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Abstract

The study of graphical causal models is fun-

damentally the study of separations and con-

ditional independences. We provide linear-

time algorithms for two graphical primitives:

to test, if a given set is a minimal d-separator,

and to find a minimal d-separator in directed

acyclic graphs (DAGs), completed partially di-

rected acyclic graphs (CPDAGs) and restricted

chain graphs (RCGs) as well as minimal m-

separators in ancestral graphs (AGs). These

algorithms improve the runtime of the best pre-

viously known algorithms for minimal separa-

tors that are based on moralization and thus

require quadratic time to construct and han-

dle the moral graph. (Minimal) separating sets

have important applications like finding (min-

imal) covariate adjustment sets or conditional

instrumental variables.

1 INTRODUCTION

One of the key factors stimulating the recent progress in

causal research was the development of graphical causal

models, like e.g., those based on directed acyclic graphs

(DAGs), which allow intuitive, mathematically sound

modeling of causal relationships. Likewise, the mod-

els and the related graphical notions used in modern

causality admit to apply discrete- and graph-algorithmic

techniques developed in computer science to provide

algorithmic support for causal analysis. Perhaps, the

most prominent example here is the concept of d-

separation [12] – the notion of central importance in

graphical causal models and Bayesian networks that is

deeply connected with the probabilistic concept of con-

ditional independence [28] and simultaneously allows to

use algorithmic frameworks to analyze conditional in-

dependences in causal models. Algorithmic aspects to

find and verify d-separators and its generalizations are

the main subject of this paper.

Recall, that graphical separation is defined as follows. A

path π in a DAG is said to be blocked by a set of nodes Z

if and only if π contains a chain A → B → C or a fork

A ← B → C such that the middle node B is in Z, or

π contains a collider A → B ← C such that the middle

node B is not in Z and such that no descendant of B is

in Z. A set Z is said to d-separate a node X from Y if

and only if Z blocks every path between X and Y .

1.1 Reductions to d-separations

D-separation plays a major role in many aspects of

causal research. In particular, d-separation allows to

specify the set of probability distributions which are

compatible with a DAG. This involves perhaps the most

direct application of graphical separation – model testing

with the aim to check whether a graphical causal model

is in fact consistent with the probability distribution P it

is intended to represent. This is a necessary step before

any conclusions can be drawn from the model, because if

the model is not consistent to the data, most conclusions

will be worthless. In practice, such a test verifies condi-

tional independence for every non-adjacent pair of nodes

X and Y given a canonical basis d-separation set Z [6].

For instance, Pearl and Meshkat [14] discuss for hier-

archical linear regression models parental basis sets, i.e.,

those containing all parents of Y . They also consider sets

that contain only nodes whose distance to Y is smaller

than the distance between X and Y . This leads to obtain-

ing separators which can be substantially smaller than the

parental basis sets and thus can decrease the amount of

independences that need to be tested. In general, a chal-

lenging task of model testing is to detect for any given
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Figure 1: A reduction of testing if Z = {Z1, Z2} is a

valid and minimal covariate adjustment relative to X =
{X1, X2} and Y = {Y1, Y2} in a DAG (left) to testing

if Z is a minimal d-separator between X and Y in the so

called proper back-door graph [25].

pair of nodes a minimal or minimum d-separator.

Another fundamental problem of causal analysis, which

can be reduced to computing d-separators, is estima-

tion of causal effects from non-experimental data via co-

variate adjustment sets. The causal effect P (y|do(x))
describes how some outcome variables Y will change,

if some exposure variables X are changed. Given a

causal graph it is often possible to estimate the causal

effect from the observed probability distribution P (v).
When the causal effect can be calculated using adjust-

ment, P (y|do(x)) =
∑

z P (y|x, z)P (z), the set Z is

called an adjustment set. Though this method of iden-

tification is not complete – do-calculus [13] can permit

identification even if covariate adjustment is impossible

– it provides an effective option for effect estimation due

to its well understood statistical properties. Recently we

have proved [24, 25] that causal effect identification by

covariate adjustment with multiple exposures and out-

comes and in the presence of latent confounding can be

reduced efficiently to the problem of d-separation in a

DAG. In particular, those results yield practically imple-

mentable algorithms, which in linear time, with respect

to the size of a DAG, reduce testing and finding of adjust-

ment sets to testing and finding of d-separators in a DAG.

For an example illustrating such reduction, see Fig. 1.

Moreover, we [24, 25] show that the reduction can be

generalized to m-separators in maximal ancestral graphs

(MAGs) – the model specifying the ancestral relations

between the variables but allowing that not all variables

are included in the model [18]. The subsequent research

has resulted in further extensions of this reduction tech-

nique for: completed partially directed acyclic graphs

(CPDAGs) [17, 23], partial ancestral graphs (PAGs) [17],

chain graphs (CGs) and restricted chain graphs (RCGs)

[23], and maximally oriented partially directed acyclic

graphs (PDAGs) [16]. CPDAGs [1] (resp. PAGs) repre-

sent classes of causal models where a single graph rep-

DAG CPDAG RCGMAGAG

Figure 2: The inclusion relationships between the rel-

evant classes of causal graphs for which our algorithms

test and find minimal separators in timeO(n+m), where

n denotes the number of nodes and m the number of

edges in a causal structure. We have proper inclusions:

DAG ( RCG, CPDAG ( RCG, DAG ( MAG ( AG.

This means, e.g., that every DAG is an RCG but not nec-

essarily a CPDAG.

resents all Markov equivalent DAGs (MAGs), i.e., those

having the same conditional independences. PDAGs are

CPDAGs with background knowledge [11] and they are

known in the literature under various names such as, e.g.

interventional essential graphs [7]. CGs [10] general-

ize CPDAGs by representing some Markov equivalent

DAGs, and RCGs constitute a broad subclass of CGs

[23]. For the inclusion relationships between some of

these models, see Fig. 2.

As a last example of a canonical problem that can be re-

duced to d-separations in DAGs, we discuss testing and

finding of conditional instrumental variables and gener-

alized instrumental sets. The classical instrumental vari-

ables (IVs) are a widely used approach to identify param-

eters in linear models [3, 2, 9]. This is a sufficient but not

necessary tool for parameter identification: IVs are often

not applicable even if the parameters are identifiable. In

[13] Pearl gave a generalization of the method to con-

ditional IVs and Brito [4] and Brito and Pearl [5] have

extended the IVs to instrumental sets that allow the iden-

tification of multiple parameters simultaneously. How-

ever, one of the barriers to the application of these gener-

alized IV based tools is of algorithmic nature. First steps

towards implementability of these methods have been

shown in [26] and [22], where in both cases the problem

to find a conditional IV, resp. an instrumental set, have

been reduced to testing and finding of a so called nearest

separator – a d-separating set which satisfies some ad-

ditional desirable constraints. In [26] we show that for a

given DAG G = (V,E) of n nodes V and m edges E,

a nearest separator can be computed in time O(nm) (if

such a separator exists). As a consequence, this implies

that a conditional IV can be found in time O(n2m) and

simple instrumental sets in time O(nm). Finding a gen-

eral instrumental set seems to be harder: In [22] we show

that testing if a given set Z is a generalized instrumental

set is NP-complete.



1.2 Our contribution

It is well known that in a given DAG G one can find a

d-separator relative to X and Y in time O(n +m). For

example, the set containing all ancestors of X and Y (ex-

cept themselves) is such a separator (see, e.g., [25]). On

the other hand finding separator sets which satisfy some

desirable constraints, like minimality, becomes a much

more challenging task. Recall, that Z is minimal if no

proper subset of Z d-separates X and Y in G.

First nontrivial algorithms for testing and for finding a

minimal d-separator in a DAG were proposed by Tian,

Paz, and Pearl more than two decades ago [21]. To solve

the problems, both algorithms compute first a moral

graph (for a definition see Sec. 2) of a subgraph of G
induced by all ancestors of X and Y , and then reduce

the original problems to testing, resp. to finding min-

imal vertex separators in undirected graphs. The total

time complexity of this approach is O(ma), where ma

denotes the number of edges in the moral graph.

The algorithms of Tian et al. have remained the most ef-

ficient known ones so far. Unfortunately, for some DAGs

of n nodes and m edges, the number of edges ma in the

moral graph can reach a value proportional to m2. For

example, the DAG G over nodes {X,Y, V1, . . . , Vn} and

with edges X → Vi and Vi → Y , for i = 1, . . . , n, has

m = 2n edges, while the corresponding moral graph has

ma = n(n+ 1)/2 + 2n undirected edges.

In this paper we show, to the best of our knowledge for

the first time, how to test and find minimal d-separators

in DAGs directly, i.e., without going through moral

graphs and such that the running time of the algorithms is

linear in the number of edges in GAn(X∪Y) – the subgraph

of G induced by all ancestors of X and Y . We address

general variants of these problems requiring X and Y to

be (non-empty) disjoint subsets of V and Z to be mini-

mal as well as imposing the constraint I ⊆ Z ⊆ R for

given subsets I,R of V, with I ⊆ R. Thus, the nodes in

I (possible empty) are required to be always included in

the d-separating set, even if the set remains a separator

without these nodes. The set V \R corresponds to a set

of unobserved variables. Furthermore, we show how to

extend our approach to test and find in linear time sep-

arators in more general causal structures: AGs, MAGs,

CPDAGs, and restricted chain graphs.

As a direct consequence, our results improve those of

[17, 23, 24, 25] reducing, from quadratic to linear, the

running times of algorithms to test and find minimal

adjustment sets for identification of causal effects with

multiple exposures and outcomes and in the presence of

latent confounding in DAGs, MAGs, CPDAGs, and re-

stricted chain graphs. Moreover, they allow to decrease

by a factor up to n the running time to test and to find

conditional instrumental variables as well as instrumen-

tal sets, which improves the result of [26] and [22].

The paper is organized as follows: Section 2 introduces

notation and standard concepts of graphical models. Sec-

tion 3 explains informally how our algorithms work on

DAGs. Section 4 proves properties of minimal separa-

tors, which are used in Section 5 to show the correct-

ness of the algorithms and to generalize them to AGs and

RCGs. Section 6 continues the applications mentioned in

Subsection 1.1. Section 7 concludes the paper. The omit-

ted proofs can be found in the supplementary material.

2 PRELIMINARIES

We consider mixed graphs G = (V,E) with n = |V|
nodes (variables) and m = |E| ≥ n edges of the form→,

−−, or↔. Between any two nodes is at most one edge.

A walk is a sequence of adjacent nodes. A path is a walk

in which no node occurs twice. The first node is the start

node, the last node is the end node on a walk, and the

remaining nodes are called internal. A cycle is a walk

in which the start and end node are the same node. A

walk is possibly directed, if every edge is undirected −−
or directed→ and pointing away from the start node. A

walk is directed (or causal), if it is possibly directed and

contains only directed edges. A walk is semi-directed, if

it is possibly directed and contains at least one directed

edge. If there is a (possibly) directed path from V to W ,

V is a (possible) ancestor of W and W is a (possible)

descendant of V . Possible ancestors are also called ante-

riors. An(W) (pAn(W)) [De(W) (pDe(W))] denotes

all (possible) ancestors [descendants] of a set of nodes

W. We write X
+∼ Y (X

+∼ Z +∼ Y) to mean a walk

between two nodes from sets X and Y (that also con-

tains node Z). A path is proper (relative to a set X), if

the start node of the path, but no other node, is in X.

Our results hold for DAGs, AGs, MAGs, RCGs, and

CPDAGs. DAGs are the most commonly used causal

graphical models. Each DAG encodes a set of proba-

bility distributions that are consistent to the DAG [13].

A graph is a directed acylic graph (DAG), iff (we use

this abbreviation for ”if and only if”) it contains only→
edges and no directed cycle. Every DAG is an AG and

RCG. Ancestral graphs (AGs) model ancestral relations,

representing all DAGs that have the same ancestral rela-

tions, possibly including additional variables that are not

included in the AG. A graph is an AG, iff (1) for any edge

A← B or A↔ B, A is not an anterior of B, and (2) for

any edge A −− B, there are no edges A ← C, A ↔ C,

B ← C or B ↔ C [18]. A MAG is a maximal AG. A

chain graph (CG) C is a mixed graph containing no ↔



edges or semi-directed cycles [10] and represents a set of

consistent DAG extensions D ∈ CE(C) that are Markov

equivalent, i.e., encode exactly the same probability dis-

tributions. A graph is a restricted chain graph iff (0) it

contains no↔ edges (1) it contains no possibly directed

cycle that contains at least one directed edge (2) for each

triple A → B −− C, there is an edge between A and

C, and (3) every undirected component is chordal. Any

CG with CE(C) 6= ∅ can be transformed to an equiva-

lent RCG. A completed partially directed acyclic graph

(CPDAG) C represents all Markov equivalent DAGs, i.e.,

D1,D2 ∈ CE(C) if and only if D1 and D2 are Markov

equivalent. Every CPDAG is an RCG with additional re-

strictions where directed edges might occur [1, 23].

A node C on a walk π is a collider, if both the preceding

and succeeding edge on the walk have an arrowhead at

C, e.g., → C ← or ↔ C ←. An internal node V on

π is called an almost definite non-collider, if it occurs as

A ← V or V → B or A −− V −− B, where A and B
are the nodes preceding/succeeding V on π. It is called a

definite non-collider (or just non-collider) in the first two

cases or if A and B are not adjacent. An internal vertex

on π is said to be of (almost) definite status, if it is either

a collider or a (almost) definite non-collider on π. A path

is said to be of (almost) definite status if all its internal

vertices are of (almost) definite status.

A walk π in a mixed graph G is active (d-connected,

m-connected, connected) given Z if every definite non-

collider is not in Z and every collider is in An(Z).

The nodes of a path π in a CG G also form a path πD

in any consistent DAG extension D ∈ CE(G), and any

definite non-collider on π is a common non-collider on

πD in DAG D. So a definite status path π is d-connected

in G if and only if πD is d-connected for all D ∈ CE(G)
[29]. In an RCG a definite status walk X +∼ Y exists

iff an almost definite status walk X +∼ Y exists [23].

Every walk in an AG is of almost definite status, since

the forbidden configurations are also forbidden in an AG.

A set Z separates (d-separates, m-separates) sets X and

Y iff there exists no almost definite status walk between

any X ∈ X and Y ∈ Y that is active given Z. A set

Z that separates X and Y is a separator (relative to X

and Y). Traditionally separators in DAGs, RCGs and

CPDAGs are called d-separators and separators in AGs

and MAGs are called m-separators, but we use a unified

definition and thus omit the d- and m- prefixes.

The augmented graph (G)a of a certain AG G is an undi-

rected graph with the same nodes as G whose edges are

all pairs of nodes that are collider connected in G (two

nodes A,B are called collider connected if there is a path

between them on which all nodes except A and B are
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Figure 3: Modified rules for Bayes-Ball in DAGs to test

or to find minimal separators. If the nodes V,No, Ni are

in a given A ⊆ V then the Bayes ball goes through

the entering top edge e and passes through the node V
to nodes No (out-node), resp. Ni (in-node). Forbidden

passes are marked as dashed arrows. The figure shows

all possible combinations of types of entering (e) and

leaving edges (f ) and considers two cases: V 6∈ Z and

V ∈ Z (gray). The leaving edge f can correspond to

the entering edge e in which case the ball might return

to the start node of the entering edge, which is called a

bouncing ball in the original Bayes-Ball algorithm [19].

colliders). Two node sets X and Y are m-separated by

a node set Z in G if and only if Z is an X-Y node cut

in (GpAn(X∪Y∪Z))
a [18]. (G)a of a DAG G is called the

moral graph (G)m. The construction of the augmented

(moral) graph is termed moralization.

3 MINIMAL SEPARATORS IN DAGS

WITHOUT MORALIZATION

In this section we show how to test and find minimal d-

separators in DAGs directly, i.e., without going through

moral graphs, such that their running time is linear in the

number of edges in the graph GAn(X∪Y). The algorithms

are special cases of those presented in Sec. 5, which work

for more general classes of causal graphs. The aim to dis-

cuss our methods separately for DAGs is twofold: firstly

it is interesting to see how they work for this most ba-

sic causal structure and secondly, after that it is much

easier to understand the main ideas behind the general

algorithms.

We start with a set-theoretic characterization of minimal

d-separators between sets X and Y in a DAG. Let A be

the set An(X ∪ Y ∪ I). Let X⋆ (resp. Y⋆) denote the

“closure” of X (Y), i.e., the set of all nodes V for which

there exists a path from X (Y) to V that only contains

nodes of A and no non-collider in Z. Then a set Z is a

minimal d-separator under the constraint I ⊆ Z ⊆ R if

and only if the following minimality criterion is satisfied

(a) X⋆ ∩Y = ∅, and

(b) I ⊆ Z ⊆ A ∩R, and

(c) Z \ I is a subset of X⋆ ∩Y⋆.



The first condition says, the set is actually a separator,

since it blocks all paths between X and Y. The sec-

ond condition is a basic constraint. The third condition

verifies that Z is minimal. For each node Z ∈ Z \ I
there exists a path from X to Z and a path from Y to

Z, so Z cannot be removed from Z without the paths

meeting each other and turning Z into a non-separator.

Rather than the first condition the equivalent condition

Y⋆ ∩X = ∅ could be tested. The sets X⋆ and Y⋆ can

be easily found in time O(n +m) as in the well-known

Bayes-Ball algorithm [19], with the difference that (1)

when starting in the initial nodes X (or Y) the ball re-

stricts its tour to nodes from a given set A and (2) rules

for single passing steps are modified. The rules used in

our algorithm are shown in Fig. 3: assuming V ∈ A a

combination (edge type e, V , edge type f , neighbor N )

is a “passing” one if and only if N ∈ A and if V ∈ Z

then V is a collider on (e, V, f). Thus, the minimality

criterion can be tested in linear time.

For example, the minimality criterion applied to DAG

G1 in Fig. 4, yields that Z = {V3} is a minimal separa-

tor. Set Z = {V2, V3} is a separator, but not a minimal

one, because it is not a subset of X⋆ = {X,V1, V2} and

Y⋆ = {Y, V3}. Similarly, in G2 (Fig. 4), set {V2, V3}
will be recognized as a minimal separator, while Z =
{V1, V2, V3}, with X⋆ = {X,U, V1, V2, V3} and Y⋆ =
{Y, V2, V3}, will be not. For an empty set Z = ∅ all

nodes are reachable, so X⋆ = Y⋆ = V in both DAGs

and condition (a) shows Z = ∅ is not a separator at all.

The main result of this section is that finding minimal

separators in DAGs can also be done in linear time. The

idea is to choose a set like Z = (A∩R∩X⋆ ∩Y⋆)∪ I,
which automatically fulfills the minimality criterion.

However, one cannot use this expression directly, since

X⋆ and Y⋆ cannot be calculated without knowing Z. But

we can perform the intersections one after another and

calculate X⋆ with an initial separator Z0. From this we

obtain a new separator, which can be used to calculate

Y⋆. This leads to the following algorithm:

function FINDMINSEPINDAG(G,X,Y, I,R)
Set A := An(X ∪Y ∪ I)
Choose a separator Z0 := R ∩ (A \ (X ∪Y))
Calculate X⋆ using separator Z0

Set ZX := Z0 ∩ X⋆ ∪ I
Calculate Y⋆ using separator ZX

if X⋆ ∩Y 6= ∅ then return ⊥

return Z := ZX ∩ Y⋆ ∪ I

For the DAGs in Fig. 4, this approach returns Z = {V2}
in G1, resp. Z = {V2, V3} in G2.

G1

X

V1

V2 V3 Y

G2

X

V1 V3

U V2 Y

Figure 4: Two DAGs: in G1 all variables are observed,

in G2 variable U is unobserved. We assume I = ∅. For

X = {X} and Y = {Y } FINDMINSEPINDAG computes

in G1 separator {V2}, resp. in G2 separator {V2, V3}.

4 GENERALIZED MIN SEPARATORS

Before we present our general algorithms in the next sec-

tion, below we give some properties of minimal sepa-

rators, which help to prove correctness of our methods

(most proofs are given in the supplementary material).

Let G be an AG or RCG (for easier understanding, the

reader may firstly consider only AGs and then verify that

the results are true for RCGs, too). Let X,Y, I,R be sets

of nodes with I ⊆ R, R ∩ (X ∪Y) = ∅. We only con-

sider minimal separators under the constraint that they

contain I, i.e., a separator Z is minimal if there exists no

separator Z′ with I ⊆ Z′ ( Z.

First we show that separation rules for walks between

nodes X and Y given Z become simpler, when the walk

only contains nodes of pAn(X ∪Y ∪ Z):

Lemma 4.1. There exists an active almost definite sta-

tus walk between X and Y given Z iff there exists an

almost definite status walk between X and Y s.t. no non-

collider is in Z and every collider is in pAn(X∪Y∪Z).

Lemma 4.2. If π is an almost definite status walk X
+∼

Y active given Z, all nodes of π are in pAn(X∪Y∪Z).

Lemma 4.1 and Lemma 4.2 are of course the reason a

construction like a moral graph is possible. This implies

a corollary, which has also be used in [25] for AGs and

[23] for RCGs.

Corollary 4.3 (Ancestry of minimal separators). Every

minimal separator Z is a subset of pAn(X ∪Y ∪ I).

This means that pAn(X ∪ Y ∪ Z) = pAn(X ∪ Y ∪ I)
for every minimal separator Z ⊇ I. So the moral

graph for every minimal separator is (GpAn(X∪Y∪Z))
a =

(GpAn(X∪Y∪I))
a, and all problems involving minimal

separators can be solved with corresponding standard al-

gorithms in the undirected, moral graph. However, the

moral graph can haveO(n2) many edges, e.g., if there is

one node that is a child of all other nodes. Hence there

are no linear time algorithms using the moral graph, and

we will use another approach to solve the problems.

Tian, Paz and Pearl show in [21] that a separator Z in a

DAG is minimal, if and only if no node Z ∈ Z can be



removed from Z, i.e., iff Z\Z is not a separator for every

Z ∈ Z. This statement appears trivial, however it is not,

since there might be a separator from which removing

any single element does not result in a separator while

removing two elements together still yields a separator.

But due to [21] we know that there is no such case. The

result can easily be generalized to AGs or RCGs and then

holds for any separator Z, but the proof is lengthy, so

we will only state it for separators Z, with I ⊆ Z ⊆
pAn(X∪Y∪I), which only requires a rather short proof.

Lemma 4.4. A separator Z between X and Y, with I ⊆
Z ⊆ pAn(X ∪Y ∪ I), is minimal iff for every Z ∈ Z \ I
the set Z \ Z is not a separator relative to (X,Y).

Now we show that a separator relative to (X,Y) is mini-

mal, iff all its nodes are reachable from both X and Y. It

is easy to see that this is true in an undirected graph, and

was used by [21] and [24] to find minimal separators in

the moral graph. But it also holds immediately in an AG

or RCG:

Lemma 4.5. A separator Z with I ⊆ Z is a minimal

separator, if and only if for every Z ∈ Z \ I there exists

an almost definite status walk π : X
+∼ Z +∼ Y s.t.

every node on π is in pAn(X ∪ Y ∪ I) and every non-

collider is not in Z \ Z.

Proof. (⇒): Let Z be a minimal separator. For every

Z ∈ Z \ I the set Z \ Z is not a separator due to

Lemma 4.4, so there is an almost definite status path

(walk) π : X +∼ Y open given Z \ Z and blocked by

Z, i.e., blocked by Z, so Z is a non-collider on π. Ev-

ery other non-collider is not in Z \ Z or π was already

blocked. From Corollary 4.3 we know Z ⊆ pAn(X ∪
Y ∪ I), so all nodes of π are in pAn(X ∪ Y ∪ Z) =
pAn(X ∪Y ∪ I) due to Lemma 4.2.

(⇐): Every node in Z \ I is on an almost definite status

walk in pAn(X ∪Y ∪ I), so Z ⊆ pAn(X ∪Y ∪ I). Let

Z ∈ Z \ I and π be such a walk. Every collider on π is

in pAn(X∪Y ∪ I) = pAn(X∪Y ∪ (Z \Z)), so due to

Lemma 4.1 Z \ Z does not separate X and Y, and Z is

minimal.

5 GENERAL ALGORITHMS

In this section we give efficient algorithms to test and

find minimal separators in AGs and RCGs and show their

correctness based on the results of the previous section.

Because a DAG is also an AG and RCG, and the algo-

rithms for DAGs of Sec. 3 are a special case of the al-

gorithms here, this also shows the correctness of the al-

gorithms for DAGs. Due to relations MAG ⊆ AG and

CPDAG ⊆ RCG our algorithms also work for MAGs

and for CPDAGs.

We start with algorithm REACHABLE that returns all

nodes W ∈ V that are reachable from a node X ∈ X

by an almost definite status walk on which all non-

colliders are not in Z and restricted to nodes in A. To

traverse graph G REACHABLE uses the modified rules of

the Bayes-Ball algorithm [19] shown in Fig. 5.

function REACHABLE(G,X,A,Z)
Boolean function pass(e, V, f,N)

return (N ∈ A)∧
(e,V , f ) is of almost definite status ∧
(V ∈ Z ⇒ V is a collider on (e, V, f))

Q := {(←, X) | X ∈ X }
⊲ queue of pairs (type of edge, node) to visit

P := Q ⊲ all processed pairs
while Q not empty do

Let (e, V ) be the top element in Q
Remove (e, V ) from Q
for all neighbors N of V do

Let V and N be connected by edge f
if (f,N) /∈ P ∧ pass(e, V, f,N) then

Add (f,N) to Q and P

return {W | (e,W ) ∈ P for any edge type e}

Each node is only visited once from each adjacent edge,

so the running time is O(n + m). Equipped with this

method to calculate X⋆ and Y⋆ in mixed graphs, we are

ready to give an algorithm which tests the minimality cri-

terion presented in Sec. 3 generalized to AGs and RCGs.

function TESTMINSEP(G,X,Y,Z, I,R)
if (I 6⊆ Z) ∨ (Z 6⊆ R) then return false

A := pAn(X ∪Y ∪ I)
if Z * A then return false

X⋆ := REACHABLE(G,X,A,Z)
if X⋆ ∩Y 6= ∅ then return false

if Z \ I * X⋆ then return false

Y⋆ := REACHABLE(G,Y,A,Z)
if Z \ I * Y⋆ then return false

return true

Proposition 5.1. TESTMINSEP tests if a set Z is a mini-

mal separator, with I ⊆ Z ⊆ R, in time O(n+m).

Proof. TESTMINSEP first checks the basic constraints

I ⊆ Z ⊆ R and the constraint Z ⊆ pAn(X∪Y∪I) from

Corollary 4.3. REACHABLE finds all nodes that are reach-

able from X (resp. Y) by almost definite status walks

that only contain nodes of A = pAn(X ∪ Y ∪ I) =
pAn(X ∪Y ∪ Z) and on which all non-colliders are not

in Z. From Lemma 4.2 it follows Z is a separator if

and only if X⋆ contains no node of Y (alternatively and

equivalently Y⋆ contains no node of X).

Then the algorithm returns true iff Z \ I ⊆ X⋆ ∩ Y⋆,

which means for each Z ∈ Z \ I there exist almost def-

inite status walks X
+∼ Z and Z +∼ Y through A on

which each non-collider is not in Z, i.e., all non-colliders
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Figure 5: Expanded rules for Bayes-Ball in AGs and RCGs. Assuming all nodes are in pAn(X ∪ Y ∪ I), the rules

list (in boxes) all combinations of edge pairs through which the ball is allowed to pass. Similarly as in Fig. 3 the

Bayes ball goes through the entering top edge and passes through the node V to the bottom nodes {No, Ni, Nb, Nu}.
Forbidden passes are marked as dashed edges. Here, by a pair of edges we mean a top edge and V → No (out-node),

resp. V ← Ni (in-node), V ↔ Vb (bidirected edge), and V −− Nu (undirected edge). We consider two cases: V 6∈ Z

and V ∈ Z (marked gray). The leaving edge can correspond to the entering edge in which case the ball might return

to the start node of the entering edge, which is called a bouncing ball in the Bayes-Ball algorithm.

of the combined walk X
+∼ Z +∼ Y are not in Z\Z (un-

der the assumption that X,Y,Z are disjoint sets), and

according to Lemma 4.5 the set Z is minimal.

The algorithm runs in O(n+m) as it only uses elemen-

tary set operations and calls to REACHABLE. Here we as-

sume the sets are represented as Boolean arrays of size n
(or hashsets), so nodes can be added, removed and found

in constant time.

Now, we provide our general method to find a minimal

separator. We proceed in two steps: First we construct an

algorithm, called FINDNEARESTSEP, to compute a sepa-

rator between X and Y that uses nodes closer to X than

to Y whenever possible. Next, using FINDNEARESTSEP,

we give an algorithm to find a minimal separator. An ad-

vantage of such a scheme is that already separators gen-

erated by FINDNEARESTSEP have some useful properties

that we have mentioned in Subsection 1.1 and will dis-

cuss in more detail in the next section. Intuitively, both

algorithms find separators according to (X,Y) which

are “nearest” to X.

function FINDNEARESTSEP(G,X,Y, I,R)
A := pAn(X ∪Y ∪ I)
Z0 := R ∩ (A \ (X ∪Y))
X⋆ := REACHABLE(G,X,A,Z0)
if X⋆ ∩Y 6= ∅ then return ⊥

return Z ∩ X⋆ ∪ I

function FINDMINSEP(G,X,Y, I,R)
ZX := FINDNEARESTSEP(G,X,Y, I,R)
ZY := FINDNEARESTSEP(G,Y,X, I,ZX)
if (ZX = ⊥) ∨ (ZY = ⊥) then return ⊥

return ZY ∩ ZX ∪ I

Proposition 5.2. Algorithm FINDMINSEP finds a mini-

mal separator Z, with I ⊆ Z ⊆ R, in time O(n+m).

Proof. Since all Z0,ZX ,ZY are enclosed between I and

A, we have A = pAn(X ∪ Y ∪ Z0) = pAn(X ∪
Y ∪ ZX) = pAn(X ∪ Y ∪ ZY ). Thus we can ig-

nore colliders on the walks between X and Y through A

due to Lemma 4.1. FINDMINSEP always returns a set if

X, Y are separable, because Z0 contains all observable

nodes of A and thus blocks as many paths as possible.

When FINDMINSEP returns a set, it is a separator with

I ⊆ Z ⊆ R. The test X⋆ ∩ Y 6= ∅ ensures that Z0

is a separator, and all nodes removed for ZX (ZY ) are

not reachable from Y (X), so they cannot block a walk

and the set remains a separator after their removal. All

remaining nodes are reachable from both X and Y, so Z

is minimal according to Lemma 4.5.

The algorithm runs in O(n+m) as it only uses elemen-

tary set operations and calls to REACHABLE.

6 APPLICATIONS

Here we apply our algorithms to the problems introduced

in Subsection 1.1.

6.1 DAG consistency testing

The Causal Markov Condition says a variable V is con-

ditionally independent of V \ (Pa(V ) ∪ De(V )) given

its parents Pa(V ). These n independence statements can

be tested on the joint probability distribution of the data,



but they involve large sets of variables, which are statis-

tically hard to verify. It is thus desirable to reduce the

number of variables in each independence test.

This can be accomplished by performing pairwise con-

ditional tests on a topological ordering V1, . . . , Vn of the

variables V, with Vj /∈ An(Vi) for i < j. If there is no

edge Vi → Vj , then Vi should be conditionally indepen-

dent of Vj given Pa(Vj). This yields n2/2 tests between

single variables.

In [14] it has been shown that one can replace the parents

Pa(Vj) in the test by any set Zij such that all nodes of

Zij are closer to Xj than to Xi. So minimal separators

Zij ⊆ Rij = {Xk ∈ V | d(Xk, Xj) < d(Xi, Xj)} can

be used in the test (where the function d measures the

length of the shortest path between two nodes).

An empirical analysis on random DAGs has found that

depending on the number of edges using such minimal

separators requires up to 90% fewer conditioning vari-

ables than using the parents in the graph [25].

However, finding a minimal separator for all pairs of

nodes using moral graphs requires time O(n4). Using

our linear time algorithms this time reduces to O(n2m),
which is more feasible.

6.2 Adjustment sets

For a DAG [24, 25], adjustment amenable MAG [24,

25], CPDAG [17, 23] or RCG [23] G the following

criterion is satisfied by a set Z iff Z is an adjust-

ment set. Let PCP(X,Y) = {W ∈ V \ X |
W lies on a proper possible causal path from X to Y}.

Definition 6.1 (Proper back-door graph [25]). Let

X,Y ⊆ V be pairwise disjoint subsets of variables. The

proper back-door graph, denoted as GpbdXY, is obtained

from G by removing every edge from a node in X to a

node in PCP(X,Y).

For an example of the proper back-door graph see Fig. 1.

Definition 6.2 (Constructive back-door criterion (CBC)

[25]). Let X,Y,Z ⊆ V be pairwise disjoint subsets of

variables. The set Z satisfies the CBC relative to (X,Y)
if (a) Z ⊆ V \pDe(PCP(X,Y)) and (b) Z separates X

and Y in the proper back-door graph GpbdXY.

The CBC makes it easy to test or find a minimal adjust-

ment set. Every minimal adjustment set is a minimal

separator in the proper back-door graph GpbdXY under the

constraint R′ = R \ pDe(PCP(X,Y)). The necessary

set operations and construction of the proper backdoor

graph can be done in linear time, but finding a minimal

separator using existing algorithms based on the moral

graph [21, 24, 25] requires quadratic time. Thus, the best

known algorithms for minimal adjustment sets so far take

quadratic time. Using our algorithms we conclude:

Corollary 6.3. Testing and finding a minimal adjust-

ment set in a DAG, CPDAG, RCG or in an adjustment

amenable MAG can be done in linear time.

Separators constructed by our algorithms presented in

Sec. 5 have certain properties useful to obtain valid ad-

justment sets which, besides minimality, satisfy some

further conditions. Below we show that our methods

allow to tackle some issues of statistical significance.

Specifically, we discuss selections of covariates for esti-

mating total effect that minimize the asymptotic variance

of the estimators.

In [27] VanderWeele and Shpitser recommended the fol-

lowing strategy for determining which covariates to con-

trol for as confounders if a causal structure G is known:

Suppose that for some set Z1 which d-separates X and

Y, and that under an ordering of the elements of Z1,

V1, . . . , Vt, for some s and Z2 = {Z1, . . . , Zs}, set

X ∪ Z2 d-separates Y and Zi for i = s + 1, . . . , t, then

Z2 d-separates Y and X. This allows to discard covari-

ates that may be a cause of treatment X but unrelated to

the outcome Y and thus Z2 should be preferred to Z1.

In [8, 15] Henckel et al. provide a more general criterion

to compare two adjustment sets:

Z1 \ Z2 is d-separated from Y given Z2 ∪X and

Z2 \ Z1 is d-separated from X given Z1,
(1)

and prove that selecting covariates according to this crite-

rion decreases the asymptotic variance of the total effect

estimate in the multivariate linear Gaussian models.

Recall, that the total effect of X = {X1, . . . , Xk} on

Y = {Y1, . . . , Yℓ} in a linear structural causal model is

an ℓ× k matrix such that the (j, i)-th element (τyx)ji =
∂

∂xi

E[Yj |do(x1, . . . , xk)]. If Z is a valid adjustment set

relative to (X,Y) in G then τyx = τzyx, where (τzyx)ji
is the coefficient of Xi in the linear regression of Yj on

X and Z. Let τ̂zyx denote the ordinary least squares esti-

mate of τzyx. The goal is to find Z that for every j, i min-

imizes the asymptotic variance of the estimator (τ̂zyx)ji.

In general, if θ̂N , with N = 1, 2, 3, . . . is a sequence of

estimators, then the asymptotic variance of θ̂ is defined

as aVar[θ̂] = limN→∞(N · θ̂N ), whenever this limit ex-

ists. Below we write, for short, aVar[τ̂z2
yx] ≤ aVar[τ̂z1

yx] if

aVar[(τ̂z2
yx)ji] ≤ aVar[(τ̂z1

yx)ji] for all j and i.

Lemma 6.4 ([8, 15] ). Let for given X,Y in a DAG G
two valid adjustment sets Z1,Z2 satisfy condition (1).

Then aVar[τ̂z2
yx] ≤ aVar[τ̂z1

yx].

If the MAG is not adjustment amenable for X and Y, no
adjustment set exists. Unfortunately the test for adjustment
amenability requires O(k(n+m)) time for k children of X.



Basically the asymptotic variance of the estimator via ad-

justment decreases when nodes close to Y are included

in the set and worsens with nodes close to X. As al-

gorithm FINDNEARESTSEP includes all nodes reachable

from Y, it is well-suited to find optimal adjustment sets.

Proposition 6.5. For X,Y in a DAG G and a valid

adjustment set Z, with I ⊆ Z ⊆ An(X ∪ Y ∪ I),

Z2 := FINDNEARESTSEP(GpbdXY,Y,X, I,Z) computes in

time O(n + m) a valid adjustment set Z2, such that

for every valid adjustment Z1 ⊆ Z, with I ⊆ Z1,

aVar[τ̂z2
yx] ≤ aVar[τ̂z1

yx].

When all nodes in the graph are observed, the algo-

rithm returns an optimal adjustment set. The asymp-

totic runtime is the same as the closed form expression

Pa(PCP(X,Y)) \ De(PCP(X,Y)) given by [8, 15] for

an optimal adjustment set.

In the presence of unobserved nodes our algorithms can

still find an optimal subset of another adjustment set.

This improves upon the running time of the pruning algo-

rithm of [8, 15] in the case of adjustment sets consisting

of ancestors of X ∪Y ∪ I. However, further research is

needed to develop a linear time algorithm to handle the

case of unobserved ancestors. For example in the DAG

X → Y ← U → Z with a latent node U the opti-

mal adjustment set is {Z} and not the minimal empty

set found by our algorithms. In many graphs with unob-

served nodes no optimal adjustment set exists [8, 15].

6.3 Instrumental variables

In linear causal models the causal effect can be identified

using (conditional) instrumental variables.

Definition 6.6 (Conditional Instrument [13]). Z is said

to be a conditional instrument relative to X → Y , if

there exists a set W ⊆ R such that

(a) W does not d-separate Z and X ,

(b) W d-separates Z and Y in Gc = G \ (X → Y ),
and

(c) W contains no descendant of Y .

In [26] we have shown that given variables X , Y and Z it

is NP-complete to decide if Z is a conditional instrument,

because finding the set W is NP-complete. Nevertheless,

if there exists any conditional instrument for given vari-

ables X,Y , there also exists a (so called ancestral) condi-

tional instrument Z ′ with its W′ ⊆ An(Y, Z ′), and this

W′ can be found inO(nm) [26]. Our new algorithm can

find such a set W′ in linear time O(n+m).

A set W ⊆ R∩ An(Y, Z) is a nearest separator relative

to (Y, Z) if (i) W d-separates Y and Z (ii) for all X ∈
An(Y ∪ Z) \ {Y, Z} and any path π connecting X and

Z in the moral graph (GAn(Y ∪Z))
m if there exists W′ ⊆

R∩ An(Y, Z) that separates Y and Z given W′ and that

does not contain a node of π then W does not contain a

node of π either [26, 22]. A nearest separator relative to

(Y, Z) can be used as W in Definition 6.6 to test if Z is

an ancestral conditional instrument [26] relative to X →
Y (note that the nearest separator does not depend on X).

It can also be used for a set of instrumental variables [22].

Nearest separators should not contain unnecessary nodes

similar to minimal separators. However, the rules de-

ciding which nodes are unnecessary are different, so the

concepts of nearest and minimal separators are orthogo-

nal. There exist minimal separators that are not nearest

separators like a set {W} in the DAG Y → X → W →
Z, and there exist nearest separators that are not minimal,

like {W1,W2} in the DAG W1 → Y →W2 → Z.

Using algorithm FINDNEARESTSEP we get the following

Proposition 6.7. Given a DAG G, nodes Y and Z,

FINDNEARESTSEP(G, Y, Z, ∅,R) finds in timeO(n+m)
a nearest separator W ⊆ An(Y, Z) according to (Y, Z),
if Y and Z are d-separable, or it returns ⊥ otherwise.

7 CONCLUSIONS AND DISCUSSION

In this paper we show that testing and finding a minimal

separator in DAGs, resp. in MAGs, AGs, CPDAGs and

RCGs can be done in linear time. Our algorithms are

implemented in the open-source software dagity [20]

and we hope they allow to improve the efficiency of more

complex graphical causal methods, that use d- or m-

separations as graphical primitives.

It is an open problem if such an algorithm exists for com-

mon chain graphs. Every CG C, with CE(C) 6= ∅ can be

transformed to an equivalent RCG for which such a sep-

arator can be computed. However, such a transformation

needs time O(k2m) ≤ O(n4), where k describes the

maximum degree of nodes in a given CG [23].

We have considered minimal separators under the con-

straint I ⊆ Z, such that there should not exist any separa-

tor Z′ ( Z in the class of all separators containing I. One

could also investigate strongly-minimal separators, i.e.,

such that I ⊆ Z and no separator Z′ ( Z exists. If X and

Y are separable, then a minimal Z always exists and can

be found in linear time. But a strongly-minimal Z might

not exist at all, e.g., in the DAG X → I ← V → Y with

I = {I}, set Z = {I, V } is the only separator satisfy-

ing I ⊆ Z, but the empty set is a separator as well. If

a strongly-minimal separator exists, it is also a minimal

one. However, in [25] it is shown that it is NP-hard to

find a strongly-minimal separating set. Hence attempt-

ing to design efficient algorithms for strongly-minimal

separators would be futile.
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