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Abstract

Aggregation systems (e.g., Uber, Lyft, Food-
Panda, Deliveroo) have been increasingly used
to improve efficiency in numerous environ-
ments, including in transportation, logistics,
food and grocery delivery. In these systems,
a centralized entity (e.g., Uber) aggregates sup-
ply and assigns them to demand so as to op-
timize a central metric such as profit, number
of requests, delay etc. Due to optimizing a
metric of importance to the centralized entity,
the interests of individuals (e.g., drivers, de-
livery boys) can be sacrificed. Therefore, in
this paper, we focus on the problem of serving
individual interests, i.e., learning revenue maxi-
mizing policies for individuals in the presence
of a self interested central entity. Since there
are large number of learning agents that are
homogenous, we represent the problem as an
Anonymous Multi-Agent Reinforcement Learn-
ing (AyMARL) problem. By using the self
interested centralized entity as a correlation en-
tity, we provide a novel learning mechanism
that helps individual agents to maximize their
individual revenue. Our Correlated Learning
(CL) algorithm is able to outperform existing
mechanisms on a generic simulator for aggre-
gation systems and multiple other benchmark
Multi-Agent Reinforcement Learning (MARL)
problems.

1 INTRODUCTION

In many real-world domains, there is a need to match
supply with customer demand continuously. For exam-
ple, taxi aggregation companies match taxis to customers,
food delivery aggregation companies match restaurants

and delivery boys to customers. We refer to these
problems as Multi-agent Sequential Matching Problems
(MSMPs). In these MSMPs, individuals (taxi drivers, de-
livery boys etc.), who provide supply, earn more by being
at advantageous locations. In this work we develop an ap-
proach for individual agents to learn these advantageous
locations in the presence of other learning agents.

Existing research has represented such learning problems,
where learning agents have to learn in the presence of
other learning agents using the Multi-Agent Reinforce-
ment Learning (MARL) model. MARL problems are
challenging as interaction between agents makes the en-
vironment non-stationary and hence Q-learning based
approaches (which rely on domain stationarity) typically
do not converge.

Existing work [Littman, 1994; Hu et al., 1998; Hu and
Wellman, 2003] has focussed on computing equilibrium
policies by representing MARL problems as learning in
Stochastic Games (SG). Due to the existence of multiple
equilibria and the challenge of coordinating agents to fo-
cus on the same equilibria, other alternatives have been
considered [Shoham et al., 2003; Weinberg and Rosen-
schein, 2004]. Bowling and Veloso [2001] proposed the
following criteria for multi-agent learning: (1) rational-
ity: learning should terminate with a best response to the
play of other agents and (2) convergence: learning should
converge to a stationary policy. In this paper, we focus
on these two criterion for MARL problems with a large
number of homogenous agents.

The key contribution of this paper is in developing a
generic learning approach that exploits the presence of an
aggregation system (e.g., Uber, Lyft, FoodPanda). We pro-
pose Correlated Learning (CL), where individual agents
learn to play best response against a central agent, which
learns joint actions that maximize social welfare. Similar
to the work by Bowling and Veloso [2001], we demon-
strate that CL satisfies the rationality and convergence
criteria when the agent population is large.



We empirically show on multiple MARL problems that
CL results into a “win-win situation” where both central
agent and individual agents receive better payoff than the
other MARL algorithms suitable for individual learning in
the presence of a large number of agents. For aggregation
systems, where there are many similar agents, we consider
Anonymous MARL model that can capture homogeneity
in agent models and anonymity in agent interactions to
ensure scalable and efficient learning.

2 MOTIVATING PROBLEMS: MSMPs

This paper is motivated by Multi-agent Sequential Match-
ing Problems (MSMPs) where there are multiple agents
and there is a need for these agents to be matched to
customer demand. Aggregation systems (Uber, Lyft, De-
liveroo etc.) maximize the overall system wide revenue
in MSMPs. A key characteristic of these domains is that
interactions between individual agents are anonymous.
Here we describe three popular MSMPs:

Taxi Aggregation: Companies like Uber, Lyft, Didi,
Grab etc. provide taxi supply aggregation systems. The
goal is to ensure wait times for customers is minimal or
amount of revenue earned is maximized by matching taxi
drivers to customers. However, these goals of the aggrega-
tion companies may not be aligned to the individual driver
objective of maximizing their own revenue. The method
provided in this paper will be used to guide individual
drivers to “right” locations at “right” times based on their
past experiences of customer demand, taxi supply and
guidance provided by the aggregation companies. Inter-
actions between taxi drivers are anonymous, because the
probability of a taxi driver being assigned to a customer
is dependent on the number of other taxi drivers being
in the same zone (and not on specific taxis being in the
zone) and customer demand.

Food or Grocery Delivery: Aggregation systems have
also become very popular for food delivery (Deliveroo,
Ubereats, Foodpanda, DoorDarsh etc.) and grocery deliv-
ery (AmazonFresh, Deliv, RedMart etc.) services. They
offer access to multiple restaurants/grocery stores to the
customers and use services of delivery boys/delivery vans
to deliver the food/grocery. Similar to taxi case, there is
anonymity in interactions as the probability of a delivery
boy/van being assigned a job is dependent on number
of other delivery boys/vans being in the same zone and
customer demand.

Supply Aggregation in Logistics: More and more on-
line buyers now prefer same day delivery services and
tradition logistic companies which maximize usage of
trucks, drivers and other resources are not suitable for
it. Companies like Amazon Flex, Postmates, Hitch etc.

connect shippers with travelers/courier personnel to serve
same day/on-demand delivery requests. The courier per-
sonnel in this system can employ the proposed method
to learn to be at “right” place at “right” time by learning
from the past experiences. Interactions between couriers
are anonymous due to dependence on number of other
couriers (and not on specific couriers).

3 RELATED WORK

MARL algorithms that represent the model as stochastic
games can be broadly divided into two categories: equi-
librium based learning and best response based learning.

In the equilibrium based learning, algorithms try to learn
policies which results into Nash equilibrium or e—Nash
equilibrium. Minimax-Q [Littman, 1994] is considered
to be the first equilibrium-based MARL algorithm which
uses minimax rule to learn equilibrium policy in two-
player zero-sum Markov games. Hu and Wellman [2003]
proposed Nash-Q learning which extends the classic sin-
gle agent Q-learning [Watkins and Dayan, 1992] to gen-
eral sum stochastic games. Nash-Q learning uses value
of Nash equilibria of each state to update the Q-values
and is shown to converge to equilibrium under certain as-
sumptions. Friend-or-Foe Q-learning (FFQ) [Littman,
2001] proposed learning adversarial and coordination
equilibrium and it has less strict convergence condition
compared to Nash-Q. Correlated-Q learning [Greenwald
et al., 2003] is similar to Nash-Q but it uses value of
correlated equilibria to update the Q-values instead of
Nash equilibria. These algorithms are not practical in
environments with large number of agents and with large
state and action space. One recent example in this cate-
gory is Mean field Q-learning (MFQ) [Yang et al., 2018]
which where individual agents learn Q-values of its inter-
action with average action of its neighbour agents. These
algorithms focusing on equilibrium learning does not pro-
vide any guarantee that the policy will not converge to
a sub-optimal equilibrium in case multiple Nash equilib-
ria exists. Equilibrium selection [Harsanyi et al., 1988]
is a sub-field of game theory which focuses on select-
ing certain equilibrium over another. The discussion on
equilibrium selection is outside the scope of this paper.

In the best response based MARL, individual agents try to
learn policies which are best response to the joint policy
of the other agents. NSCP (non-stationary converging
policies) learning was proposed by Weinberg and Rosen-
schein [2004] which models other agents in the environ-
ment and learns a best response policy. Lanctot et al.
[2017] uses deep reinforcement learning to compute the
best response to a distribution over policies, but it assumes
prior knowledge of a set of opponent policies. Learning
with Opponent Learning Awareness (LOLA) was intro-



duced by Foerster et al. [2018] which minutely modifies
the objective of the player to take into account their oppo-
nents’ goals. Though these algorithms which model oppo-
nents are relevant to our work, they do not scale to a large
number of agents present in aggregation systems. Ficti-
tious self play (FSP) [Heinrich et al., 2015] is an excellent
example of learning of best response through self play.
FSP is a machine learning framework that implements
fictitious play [Brown, 1951] in a sample-based fashion.
Heinrich and Silver [2016] proposed neural fictitious self
play (NFSP) which combines FSP with neural network
function approximator. Learning best response through
self play in MARL are known to be scalable. However,
they are often sub-optimal because environment becomes
non-stationary from a single agent’s perspective. While
learning best responses, some recent work [Lowe et al.,
2017; Nguyen et al., 2017; Yang et al., 2018] consider
presence of a central agent which provides extra informa-
tion to the individual agents. Our work uses the similar
framework but we also consider the fact that the objec-
tive of the central agent might not be aligned with the
objective of individual agents. More specifically, in CL
individual agents learn to play best response policy to the
central agent’s social welfare policy.

4 BACKGROUND

In this section we provide a brief overview of reinforce-
ment learning and other relevant concepts.

4.1 REINFORCEMENT LEARNING (RL)

Reinforcement Learning [Sutton and Barto, 1998] is a
popular method for solving Markov Decision Process
(MDP) when the model of MDP is not known. An MDP is
formally defined as the tuple (S, A, T, R), where S is the
set of states, A is the set of actions, T'(s, a, s) represents
the probability of transitioning from state s to state s’ on
taking action ¢ and R(s, a) represents the reward obtained
on taking action a in state s. RL agents learn a policy that
maximizes their expected future reward while interacting
with the environment. Q-learning [Watkins and Dayan,
1992] is one of the most popular RL approach, where the
value function (s, a) are updated based on experiences
given by (s,a,s’,r):

Q(s,a) «+ (1 —a)Q(s,a) + alr + 7 max Q(s',a")]

Where « is the learning rate and - is the discount factor.

DQN Mnih et al. [2015] approximates the Q-values with
a deep neural network. This deep network for Q-values is
parameterized by a set of parameters, 6 and the parame-
ters are learned using an iterative approach that employs

gradient descent on the loss function. Specifically, the
loss function at each iteration is defined as follows:

Ly =E[(y"°N — Q(s,a:0))?] (1

where yPON = r + ymax, Q(s’,a’;07) is the target
value computed by a target network parameterized by
previous set of parameters, . Parameters 6~ are frozen
for some time while updating the current parameters 6.
To ensure independence across experiences this approach
maintains a replay memory .7 and then samples experi-
ences from that replay memory.

4.2 ANONYMOUS MULTI-AGENT
REINFORCEMENT LEARNING (AyMARL)

Multi-Agent RL (MARL) involves multiple agents in a
shared environment which must learn to maximize either
joint payoff (cooperative MARL) or their individual pay-
offs (competitive/non-cooperative MARL). For MSMPs,
the environment is generally considered to be divided
into Z zones and action of individuals is to select a zone
to move. Verma et al. [2019] modeled anonymous ver-
sion of MARL (AyMARL) for MSMPs. AyMARL is a
specialization of the SG model that considers interaction
anonymity. Formally, it is represented using the tuple:

<N7 87 {Ai}iENa T7 {RZ}Z€N>

N is the number of agents. S is the set of states, which
is factored over individual agent states in MSMPs. For
instance in the taxi problem of interest, an environment
state s is the vector of locations (zone) of all agents, i.e.,
s(e S) = (z1,.-.,2i,---,2n). A; is the action set of
each individual agent. In case of the taxi problem, an
action a;(€ A;) represents the zone to move to if there is
no customer on board. 7 is the transitional probability of
environment states given joint actions.

Given interaction anonymity of the agents, the state and
action space are further compacted as agent population
distribution over zones and aggregated action distribution
of agents. More specifically, state of the environment is
represented as s = (dy, ..., dz), where d, is the fraction
of agent population present in zone z,i.e., ) .- d. = 1.
Furthermore, the action available to agents present in zone
z is A, the set of zones which can be reached from z
in a single time step. The joint action is then defined as
a=(a',...,a®), where a* = (a*)c4. and a¥ is the
fraction of agents present in zone z selecting to move to
zone k (ZkeAz ak =1).



S CORRELATED LEARNING FOR
HOMOGENEOUS AGENTS

To understand the core facets of the approach, we first de-
velop correlated learning method for homogenous agents
in this section. We extend it to AYMARL problems for
MSMPs in the next section. As discussed in the Section
1, the objective of the central agent is to maximize the
social welfare whereas individual agents try to maximize
their own payoff.

There are N individual agents and one central agent
present in the environment. Central agent does not in-
teract directly with the environment and learns only from
the experiences of the individual agents. Just to reiter-
ate, a; € A denote action of agent 7, where A is the
action space of the individual agents. As agents are ho-
mogeneous, instead of modeling their joint action as a
vector of actions of individual agents, we model it as a
vector of number of agents selecting each available ac-
tion. We use @ = (n;);jc4,a € A to denote the joint
action where n; is the number of agents selecting action
J €A can; =N and Ais the joint action space.
Superscript c is used to denote that action a® has been
derived from the central agent’s policy. a_; is the joint
action of all the agents except agent i, i.e., a = (a—;, a;).
Note that as a is count based and does not consider agents’
identities, there are |.A| possible combinations of a_; and
a; which will produce a single joint action a. State space
is denoted by S.

Algorithm 1 provides the key four steps involved in
CL.

o Central agent suggests current social welfare policy to
all the individual agents. Line 4 of the algorithm shows
this step.

e Individual agents either follow the suggested action
with €5 probability or play their best response policy
with 1 — e, probability. While playing the best response
policy, the individual agents explore with €3 probability
(i.e. €3 fraction of (1 — €2) probability) and with the
remaining probability ((1 — e3) fraction of (1 — €3))
they play their best response action. Line 6 shows this
step.

e Environment moves to the next state. All the individ-
ual agents observe their individual reward and update
their best response values assuming that the other agent
followed the suggested action. Line 7 shows this step.

e Central agent observes the true-joint action performed
by the individual agents. Based on the cumulative
reward of all the individual agents and the true joint-
action, the central agent updates its own learning. Line
8 shows this step.

Algorithm 1 Correlated Learning

1: Initialize central agent’s
Qc(s,a)Vs € S,Va e A
2: For all the individual agent ¢, initialize best re-
sponse Q-values arbitrarily Q;(s,a—_;,a;)Vs €
SV(a_;,a;) € A
3: while not converged do
4:  compute joint action for the central entity
a® < e -greedy (Q.(s, a)).
for All agent i do
with probability €5,
a; < follow a“
with remaining probability 1 — e
a; < eg-greedy(Qi(s, a’,, a))

7: Perform action a; and observe next sate s’ and
reward r;. Update agent’s learning.
Qi(s,a%,;,a;) +— (1 — @)Qi(s,a",,a;) +
a [ri +ymax, qe Qi(s', a’s;, a’)}

8:  Compute true joint action a, central agent’s reward

re = »_, ;. Update central agent’s learning.

Quls,a) « (1 — a)Qu(s,a) + a[rc T

ymaxg Q.(s,a’)

Q-values arbitrarily,

AN

To follow a® is step 6, individual agents take action j
with probability n; /N . a’® in step 7 is the social welfare
policy of central agent for state s’. The individual agents
play their best response based on their belief that others
are following the suggested policy whereas the central
agent acts as a correlation entity, hence we call it cor-
related learning. There is a difference between the way
individual agents and central agent update their Q-values
in steps 7 and 8. While central agent updates the value
based on true joint action performed, the individual agents
update their values based on the recommendation of joint
action by the central entity.

Central agent’s learning is dependent on the experiences
of the individual agents. Hence, if individual agents ex-
plore sufficiently (infinite exploration is a criteria for the
learning to converge), the central agent’s joint-action ex-
ploration would also be sufficient. We now argue that
social welfare policy and individual agents’ best response
policies converge to a stationary policy.

Lemma 1. Central agent’s learning converges to a sta-
tionary policy.

Proof. Given the e-greedy approach for each of the indi-
vidual agents, all the joint state and joint action combina-
tions will be explored in the limit with infinite exploration
(GLIE) [Singh et al., 2000]. Since learning of central
agent is only dependent on the combined experiences of



the individual agents and since individual agent explo-
ration is exhaustive, central agent’s learning is equivalent
to reinforcement learning. Therefore, it will converge to
a stationary policy. O

5.1 DISCUSSION

As indicated earlier, our focus is on finding rational poli-
cies that are stationary. While we cannot yet guarantee,
we are able to intuitively argue for these properties.

First, as individual agents update their Q-values over indi-
vidual action and joint recommended action for all other
agents, it will be ideal if our approaches learn the true
best response values for ensuring rational behavior. This
is feasible if we generate sufficient experiences of the
suggested joint action. In Algorithm 1, each individual
agent either follows the suggested action, or selects a ran-
dom action. Selecting random action while exploration
can be considered as idiosyncratic i.i.d. (independent and
identically distributed) noise. We argue that during high
exploration phase they do generate experiences of the sug-
gested joint action. The intuition comes from the common
assumption in the game theory that the idiosyncratic noise
is averaged away if the agent population is large [Sand-
holm, 2010; Carmona and Delarue, 2014; Nutz, 2018].
Hence, during exploration they generate experiences of
suggested joint action and thus learn the values for true
joint action.

Once the individual agents have learned values of true
joint actions, the action suggested by the central agent
works as a synchronization mechanism for them. Sup-
pose for suggested joint action a“ for state s, agents have
figured out their respective best response action and the
resulting aggregated joint action is a. Even if in reality a“
and a are not same, whenever joint action a“ is suggested,
agents will play their respective best response and the
true joint action will always be a. As shown in Lemma 1,
the social welfare policy converges to a stationary policy,
hence the best response policies will also converge to a
stationary policy.

Hence under normal assumptions of Q-learning, CL in-
tuitively satisfies the two criteria of the rationality and
convergence if the agent population is large.

6 CL FOR AyMARL

While the basic version of CL described in the previous
section is easy to understand, it does not scale very well
due to the combinatorial state and action spaces when
considering large numbers of agents. We now extend CL
for large scale AyMARL problems by converting discrete
combinatorial state and action spaces into continuous val-

ues. We use the zone based model of MSMPs provided in
Section 4.2. As discussed in that section, both joint state
and joint action are vector of continuous values (fraction
of agent population), hence, a tabular learning of Q-values
is difficult. Deep neural network, which is popular for
function approximation, can be used to estimate Q(s, a)
values for the central agent '. Deep deterministic policy
gradient [Lillicrap et al., 2015] is an excellent algorithm to
learn deterministic policies for domains with continuous
actions. The assumption is that the policy is deterministic,
which is a reasonable assumption for MSMPs of interest.
Central agent maintains an actor network p.(s; 0%) and a
critic network Q.(s, a;%). Central agent learns the so-
cial welfare policy from the experiences of the individual
agents. The target value mentioned in Equation 1 for the
central agent is computed as follows.

y=> ri+71Qc(s’, ne(s’;04);69)
ieEN

The joint state in AyMARL is aggregated distribution
of agent population and from an individual agent’s per-
spective, it needs to keep track of its exact location for
efficient learning of best responses. Hence, the state view
of an individual agent is given by (s, z;) which is the
current location of the agent for a given aggregated joint
state s. The experience of an individual agent is given
by < s,z;,aZ,a;,7;, 8",z > which can be interpreted
as after taking action a; in state (s, z;) agent i received
r; as immediate payoff and moved to state (s’, z;) given
the joint action suggested by the central agent was a?.
The agents maintain their best response value network
Qi(s,a?,z;,a;;0;) where a; € A,, is the available ac-
tions in zone z;. Furthermore, the individual agents com-
pute their target value as follow.

’
roZi 1T,
yi =i +ymaxQi(s’, ac’, z;, aj; 0;)
a’

i

Here a.‘ is the social welfare policy of the central agent
for zone z/ for the next joint state s’.

7 EXPERIMENTS

We analyze and evaluate CL on four different example
domains. We first experiment on a taxi simulator which
is validated on a real-world data. Then we evaluate it on
a synthetic online to offline service aggregation simula-
tor. To show the effectiveness of CL, we also perform
experiments on two stateless games.

'Use of non-linear function approximator such as neural
network does not preserve any mathematical convergence guar-
antees. However in practice it has been seen to converge [Mnih
etal., 2013, 2015].



Figure 1: Road network of Singapore divided into zones

Taxi Simulator

Figure 1 shows the map of Singapore where road network
is divided into zones (figure from Verma et al. [2019]).
First, based on the GPS data of a large taxi-fleet, we di-
vided the map of Singapore into 111 zones. Then we used
the real world data to compute the demand between two
zones and the time taken to travel between the zones. CL
is scalable as it focuses on individual learning. However,
simulating a very large number of agents (each of them
using deep neural network) requires extensive computer
resources and with the academic resources available, we
could not perform a simulation with a very large number
of agents. Hence, we computed proportional demand for
100 agents and simulated for 100 agents.

Synthetic Online to Offline Service Simulator

We build the synthetic simulator used in Verma et al.
[2019].We generated synthetic data to simulate various
combinations of demand and supply scenarios in online
to offline service settings described in Section 2. We used
grid world and each grid is treated as a zone. Demands
are generated with a time-to-live value and the demand
expires if it is not served within time-fo-live time peri-
ods. Furthermore, to emulate the real-world jobs, the
revenues are generated based on distance of the trip (dis-
tance between the origin and destination grids). There
are multiple agents in the domain and they learn to select
next zones to move to such that their long term payoff is
maximized. At every time step, the simulator assigns a
trip to the agents based on the number of agents present
at the zone and the customer demand. In our experiments,
we make a realistic assumption that the trip might not
end in a single time step and time taken to complete the
trip is proportional to the distance between the origin and
destination grids. The revenue of an agent can be affected
by features of the domain such as

e Demand-to-Agent Ratio (DAR): The average number
of customers per time step per agent.

o Trip pattern: The average length of trips can be uniform
for all the zones or there can be few zones which get
longer trips (for ex. airports which are usually outside

the city) whereas few zones get relatively shorter trips
(city center).

e Demand arrival rate: The arrival rate of demand can
be either static w.r.t. the time or it can vary with time
(dynamic arrival rate).

We performed experiments on the synthetic dataset where
we simulated different combinations of these features.

Traffic Game

Traffic game [Chen et al., 2018] is a stateless coordination
game motivated by traffic control task where players need
to select a route such that they do not cause congestion.
N players present in the domain need to coordinate in a
way such that congestion on route k, I = >, v L(zi=k)
is neither too many or too few, where x; is the route
selection of agent ¢. The reward function for maintaining
desired congestion on a route k is Gaussian function [}, -
e~ (=n)* /7% where i 1s the desired mean value of
congestion and oy, is the penalty for deviation from the
mean value. All the players on the same route receives
same reward. The objective of a central traffic controller
is to have congestion on each route to be as close to the
respective mean value as possible. Hence its goal is to
maximize the social welfare whereas the other players are
self interested player maximizing their own reward.

When does the meeting start?

”When does the meeting start?” Guéant et al. [2011] is
a stateless coordination game where a number of partici-
pants need to attend a meeting. The meeting is scheduled
to start at 7" but it will start only after a minimum number
of participants are present for the meeting. Hence very
often it starts several minutes after the scheduled time.
As a result, each participant ¢ has their own preference
T; when they would like to arrive for the meeting. Also,
when participant ¢ decides to arrive at ¢;, in reality he
arrives at t; + o; due to uncertainties (traffic etc.). More
precisely, t; is the action taken by the participant and o;
is the uncertainty he is subjected to.

To decide about their arrival time, each participant op-
timize their cost. Suppose the meeting started at ¢t and
participant ¢ arrived at ¢;, then he incurs following cost

Bi(|t — ti]) + BT — i) + Bsmax(0,t; — T)

Here first part is lateness/waiting cost, second part is
deviation from the preference cost and the last part is
reputation cost. 5 parameters are weigtages of these cost
components. Participants learn when to arrive given T’
and T; such that their individual cost is minimum. We can
assume presence of a central entity (say manager of the
team whose member are supposed to attend the meeting)
whose objective is to minimize the social welfare cost.
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Figure 2: Taxi simulator

We compare CL with three baseline algorithms: (1) den-
sity entropy based deep Q-learning (DE-DQN) [Verma
et al., 2019], (2) neural fictitious self play (NFSP) [Hein-
rich and Silver, 2016] and (3) mean-field Q-learning
(MFQ) [Yang et al., 2018]. DE-DQN is an independent
learning algorithm which learns from local observation.
It predicts agent population density distribution and uses
entropy of population density distribution to improve in-
dividual learning. NFSP is a fictitious self play learning
algorithm where agents learn from their local observation.
As CL has advantage of having a central agent providing
more information, for fair comparison we provided joint
action information to NFSP. We compared with original
NFSP as well, but it performed worse than the NFSP with
joint action information. Hence we do not include those
results here. As discussed in Section 6, we considered the
action space of the central agent to be continuous for all
our experimental domains.

DE-DQN algorithm is suitable for the setup with partial
observation and uses entropy of population density distri-
bution to improve learning. As we consider full view of

joint action in case of the two stateless coordination game
example, we do not perform experiments for DE-DQN
for these examples.

A centralized cooperative learning will ensure an opti-
mal social welfare revenue given the reward function and
transition function are same for all the individual agents.
Hence, as an upper bound we also compare with social
welfare (SW) policy where the all the agents execute the
social welfare policy cooperatively.

We evaluated the performance of all learning methods on
two key metrics:

e Social welfare payoff computed by aggregating payoffs
of all the individual agents. Higher values imply better
performance.

e Variation in payoff of individual agents after the learn-
ing has converged. This is to understand if agents can
learn well irrespective of their initial set up and ex-
periences. This in some ways represents fairness of
the learning approach. We use box plots to show the
variation in individual revenues, so smaller boxes are
better.

Payoff of all the agents is reset after every evaluation pe-
riod time steps”. For taxi simulator and online to offline
service simulator one evaluation period consisted of 1000
(1e3), whereas for traffic game and “when does the meet-
ing start” experiments, it was set to 100 time steps. The
graphs where social welfare has been compared provide
running average of revenue over 100 evaluation periods
for taxi simulator and online to offline service simulator,
whereas for the remaining two experimental domains it
provides running average of 20 evaluation periods.

Hyperparameters

Our neural network consisted of one hidden layer with
256 nodes. We also used dropout layer between hidden
and output layer to prevent the network from overfitting.
dam optimizer for all the experimental domains. We used
AFor taxi simulator and online to offline service simulator
the learning rate was set to le-5 whereas for the remaining
two stateless experiments it was set to le-4. For all the
methods we performed e-greedy exploration and € was
decayed exponentially. Training is stopped once € decays
to 0.05. In all the experiments, each individual agent
maintained a separate neural network. We experimented
with different values of aniticipatory parameter for NFSP
and used 0.1 which provided the best results.

Taxi Simulator

Figure 2 presents the performance comparison for taxi

2A time step represents a decision and evaluation point in
the simulator.
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Figure 3: Social welfare and variance in individual revenues comparison for online to offline service simulator

simulator where the zone structure and demand distribu-
tion were simulated using real-world data. In Figure 2a
we can see that CL’s social welfare value is similar to that
of centralized cooperative learning. However Figure 2b
shows that variance in the payoff of individual agents is
minimum for SW. This is expected as all the agents fol-
low the same mixed policy computed by the central agent.
Furthermore variance for CL is lower than the other three
algorithms.

As seen in Figure 2a, the social welfare value of CL is
~ 13 — 20% higher than the other three algorithms. It
means that there are some “lost demand” (demands that
were not served) for NFSP, MFQ and DE-DQN which are
being served by SW and CL.

Figure 2c displays error between central agent’s social
welfare policy and the aggregated joint policy of individ-
ual agents. To compute aggregated joint policy of individ-
ual agents in zone z, we compute best response of agents
present in the zone and then compute af, = (a¥, )rea.,
where af_ is the fraction of agents present in zone z
whose best response is to move to zone k. Then we com-
pute root mean squared error (RMSE) between vectors
a? and aj, to compute error in policies for zone z. Fi-
nally, we compute average error over all the zones to get
the error between social welfare policy and the joint best
response policy.

We can see that the social welfare policy and the joint
best response policy converges to different policies as the
error between them does not go down to zero. However
our argument in Section 5.1 that the policy converges to a
stationary policy is validated empirically here.

Online to offline service simulator

For online to offline service simulator, we used multi-
ple combination of agent population size and number of
zones (20 agents-10 zones, 20-agents-15 zones, 30 agents-
15 zones, 50-agents-25 zones etc.). The trip pattern is
uniform and demand arrival rate is static until specified
otherwise.

Figure 3 presents plots for social welfare and boxplots
for variance in individual revenue for various experimen-
tal setups. The first result is for a setup with dynamic
arrival rate, non-uniform trip pattern with DAR=0.4. So-
cial welfare value of CL is ~10-12% more than NFSP,
MFQ and DE-DQN (Figure 3a). In Figure 3d we can see
that the best agent of CL generates revenue more than its
counterpart for the algorithms.

For setup with dynamic arrival rate and DAR=0.5 in Fig-
ure 3b, social welfare value of CL is ~8-12 % more than
NFSP, MFQ and DE-DQN. Also as seen in boxplots of
Figure 3e, there are around 50 % of the agents who earn
more than the social welfare value of SW. We observed
similar results for the setup with non-uniform trip pattern
and DAR=0.6 (Figures 3c and 3f), CL generated ~6-10
% more social welfare revenue than NFSP, MFQ and
DE-DQN.

Here are the key conclusions:

e SW performs best due to its cooperative learning and
uniformity of the agents.

e Performances of NFSP, MFQ and DE-DQN with re-
spect to SW vary with varying complexity of the ex-
perimental setup (with and without dynamic arrival



rate and non-uniform trips). However CL’s social wel-
fare was consistently at par with SW’s social welfare.
This provides the motivation to the central entity to
compute social welfare policy and share it with the
non-cooperative individual learners.

e Apart from having lesser variance in the individual
revenues, the best and worst performing agents of CL
always perform better than the best and worst perform-
ing agents of NFSP, MFQ and DE-DQN respectively.
This provides motivation for the individual agents to
use CL instead of other individual learning algorithms.

e A considerable number (20-50%) of individual agents
earn more than the social welfare value of SW. This
justifies for the self-interested agents to play best re-
sponse policy (CL) instead of learning cooperatively
(SW).
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Traffic Game

Figure 4 shows results for traffic game with 100 agents
with 10 routes. We generated different values and p and
o for each route to make the learning more complex (as
opposed to having same 1 and o for every route). As seen
in previous example domains, the social welfare value of
CL is similar to that of SW and is ~15-18% more than
NFSP and MFQ. As it is stateless game, other algorithms
were also able to achieve low variance in the individual
values.

When does the meeting start?

We performed experiments with 40 participants with op-
tions of arriving at 15 different time steps. We used nor-
mal distribution to introduce uncertainty o; and 5 values
were set to 1. Each participant had their own preference
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Figure 5: Social welfare and individual costs for “when
does the meeting start?”’ experiment

of arrival time which makes the domain asymmetric and
hence, a central policy might not provide a social optimal.
Figure 5a confirms this and we see that performance of
SW is worst. Also, cost for CL is ~6-8 % lesser than
MFQ and NFSP. Figure 5b illustrates costs of 40 partic-
ipants where the results has been shown as stacked bar
chart. Each bar represents cost of single participant for
these forur algorithms. We can observe that the cost of
individual agents are minimum for CL.

9 CONCLUSION

In this work we present correlated learning (CL) for ag-
gregation systems. We exploit the presence of a central
entity in aggregation systems to use them as a correlation
agent where non-cooperative individual agents learn to
play best response against a social welfare policy. We
first provide a generic CL and then extend it to use in
anonymous domains. Our experiments on multiple exam-
ple domains show that both central agent and individual
agents get benefited by using CL as compared to other
individual learning algorithms.
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