et al., 2005; Wainwright and Jordan, 2008; Mezard and

Montanari, 2009). Most importantly, local minima Fm
B

relate to the fixed points of BP P̃m
B according to

Fm
B = FB(P̃

m
B ), (10)

where P̃m
B is the argument that corresponds to the local

minimum Fm
B , i.e., every stable fixed point of BP corre-

sponds to a local minimum of FB (Heskes et al., 2003).

This correspondence put BP on a solid theoretical foun-

dation, and also paved the way for many methods that

operate on FB directly. As FB may, however, be non-

convex (cf. Sec. 4) considerable attention has been

put into the proposal of convex relaxations that cor-

respond to provable convergent message passing al-

gorithms (Globerson and Jaakkola, 2007; Hazan and

Shashua, 2008; Meltzer et al., 2009). Nonetheless, the

results obtained by minimizing the Bethe approximation

are often more accurate (Meshi et al., 2009). There are

methods that can efficiently (i.e., in polynomial runtime)

minimize the Bethe free energy for restricted model

classes: in particular, these include sparse models (Shin,

2012) and attractive models (Weller and Jebara, 2014).

3 MODEL SPECIFICATIONS

We focus on one specific model: binary pairwise mod-

els, where every random variable Xi takes values xi ∈
X = {−1,+1}.1 The local and the pairwise poten-

tials are specified by couplings Jij ∈ R that act on each

edge (i, j) ∈ E and by local fields θi ∈ R that act on

each random variable Xi ∈ X according to Φ(xi, xj) =
exp(Jijxixj) and Φ(xi) = exp(θixi). The joint distri-

bution from (1) consequently factorizes according to

PX(x) =
1

Z exp
(

∑

(i,j)∈E

Jijxixj +
∑

Xi∈X

θixi

)

. (11)

We consider only finite-size attractive models2 where all

edges are attractive, i.e., where all couplings Jij > 0
are positive. Specifically, we consider models with equal

couplings Jij = J for all edges (i, j) ∈ E. Three differ-

ent types of attractive models can be distinguished that

show increasingly complex behavior: (i) attractive mod-

els with vanishing local fields θi = 0; (ii) attractive mod-

els with unidirectional fields, i.e., either θi < 0 or θi > 0;

(iii) finally, attractive models with arbitrary local fields.

Such models are particularly interesting in terms of their

phase transitions and are studied under the name of fer-

romagnetic random-field Ising models (RFIM) in physics

where all θi are drawn according to some distribution.

Attractive models with vanishing fields either have a

unique or two symmetric fixed points both for infinite-

size models (Mezard and Montanari, 2009) as well as for

1This is a popular model – the Ising model – in physics.
2These models are also known as ferromagnetic (Mezard

and Montanari, 2009) or log-supermodular (Ruozzi, 2012)
models.



finite-size models (Knoll et al., 2018b). The marginals of

two fixed points m and k are considered as symmetric if

P̃m
Xi

(Xi = 1) = 1− P̃ k
Xi

(Xi = 1) (12)

for all Xi. An eminent consequence of (10) is that sym-

metric fixed points must also have the same value of FB .

Attractive models with unidirectional fields show a simi-

lar behavior and – although not exactly symmetric – have

two fixed points that are almost symmetric.

Another important concept are flipped random variables:

a random variable is flipped if the marginals are not

aligned with the local potential, i.e., if

( P̃Xi
(Xi = +1)

P̃Xi
(Xi = −1)

− 1
)

θi < 0 (13)

We further say that a fixed point is state-preserving if no

random variable is flipped. If all marginals are in favor

of the same state xi, i.e., if P̃Xi
(xi) > 0.5 for all Xi we

call the corresponding fixed point biased towards xi.

Attractive models with arbitrary local fields exhibit many

non-trivial properties, may have a complex energy land-

scape, and are studied as one of the simplest form of dis-

ordered systems (Young, 1998). Disordered systems are

systems that potentially have many fixed points, whereas

many random variables are flipped.

3.1 PATCH POTENTIAL MODELS

The definition of patch potential models follows the defi-

nitions of the RFIM, with the main difference that the lo-

cal potentials are not i.i.d but obey a correlation between

neighboring random variables. Moreover, we will only

consider models with identical values for all local fields,

albeit possibly with different sign, i.e., θi ∈ {−θ,+θ}.

Definition 1. Patch potential models are binary pair-

wise models in accordance with (11) that have attrac-

tive couplings Jij = J > 0 and that consist of mul-

tiple non-overlapping patches Gi with G =
⋃

i Gi. A

patch Gi = (Xi,Ei) is a connected subgraph that is

induced by a subset of nodes Xi ⊂ X that have iden-

tical local potentials θi = θ or θi = −θ and where

Ei = {(i, j) ∈ E : Xi, Xj ∈ Xi}.

Note that we will only consider models with sufficiently

large patches, so that the exact marginals are state-

preserving. Let us first consider a minimal example

that is rich enough to exhibit some non-trivial (i.e., non-

symmetric) fixed points while being structured enough

to admit only few fixed points. This example serves as a

model that allows us to get some intuition (cf. Sec. 4) be-

fore we discuss the properties of patch potential models

in a more general manner (cf. Sec. 5).

Figure 1: Exact solution for Example 1. Nodes are de-

picted in orange if PXi
(Xi = 1) > 0.5 and in blue oth-

erwise; the opacity illustrates the value of the marginals.

Example 1. Let G = (X,E) be a regular two-

dimensional grid graph of size n×n with two equal-sized

patches. All variables in G1 experience a positive local

field θ1 = θ whereas all variables in G2 experience the

same negative local field θ2 = −θ (cf. Fig. 1).

The patch potential model is especially appealing as the

composition of relatively few patches admits a simplified

treatment and comes with a couple of beneficial proper-

ties. In particular, we can identify a region in the pa-

rameter space (θ, J) that features a structured and well-

behaved solution space (cf. Sec. 4.2).

4 FIXED POINT BEHAVIOR

If BP converges, it often provides accurate results; how-

ever, if multiple fixed points exist the performance may

vary considerably between different fixed points. We

briefly introduce the RSB (replica symmetry breaking)

assumption that expresses the exact marginals as a com-

bination of all fixed points and illustrate why its success

is limited to optimization problems so far (Sec. 4.1).

Then, we discuss the solution space of Example 1 over a

range of parameters and specify different regions accord-

ing to the structure of the solution space (Sec. 4.2).

Assessing the approximation quality of a specific fixed

point is required to state performance guarantees of BP.

We recap existing results (Sec. 4.3) and discuss how

the error of the pseudomarginals and the Bethe partition

function are related for patch potential models (Sec. 4.4).

4.1 COMBINATION OF FIXED POINTS

(Non-) convexity of the Bethe free energy depends on

the structure of the graph and the potentials. If the model

has loops and sufficiently strong couplings multiple local

fixed points will exist. Let every fixed point m have an

associated local minimum Fm
B , an associated partition

function Zm
B , and associated pseudomarginals P̃m

B . We

denote the set of all M fixed points by

S =
{(

Z1
B , P̃

1
B

)

, . . . ,
(

ZM
B , P̃M

B

)}

, (14)



and omit the existence of unstable fixed points corre-

sponding to local maxima of FB . Note that the number

of fixed points is always finite (Watanabe and Fukumizu,

2009).

Studying systems with such complex energy landscapes

lies at the heart of the RSB theory. The RSB theory de-

scribes the decomposition of the exact solution into a

convex combination of marginals that are weighted by

their respective partition function so that

PXi
(xi) =

1
∑

m Zm
B

M
∑

m=1

Zm
B P̃m

Xi
(xi). (15)

This representation can be attributed to Mézard et al.

(1987) and, rather than being a theorem, is a set of postu-

lates.3 One underlying assumption is that the system ac-

tually exhibits multiple fixed points (unique fixed points

would imply exact marginals otherwise); an accessible

introduction to the RSB theory and all underlying as-

sumptions can be found in (Mezard and Montanari, 2009,

Ch.19). Despite its non-rigorous flavor, (15) has been

verified for a wide range of problems (e.g., random SAT

problems and spin glasses). In particular, many state-

of-the-art solvers for combinatorial problems rely on the

RSB theory (Ravanbakhsh and Greiner, 2015).

Obtaining all fixed points that correspond to local min-

ima of the Bethe free energy is a complex task only

possible for small-scale models (Knoll et al., 2018b)

and models with certain structure (e.g., random graphs

(Coja-Oghlan and Perkins, 2019)), or potential-type

(e.g., for optimization problems (Zdeborová and Krza-

kala, 2016)). One efficient way to evaluate (15) for con-

strained satisfaction problems is known as survey prop-

agation (Braunstein et al., 2005). The extension to more

general models, however, still remains somewhat elusive.

4.1.1 APPROXIMATE SURVEY PROPAGATION

Survey propagation was recently applied to similar mod-

els as in this work (Srinivasa et al., 2016). This was

achieved by assuming that the fraction of randomly ini-

tialized BP runs Pm
µ converging to the mth fixed point

provides an approximation of the partition function Zm
B .

This assumption is valid for attractive models with van-

ishing local fields; yet it is unclear how this generalizes

to models with non-vanishing local fields.

We aim to validate the assumption for regular grid graphs

with n × n variables, θ 6= 0, and with couplings large

enough to admit two fixed points. Therefore, we com-

pare both measures for both fixed points by relating the

3In physics one deals with the decomposition of the Gibbs
measure (i.e., the joint distribution) into a weighted combina-
tion of Bethe measures (that correspond to BP fixed points).
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Figure 2: Pm
µ is the fraction of BP runs that converge

to fixed point m with the corresponding Bethe partition

function Zm
B . The mismatch increases with N and θ.

ratio between the partition functions Z1
B/Z2

B to the ra-

tio P 1
µ/P

2
µ . The log-ratio4 between both measures is de-

picted in Fig. 2: one would expect a constant value close

to zero if Pm
µ provides a good estimate of Zm

B ; this is

obviously not the case as Z1
B/Z2

B grows more rapidly.

We conclude that the fraction of BP runs serves as a poor

estimate of the partition function with the consequence

that an approximate evaluation of (15) leads to inaccu-

rate marginals. This is particularly true as the local field

and the model size increase.

This raises two immediate questions: (i) Can we specify

certain model-structures or parameter configurations that

grant efficient methods to obtain all fixed points in order

to evaluate (15)? (ii) If we obtain a subset of all fixed

points S̃ ⊂ S, can we compare the available fixed points

and select the best one?

4.2 SOLUTION SPACE

The solution space for a wide range of patch potential

models is analyzed to answer whether parameter config-

urations exist for which all fixed points can be obtained

efficiently. A more formal analysis that explains the sub-

sequent observations is presented in Sec. 5.

Let G be a 10 × 10 grid graph with two equal-sized

patches (Example 1). This model exhibits three different

regions, separated by critical values JA(θ) and JC(θ);
see Fig. 3 and Fig. 4 for an illustration of the decompo-

sition into multiple fixed points according to (15).

A unique fixed point exists for J < JA(θ), i.e., inside

region (I), and BP converges; this fixed point is state-

preserving but slightly overestimates the marginals (cf.

Sec. 4.4). Additional fixed points emerge inside region

(II) as the coupling strength increases to JA(θ) < J <

4The log-ratio is independent of the coupling strength as
long as J is large enough to admit two fixed points.



J

JA JC

Figure 3: Illustration of the fixed points for all regions.

The circle-width corresponds to the value of FB .

JC(θ). There are three fixed points (cf. Thm. 3) and

all three fixed points are stable (cf. Thm. 4). These

fixed points consist of two symmetric fixed points where

all marginals favor one particular state and one state-

preserving fixed point (cf. Sec. 4.4). As the coupling

strength increases even further to J > JC(θ), i.e., inside

region (III), all three fixed points remain but are sud-

denly accompanied by many more fixed points. It will

therefore be increasingly hard to obtain all fixed points

numerically, so that one can only hope to obtain a subset

of all fixed points in practice.

The actual boundaries between the regions are numer-

ically estimated and are depicted in Fig. 4. The fixed

points are obtained by repeated application of BP (2000

times for each (θ, J)) with different random initial condi-

tions. Furthermore, we apply random scheduling to en-

hance the convergence properties as any predetermined

schedule would favor a specific fixed point.

To answer question (i) from Sec. 4.1.1: one region exists

in the parameter space (illustrated in blue) for which all

fixed points can be obtained efficiently. For region (III)
(illustrated in red), however, the number of fixed points

suddenly increases and we cannot rely on BP to obtain

all fixed points.

4.3 APPROXIMATION ACCURACY

Let J > Jc(θ) and assume that a subset of all fixed points

S̃ ⊂ S is provided; then, how can we select the best one?

Unfortunately, there is no way to tell us how accurate

a particular fixed point is (if we do not have access to

the exact solution). It is therefore an important problem

in its own to measure the accuracy, or at least provide

a bound on the approximation error. We will first dis-

cuss established results regarding the accuracy of both

the Bethe partition function and the pseudomarginals.

Subsequently, we will delve into the particularities for

patch potential models and show how the accuracy may

differ between both objectives.

4.3.1 PARTITION FUNCTION

The error of the partition function Zm
B = ZB(P̃

m
B ) of

the mth fixed point is usually evaluated by the relative

JA

JC

(I)

(II)

(III)

θ

J

0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

Figure 4: Illustration of all regions and boundaries for

Example 1: The black dots depict the boundary below

which (16) holds; the approximated boundary according

to (17) is depicted by the solid black line.

error of the log-partition functions (Gómez et al., 2007):

EZ(m) =
| logZm

B − logZ|
logZ =

|F − Fm
B |

−F .

Existing bounds on the partition function usually com-

bine an upper bound (Wainwright et al., 2005; Jaakkola

and Jordan, 1997) with some lower bound as e.g., the

naive mean field (Wainwright and Jordan, 2008). Other

bounds are based on the loop series expansions (Will-

sky et al., 2008) or the non-backtracking operator (Saade

et al., 2014). For attractive models the Bethe parti-

tion function also bounds the partition function, i.e.,

ZB < Z (Ruozzi, 2012); obtaining the global mini-

mum of FB is therefore optimal with respect to the er-

ror of the partition function as argminZm
B
(EZ(m)) =

exp(−minL FB(P̃
m
B )).

4.3.2 MARGINALS

We measure the error of the singleton marginals by the

mean squared error (MSE) according to

EP (m) =
2

N

∑

Xi

|PXi
(xi = 1)− P̃m

Xi
(xi = 1)|2.

Some results consider bounding the approximation error

of the marginals instead of EZ(m), e.g., (Ihler, 2007;

Mooij and Kappen, 2009; Leisink and Kappen, 2003;

Weller and Jebara, 2014). We are not aware of an ex-

plicit relationship that connects both worlds except for

homogeneous5 attractive models (cf. Lm. 1). It is there-

5These are models that have a single value J for all edges
and a single value θ for all variables
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Figure 5: Accuracy of the marginals (a) and of the partition function (b) for Example 1 with |θi| = 0.1: we emphasize

the fixed points minimizing EZ(m) (blue), minimizing EP (m) (red), and minimizing both quantities (green).

fore often assumed that minimizing FB will be optimal

in terms of marginal accuracy for more general models

as well (cf. Knoll et al. (2018a); Weller et al. (2014)),

i.e.,

argminEZ(m) = argminEP (m). (16)

This is, however, not the case as we show in Sec. 4.4.

4.4 MARGINALS AND PARTITION FUNCTION

We aim to evaluate the relationship between the accu-

racy of the pseudomarginals and the accuracy of the par-

tition function and whether (16) holds in general. First,

we state that (16) does hold for homogeneous attractive

models that have two fixed points at most (Weller et al.,

2014); this is a direct consequence of (15).

Lemma 1. Attractive models with identical values θi =
θ have two fixed points for J > JA(θ). The fixed point m
that minimizes EZ(m) further provides the global mini-

mum minL(FB) and minimizes EP (m) as well.

Second, we empirically validate whether minimizing FB

will provide the most accurate marginals for Example 1.

Fig. 5 illustrates the error in the marginals and the error

in the partition function for all fixed points. The fixed

point that provides the global minimum to FB , and thus

minimizes EZ(m) is emphasized in blue, the fixed point

minimizing EP (m) is emphasized in red, whereas the

fixed point minimizing both quantities jointly is empha-

sized in green.

Let us take a closer look at region (II) in particular:

three fixed points exist that can be combined to yield the

exact solution (see Fig. 1 for the exact solution). Two of

these fixed points, r and q, are each biased towards one

state and, because of the symmetric model, have identi-

cal values Fr
B = Fq

B . The state preserving fixed point p
on the other hand provides the most accurate marginals

inside (II). However, while p also provides the global

minimum of FB for small values of J, Fig. 5 shows that

Fp
B turns into a local minimum for J ≥ 0.65 . No prin-

ciple relationship between the accuracy of the marginals

and the partition function can therefore be observed in-

side (II) and (16) does not necessarily hold (cf. Thm. 6).

For region (III) many more fixed points (u, v, . . .)
emerge that all have similar values EZ(u) and EP (u);
we visualize some of them in Fig. 5a. These fixed

points provide slightly more accurate marginals than the

state-preserving one, although it should be noted that all

fixed points do not approximate the marginals well in-

side (III). On the contrary, considering EZ(u), these

additional fixed points provide the worst approximation

to the partition function and have even higher values

Fu
B > Fp

B > Fq
B . The biased fixed points p, q that

approximate the marginals worst, on the other hand, ap-

proximate the partition function relatively well.

Why fixed points exist that minimize the marginal error

but are only local minima of FB can, however, not be an-

swered by the above observations. Closer inspection of

FB for different types of fixed points reveals a threshold

(black dots in Fig. 4) below which (16) holds. Some mild

assumptions on the solution space lead to a lower bound

on this threshold (cf. Thm. 7) according to

2J
√
N − θN = 0. (17)

This bound, illustrated by the solid black line in Fig. 4,

becomes asymptotically exact. Note that the slope, de-

fined by (17) increases with the model size N so that

the global minimum of FB provides the most accurate

marginals for a wider range of parameters.



5 THEORETICAL ANALYSIS

Here we properly define the boundaries JA(θ) and JC(θ)
between different regions and provide formal arguments

that explain the observations from Sec. 4.2. While some

properties are directly attributable to (15), several results

are based on the fact that the patch potential model con-

sists of multiple patches with a unidirectional local field.

First, we need to prepare an alternative update equation

that makes the interactions between two patches more

explicit. For that purpose, we will introduce an effective

field that acts on the boundary of each patch and incor-

porates the influence form all other patches.

We refer to the appendix for the proofs and only state the

Theorems and discuss their implications. Additionally,

we prepare some corollaries that simplify the results for

models with two equal-sized patches as in Example 1.

5.1 EFFECTIVE FIELD

We introduce an effective field θ̃i for all variables that

lie on the patch-boundary to incorporate the interactions

with the neighboring patches.

Theorem 2 (Effective Field). Let Xi be a variable on the

boundary of patch Xi that receives messages from inside,

i.e., Xk ∈ Xi, and outside, i.e., Xj ∈ X\Xi, the patch.

The effective field θ̃i acts on the boundary according to:

θ̃i = θi +
∑

Xj∈∂(i)\Xi

atanh(2µji(Xi = 1)− 1). (18)

Messages from outside the patch are now subsumed by θ̃
and the additive terms in (18) will be positive if µji(Xi =
1) > µji(Xi = 0) and negative otherwise. This is partic-

ularly important in the definition of the region boundaries

and admits “independent” treatment of every patch.

5.2 REGION (II)

The notion of an effective field (Thm. 2) allows us to

define the boundaries between the three distinct perfor-

mance regions of patch potential models. We discuss the

solution space in detail and what can be said about the

performance of BP. Let us denote the second region, i.e.,

the region where the global behavior can be inferred by

treating the patches individually by (II) = {θ, J}.

Definition 2 (Region). A parameter set (θ, J) ∈ (II) if

and only if the following conditions are satisfied:

(1.) Let JA(Gi, θ) denote the critical value for the cou-

plings beyond which multiple fixed points exist.6 Then

6Note that an analytical solution only exists for graphs with
vanishing fields of infinite size or periodic boundary conditions,
but the threshold can be estimated numerically.

every patch Gi ∈ G must have its respective threshold

below the actual coupling strength, i.e., JA(Gi, θ) < J
(2.) Consider all pairs of patches Gi and Gj; if one patch,

e.g., Gi has its variables flipped, the imposed effective

field on the boundary must stabilize the second patch Gj

so that J < JA(Gj , θ̃) = JC(Gj , θ).

These conditions implicitly define the “well-behaved”

region (II). Def. 2.1 provides the lower boundary of

region (II) as only a unique fixed point would exist oth-

erwise. It may be less obvious how Def. 2.2 provides the

upper boundary of region (II). Note that J < JA(Gj , θ̃)
is a necessary condition if Gi is flipped, as parts of Gj

would flip otherwise and lead to disordered behavior (cf.

Fig. 5a). The restriction to (II) and the exclusion of

disordered solutions further validates the RSB assump-

tion (Mezard and Montanari, 2009, Ch.19).

5.3 PROPERTIES OF REGION (II)

In this work we are particularly interested in understand-

ing the properties of BP inside region (II) that complies

with the following properties:

Theorem 3 (Existence). Let U be a patch potential

model with (θ, J) ∈ (II). The amount of fixed points M
grows with the number of patches (rather than the num-

ber of variables). Specifically, we have M = O(2(|Gi|)),
where |Gi| denotes the number of patches.

Corollary 3.1 (Example 1). Let U be a patch potential

models with two equal-sized patches (cf. Example 1).

Then, for (θ, J) ∈ (II) three fixed points exist; these

are one state preserving fixed point and two fixed points

that have all variables biased towards one of both states.

Note that both patches can not be flipped simultaneously

inside (II) (cf. proof of Thm. 3) as one patch would

stabilize, i.e., prohibit from flipping, the second patch.

Thm. 3 is of great practical relevance for the RSB as-

sumption (15), i.e., whether a combination of BP fixed

points can form the exact solution. The fact that there is

a relatively small number of fixed points makes the task

of obtaining them practically feasible. Existence alone,

however, is not sufficient as we have to rely on some nu-

merical method that obtains all fixed points; if we aim to

apply BP for that matter there is the additional require-

ment for all fixed points to be stable. Fortunately, it turns

out that all fixed points inside (II) are stable indeed.

Theorem 4 (Stability). Let U be a patch potential model

with (θ, J) ∈ (II). Then, every fixed point P̃m
B is a sta-

ble fixed point for BP.

Finally, as an immediate consequence of the limited

amount of fixed points (Thm. 3), all of which are stable

(Thm. 4), it follows that the exact solution can be com-

puted according to (15) in practice. One can for example



apply BP repeatedly, possibly in parallel, with random

initialization to obtain and combine all fixed points.

5.3.1 MARGINAL ACCURACY

Theorem 5 (Marginal Accuracy). The MSE of the sin-

gleton marginals EP (k) of the kth solution P̃ k
B relates

to the ratio of the Bethe partition functions according to

EP (k) =
2

N(
∑

m Zm
B )2

∑

Xi

∣

∣

∣

∑

m\k

Zm
B

(

P̃m
Xi

− P̃ k
Xi

)
∣

∣

∣

2

Representing the MSE according to Thm 5 is particularly

appealing as it omits the need for expressing the exact

marginals. This further provides a way to express the

ratio of the marginal error between two fixed points.

Corollary 5.1. The MSE-ratio of two fixed points k and

l is a ratio of weighted partition functions according to:

EP (k)

EP (l)
=

∑

Xi
|
∑

m\k Zm
B (P̃m

Xi
− P̃ k

Xi
)|2

∑

Xi
|
∑

m\l Zm
B (P̃m

Xi
− P̃ l

Xi
)|2

. (19)

Expressing the ratio of the marginal error according

to (19) is advantageous in elaborating on the difference

between accuracy of the approximated marginals and the

approximated partition function. We define the mismatch

between P̃m
Xi

at two fixed points k and l by

Qi(k, l) = P̃ k
Xi

(Xi = 1)− P̃ l
Xi

(Xi = 1) (20)

Now, let us denote the error of the state preserving

fixed point by EP (p) and of the fixed point that has all

marginals biases towards xi = 1 by EP (q). Then –

maybe non-surprising as the exact solution is state pre-

serving as well – we show that the state-preserving fixed

point has the most accurate marginals.

Theorem 6 (Error Ratio). Let U be a patch potential

model with (θ, J) ∈ (II). The state preserving fixed

point p provides more accurate marginals than the fixed

point q that has all marginals biased to one state, i.e.,

EP (p)

EP (q)
< 1. (21)

In particular for models with two equal-sized patches, we

can simplify the error ratio (19) considerably.

Corollary 6.1 (Example 1). Let d = Qi(q, r) > 0, then

EP (p)

EP (q)
<

∑

Xi
|Zq

Bd|2
∑

Xi
|Zq

Bd+ Zp
BQi(p, q)|2

< 1. (22)

It follows that the state preserving fixed point p mini-

mizes the marginal error inside (II) irrespective of Fp
B .

This has drastic implications and forbids any relationship

between the fixed point minimizing the marginal error

and the one minimizing the partition function error.

5.3.2 FIXED POINT MINIMIZING FB

However, despite Thm. 6 the question remains where the

difference between EZ(m) and EP (m) stems from?

We answer this question and provide conditions for

argminEZ(m) = argminEP (m) to be valid. We

further present an approximate condition for the state-

preserving fixed point p to simultaneously provide the

most accurate marginals and minimize FB . Let us define

the following variables (cf. Sec. 6.2.7 in the appendix

for a formal introduction): EP is the set of all bound-

ary edges; EC is the set of edges between variables that

favor different states; Nf and Nc are the respective num-

bers of flipped and non-flipped variables; and ∆SB is the

difference in the entropy between two fixed points.

Theorem 7. Let us consider the state-preserving fixed

point p with Fp
B and some other fixed point with Fm

B .

Then, Fp
B < Fm

B is the global minimum if

2J(|EP | − |EC |) < θ(N −Nc +Nf ) + ∆SB . (23)

For models with two equal-sized patches we can further

simplify (23) significantly and state that:

Corollary 7.1 (Example 1). The state-preserving fixed

point provides the most accurate marginals and the

global minimum Fp
B if (θ, J) ∈ (II) and if

2
√
NJ < Nθ (24)

These sufficient conditions for (16) provide a guideline

when it would be safe to select the fixed point accord-

ing to the partition function value. This correspondence

tends to hold for models with strong local potentials θ
and with increased model-size N as shown in Cor. 7.1.

6 CONCLUSION

In this paper we introduced and analyzed patch poten-

tial models and thus advanced the understanding of be-

lief propagation’s properties. In particular we inspected

the difference between accurate marginals and an accu-

rate partition function.

On the basis of our empirical evaluation and our theoret-

ical analysis we gained several insights: (i) there exists a

region for which the number of fixed points depends on

the number of patches. This opens the door for methods

that can efficiently obtain all fixed points to subsequently

form the exact solution. (ii) We further demonstrated that

there is no inherent relationship between the approxima-

tion quality of the marginals and the partition function.

(iii) Additionally, we introduced conditions that guaran-

tee existence of a fixed point that simultaneously approx-

imates the marginals and the partition function best.
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