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Abstract

Various regularizers inducing structured-
sparsity are constructed as Lovász exten-
sions of submodular functions. In this pa-
per, we consider a hierarchical probabilistic
model of linear regression and its kernel
extension with this type of regularization,
and develop a variational inference scheme
for the posterior estimate on this model.
We derive an upper bound on the parti-
tion function with an approximation guar-
antee, and then show that minimizing this
bound is equivalent to the minimization of
a quadratic function over the polyhedron
determined by the corresponding submodu-
lar function, which can be solved efficiently
by the proximal gradient algorithm. Our
scheme gives a natural extension of the
Bayesian Lasso model for the maximum
a posteriori (MAP) estimation to a variety
of regularizers inducing structured sparsity,
and thus this work provides a principled way
to transfer the advantages of the Bayesian
formulation into those models. Finally, we
investigate the empirical performance of our
scheme with several Bayesian variants of
widely known models such as Lasso, gen-
eralized fused Lasso, and non-overlapping
group Lasso.

1 INTRODUCTION

The development of penalized regression methods
for simultaneous variable selection and coefficient
estimation is one of the most important problems
in the fields of machine learning and statistics. In
particular, Lasso and its generalizations have shown

excellent performance in many situations with ex-
tensive theoretical appraisals [28, 29]. Furthermore,
extensions to structured penalties have attracted
attention in these fields, with applications in a va-
riety of engineering and scientific scenarios. In this
context, the recent pioneering works by Bach [3]
revealed relationships between structured sparsity
and submodular functions; many known regulariz-
ers inducing structured sparsity coincide with the
Lovász extensions of submodular functions. Some
novel structured regularizers have been developed
based on this relationship with specific submodular
functions [5, 27].

From a Bayesian perspective, it is well known that
Lasso is the Bayesian posterior mode under indepen-
dent Laplace priors [22]. In addition, grouped gamma
priors yield the Bayesian group Lasso, whose max-
imum a posteriori (MAP) estimate coincides with
group Lasso [24]. The spike-and-slab prior has been
considered as another candidate for variable selec-
tion [17, 32]. Although Bayesian models could bring
us various fruitful benefits in regression analyses, pos-
terior inference in the models in general requires the
application of a Markov chain Monte Carlo (MCMC)
method such as Gibbs sampling, which can be com-
putationally expensive and limits the range of appli-
cations. Therefore, approximate inference methods,
such as variational inference and MAP estimate, have
been developed for respective models. However, to
the best of our knowledge, neither a Bayesian nor re-
lated probabilistic methods for regression with struc-
tured sparsity from submodular functions have been
studied despite their wide coverage of the existing
structured penalties.

In this paper, we consider a hierarchical probabilis-
tic formulation of linear regression and its kernel
extension regularized with the Lovász extensions of
submodular functions, and develop a variational infer-
ence method for the posterior inference in this model.



The proposed method gives a natural extension of
the Bayesian Lasso model for the MAP estimate to
a variety of regularizers inducing structured sparsity,
and hence this work provides a principled way to
transfer the advantages of the Bayesian formulation
into those models. As is the case with hierarchical
probabilistic models including the Bayesian Lasso,
the main difficulty in the inference of the posterior
distribution of our model lies in computing the par-
tition function. To address this difficulty, we derive
a variational upper bound on the partition function
and show that minimizing this bound is equivalent
to the minimization of a quadratic function over the
polyhedron determined by the corresponding submod-
ular function, which can be solved efficiently by the
proximal gradient algorithm. Then, we give another
interpretation of our variational bound, demonstrat-
ing that it is proportional to the MAP value of our
model. We also give a theoretical approximation
guarantee for the bound. Finally, we investigate the
empirical performance of our method with several
Bayesian variants of widely known models such as
Lasso, generalized fused Lasso, and non-overlapping
group Lasso.

Variational Bayesian inference in probabilistic mod-
els involving submodular functions has received at-
tention recently in machine learning although those
works have focused on models for discrete random
variables [6, 7, 8]. Variational bridge regression [2]
provides a variational lower bound on a partition
function, however, this method does not coincide
with Lasso. Meanwhile, it is known that a varia-
tional bound on the partition function of a Gibbs
distribution can be obtained by averaging MAP esti-
mates of randomly perturbed models [13, 14]. Note
that, by contrast, our variational bound is obtained
from the MAP estimate of a single model, meaning
that no averaging scheme is required.

The remainder of this paper is organized as follows.
First, in the paragraph that follows, we describe no-
tation used in this paper and give preliminaries on
submodular functions. In Section 2, we develop a
hierarchical probabilistic model whose MAP estimate
coincides with penalized regression with submodular
functions. Next, in Section 3, we develop a vari-
ational upper bound on the partition function. In
Section 4, we discuss a connection between this upper
bound and the MAP value of our model. Then, in
Section 5, we will see that this connection can be used
to produce a general method to compute our vari-
ational upper bound, and we discuss more efficient
methods for specific cases. In Section 6, we derive
an approximation guarantee on our upper bound. In

Section 7, we extend our model to kernel regression
model. Finally, we empirically demonstrate the effec-
tiveness of our scheme in Section 8, and we conclude
the paper in Section 9.

Notation and Preliminaries We first describe
the notation used in this paper. For an integer p,
let [p] denote the set {1, 2, . . . , p}. For a positive-
semidefinite matrix A ∈ Rp×p and a vector b ∈ Rp,
we define ‖b‖A as

√
b>Ab. Let x ∈ Rp and X ∈

Rn×p be a vector and a matrix. We define a vector
|x| ∈ Rp as |x|(i) = |x(i)| for each i ∈ [p]. For a set
S ⊆ [p], we define x(S) as the sum

∑
i∈S x(i).

Next, we review some background on submodular
functions necessary for the remaining parts of this
paper. A set function F : 2[p] → R is said to be
submodular if

F (S) + F (T ) ≥ F (S ∪ T ) + F (S ∩ T )

for every S, T ⊆ [p]. For S ⊆ [p] and i ∈ [p] \ S, we
define F (i | S) = F (S ∪ {i})− F (S) as the marginal
gain of adding i when having had S. It is well known
that F : 2[p] → R is submodular if and only if F (i |
S) ≥ F (i | T ) for every S ⊆ T ⊆ [p] and i ∈ [p] \ S;
this is called the diminishing return property. All
submodular functions we consider in this work are
supposed to be normalized, that is, F (∅) = 0.

For a submodular function F : 2[p] → R, the sub-
modular polyhedron and the symmetric submodular
polyhedron of F are defined as

P (F ) = {x ∈ Rp | x(S) ≤ F (S) ∀S ⊆ [p]} and
|P |(F ) = {x ∈ Rp | |x| ∈ P (F )},

respectively. The base polyhedron of F is defined as
B(F ) = {x ∈ P (F ) | x([p]) = F ([p])}. The Lovász
extension f : Rp → R of a submodular function
F : 2[p] → R is defined as

f(x) = max
z∈B(F )

z>x.

By Edmonds’ algorithm, we can find the maximizer
z∗ of the above maximization problem as follows [10]:
Let π1, . . . , πp be an ordering of [p] such that x(π1) ≥
x(π2) ≥ · · · ≥ x(πp). Then, we set z∗(πi) = f(πi |
π1, . . . , πi−1). Moreover, any extreme point of B(F )
can be constructed in this manner.

We also consider a function |f | : Rp → R defined as
|f |(x) = f(|x|). We can verify that

|f |(x) = max
z∈B(F )

z>|x| = max
z∈P (F )

z>|x| = max
z∈|P |(F )

z>x.



2 INFERENCE WITH PRIORS
FROM SUBMODULAR
FUNCTIONS

Consider a linear regression model with parameters
w ∈ Rp, i.e., y = x>w+ε, where y ∈ R, x ∈ Rp, and
ε ∈ R is an independent and identically distributed
(i.i.d.) Gaussian noise term. Here, we treat the
parameters as random quantities, along with a prior
distribution whose structure is characterized by a
submodular function F : 2[p] → R. We consider the
following hierarchical model:

y | w, F ∼ N (Xw, σ2I) and

w | F ∼ 1

Z0
exp

(η
2
‖w‖22 + λr(w)

)
,

(1)

where η > 0 is a regularization factor for the `2
term; r : Rp → R is determined via F , i.e., r = f
or r = |f |; λ ∈ R+ is another regularization factor
for r; and Z0 :=

∫
Rp exp

(
η
2‖w‖

2
2 + λr(w)

)
dw is the

partition function. This model is a natural extension
of the Bayesian Lasso of Park and Casella [22], which
corresponds to the case that F is the cardinality
function and η = 0. Under this model, it is easy to
see that the negative log posterior density for w |y, F
is given by

1

2σ2
‖Xw − y‖22 +

η

2
‖w‖22 + λr(w),

where we drop an additive constant independent of
w. Consequently, for any fixed F , the posterior mode
gives an estimate of a linear regression model with
regularization by r and the `2 term. As described
below, this covers several existing regularized regres-
sion models. In addition, the posterior distribution
provides more than point estimates, i.e., an entire
joint distribution, for these models.

As in other Bayesian models, one of the main in-
terests for this model is the posterior inference of
the parameters w given data (y,X). The posterior
distribution is given as

p(w | y, F ) =
1

Z
e−

1
2σ2
‖Xw−y‖22−

η
2 ‖w‖

2
2−λr(w), (2)

where Z is the partition function. For posterior
inference, we need the partition function Z. However,
we cannot afford to compute it in general because the
integral in the partition function cannot be efficiently
computed even in the simplest case of Lasso. Our
challenge in this paper is to develop a variational
inference scheme for this model by constructing a
tight upper bound that can be calculated efficiently
in most practical cases.

Example Models There are various regularizers
that are known to be representable as the Lovász
extensions of submodular functions (refer to [3], for
examples). Model (1) above is a natural extension
of the Bayesian Lasso, in which F is the cardinality
function, to more general cases. One popular exam-
ple is the generalized fused Lasso (GFL), also known
as the total variation regularization [29, 15, 31], in
which the regularizer is given as the Lovász exten-
sion of a cut function associated with an undirected
graph with positive weights. Recently, this has been
extended to regularizers from hypergraphs, which are
also given as the Lovász extension of a submodular
function [27]. Another important class of regularizers
is the one that induces group sparsity. For example,
given a partition (G1, . . . , Gk) of [p], the `1/`∞-norm∑
j∈[k] maxi∈Gj x(i) is given as the Lovász extension

of a coverage function corresponding to this parti-
tion. Group sparsity with overlapping groups similar
to the `1/`∞-norm is also known to be attained by
using the Lovász extension of a coverage function
for the general case [21]. Other examples include
regularization by spectral functions of submatrices
of design matrices [30], and regularization with the
scale-free property of a network [5].

3 VARIATIONAL INFERENCE

In this section, we develop a variational inference
method that approximates Z in (2). For clarity, we
give the explicit form of Z here:

Z =

∫
Rp
e−

1
2σ2
‖Xw−y‖22−

η
2 ‖w‖

2
2−λr(w)dw.

Let P (r) be the polyhedron associated with r, that
is, P (r) = B(F ) if r = f and P (r) = |P |(F ) if
r = |f |. Note that r(w) ≥ g>w for any g ∈ P (r)
from the definition. Then, for any g ∈ P (r), we can
upper-bound Z by

Zg :=

∫
Rp
e−

1
2σ2
‖Xw−y‖22−

η
2 ‖w‖

2
2−λg

>wdw

=

∫
Rp
e
− 1

2

(
‖y‖22
σ2
− 2y>Xw

σ2
+
‖Xw‖22
σ2

+η‖w‖22
)
−λg>w

dw

= e−
1

2σ2
‖y‖22 ×

∫
Rp
e
− 1

2

(
‖Xw‖22
σ2

+η‖w‖22
)

+
(

X>y

σ2
−λg

)>
w

dw

(3)

To further simplify (3), we use the following fact on
Gaussian integrals:
Lemma 3.1 (See, e.g., Chapter 2 of [26]). For a
positive-definite matrix A ∈ Rp×p and a vector b ∈



Rp, we have∫
Rp
e−

1
2x
>Ax+b>xdx =

√
(2π)

p

detA
e

1
2‖b‖

2
A−1 .

Note that matrix MX,σ,η := X>X/σ2 + ηI is
positive-definite as η > 0. Hence, by (3) and
Lemma 3.1, we have

Zg = e−
1

2σ2
‖y‖22

√
(2π)

p

detMX,σ,η
eΨ(g), (4)

where

Ψ(g) :=
1

2

∥∥∥X>y
σ2

− λg
∥∥∥2

M−1
X,σ,η

.

Finally, we can use the following as an upper bound
on Z.

Z = min
g∈P (r)

Zg.

4 RELATION TO MAP
INFERENCE

We show that our variational upper bound Z is pro-
portional to the MAP value of the posterior distribu-
tion (2). More specifically, we show the following.
Theorem 4.1. We have

Z =

√
(2π)

p

detMX,σ,η
· max
w∈Rp

e−
1

2σ2
‖Xw−y‖22−

η
2 ‖w‖

2
2−λr(w).

We will see in Section 5 that this form is useful for
the efficient computation of Z.

To prove Theorem 4.1, we need the following auxiliary
lemma.
Lemma 4.2. Let h : Rp → R be a function defined
as h(g) = 1

2‖b + g‖2A−1 , where g ∈ Rp is a vector
and A ∈ Rp×p is a positive-definite matrix. Then,
the Fenchel conjugate h∗ : Rp → R is of the form

h∗(w) =
1

2
‖w‖2A − b>w.

Proof. By definition, h∗(w) = supg∈Rp
{
g>w −

h(g)
}
. As h is strongly convex, the supremum is

attained at the point gw ∈ Rp such that

∇h(gw) = A−1(b+ gw) = w,

which implies gw = Aw − b. Therefore, we have

h∗(w) = (Aw − b)>w − h(Aw − b)

= (Aw − b)>w − 1

2
‖Aw‖2A−1 =

1

2
‖w‖2A − b>w.

Proof of Theorem 4.1. We start with the following
observation:

min
g∈P (r)

Ψ(g) = min
g∈P (λr)

Φ(−g)

= − min
w∈Rp

{
Φ∗(w) + λr(w)

}
, (5)

where

Φ(g) :=
1

2

∥∥∥X>y
σ2

+ g
∥∥∥2

M−1
X,σ,η

,

the function Φ∗ : Rp→ R is the Fenchel conjugate
of Φ, and the second equality is due to the Fenchel
duality. By Lemma 4.2, we have

Φ∗(w) =
1

2
‖w‖2MX,σ,η

− 1

σ2
y>Xw.

We note that

1

2σ2
‖Xw − y‖22 +

η

2
‖w‖22

=
1

2
‖w‖2MX,σ,η

− 1

σ2
yTXw +

1

2σ2
‖y‖22.

Combining these two equalities, we have

Φ∗(w) =
1

2σ2
‖Xw − y‖22 +

η

2
‖w‖22 −

1

2σ2
‖y‖22.

(6)

By (4), (5), and (6), we have

Z = min
g∈P (r)

Zg = e−
1

2σ2
‖y‖22

√
(2π)

p

detMX,σ,η
eming∈P (r) Ψ(g)

= e−
1

2σ2
‖y‖22

√
(2π)

p

detMX,σ,η

× e−minw∈Rp{ 1
2σ2
‖Xw−y‖22+ η

2 ‖w‖
2
2− 1

2σ2
‖y‖22+λr(w)}

=

√
(2π)

p

detMX,σ,η
· max
w∈Rp

e−
1

2σ2
‖Xw−y‖22−

η
2 ‖w‖

2
2−λr(w).

5 VARIATIONAL UPPER
BOUNDS

5.1 GENERAL CASE

From Theorem 4.1, it suffices to solve the following
problem for the computation of Z:

min
w∈Rp

1

2σ2
‖Xw − y‖22 +

η

2
‖w‖22 + λr(w). (7)

The objective in Eq. (7) is the sum of a quadratic
function and the Lovász extension of a submodular
function, which is non-smooth convex.



Therefore, it can be solved by the proximal gradient
method, and, as shown by Bach [3], its proximal
operator can be reduced to the minimization of the
`2-norm over polyhedron P (r). Moreover, if r = f ,
this problem is the so-called minimum-norm-point
(MNP) problem and is solvable efficiently by the MNP
algorithm. Alternatively, in many practical cases, it
can be solved much more efficiently with parametric
maximum flow algorithms such as those given by
Gallo et al. [12] (see, for example, [31]). Meanwhile,
when r = |f |, the proximal operator for problem (7)
is obtained by, first, solving the minimization of the
`2-norm over polyhedron P (r) = B(F ) and then by
converting the solution to the one for P (r) = |P |(F )
as in Proposition 8.9 of [3].

In the next section, We discuss some special cases in
which the polyhedron P (r) can be simplified, allowing
us to directly compute ming∈P (r) Ψ(g) efficiently.

5.2 SPECIAL CASES

Recall that Z is computed by solving ming∈P (r) Ψ(g)
by Eq. (4). We here discuss some special cases in
which P (r) can be simplified, allowing us to directly
compute ming∈P (r) Ψ(g) efficiently.

Lasso: In this case, we have r(x) =
∑
i∈[p] |x(i)|.

The function r can be identified with |f | : Rp → R
associated with a submodular function F : 2[p] → R
defined as F (S) = |S|. Then, a vector g ∈ Rp belongs
to |P |(F ) if and only if |g|(S) ≤ |S| for every S ⊆ [p],
which is equivalent to |g|(i) ≤ 1. Hence, we have
P (r) = [−1, 1]

p.

As is well known, problem (7) for r(x) =
∑
i∈[p] |x(i)|

can be solved efficiently by the proximal gradient
method with soft-thresholding. Thus, the posterior
inference of the distribution (2) can be performed
using the method described in Section 5. Meanwhile,
using the above structure of P (r), we can minimize
Ψ(g) directly by the proximal gradient method as
follows. For a set C ⊆ R, we define the indicator func-
tion ιC as ιC(x)(i) = 0 if x(i) ∈ C and ιC(x)(i) =∞
otherwise for any vector x (of arbitrary dimension).
Now, computing ming∈P (r) Ψ(g) for Lasso is equiva-
lent to solving the following constrained problem:

min
g∈Rp

1

2

∥∥∥X>y
σ2

− λg
∥∥∥2

M−1
X,σ,η

+
∑
i∈[p]

ι[−1,1](g)(i). (8)

The first term is a differentiable convex function and
the second is a non-differentiable convex function.
Hence, we can minimize (8) by the following iterative
updating procedure: gt+1 = proxι[−1,1]

(gt − ηt∇(g))

for t = 1, 2, . . ., where ηt > 0 is the step size for the
t-th iteration. Moreover, proxι[−1,1]

a is −1 if a < −1,
a if −1 ≤ a ≤ 1, and 1 if a > 1.

Generalized fused Lasso: In this case, we have
r(x) =

∑
{i,j}∈E rij(x), where E is a set of (un-

ordered) pairs and rij : Rp → R is a function de-
fined as rij(x) = |x(i) − x(j)|. Then, the function
r is the Lovász extension of a submodular function
F =

∑
{i,j}∈E Fij , where Fij : 2[p] → R is a submod-

ular function defined as

Fij(S) = [(i ∈ S ∧ j 6∈ S) ∨ (i 6∈ S ∧ j ∈ S)],

where [X] is one if the predicate X evaluates to true
and is zero otherwise.

Now, a vector g ∈ Rp belongs to B(Fij) if and only
if g(S) = 0 for S ⊆ [p] with either i, j ∈ S or i, j 6∈ S
and g(S) ≤ 1 for other S’s. It follows that g(i) ≤ 1,
g(j) ≤ 1, g(i) + g(j) = 0, and g(k) = 0 for every
k ∈ [p] \ {i, j}. This means that g is of the form
pij(χi − χj) for −1 ≤ pij ≤ 1, where χi ∈ Rp
and χj ∈ Rp are the i-th and j-th characteristic
vectors, respectively. It follows that a vector g ∈
Rp belongs to B(F ) if and only if it is of the form∑
{i,j}∈E pij(χi − χj) and pij ∈ [−1, 1] for every

{i, j} ∈ E. Hence, we have

P (r) =
{ ∑
{i,j}∈E

pij(χi−χj) | pij ∈ [−1, 1] ∀{i, j} ∈ E
}
.

Computing ming∈P (r) Ψ(g) for GFL is equivalent to
solving the following problem:

min
pij∈R ∀{i,j}∈E

1

2
‖X>y − λ

∑
{i,j}∈E

pij(χi − χj)‖2M−1
X,σ,η

+
∑
{i,j}∈E

ι[−1,1](pij). (9)

As with the case of Lasso, we can minimize Eq. (9)
by the following simple iterative updating procedure:
pt+1
ij = proxι[−1,1]

(ptij − ηtij∇(ptij)), where ηtij > 0 is
the step size for the edge {i, j} in the t-th iteration.

Generalized isotonic regression: In the soft-
constrained variant of generalized isotonic regression,
we have r(x) =

∑
(i,j)∈E rij(x), where E is a set

of (ordered) pairs and rij : Rp → R is defined as
rij(x) = max{x(i) − x(j), 0}. Then, the function
r is the Lovász extension of a submodular function
F =

∑
(i,j)∈E Fij , where Fij : 2[p] → R is a submod-

ular function defined as Fij(S) = [i ∈ S ∧ j 6∈ S].

Now, a vector g ∈ Rp belongs to B(Fij) if and only
if g(S) ≤ 1 for S ⊆ [p] with i ∈ S and j 6∈ S and



g(S) = 0 for other S’s. It follows that g(i) ≤ 1,
g(j) ≤ 0, g(i) + g(j) = 0, and g(k) = 0 for every
k ∈ [p] \ {i, j}. This means that g is of the form
pij(χi −χj) for 0 ≤ pij ≤ 1. It follows that a vector
g ∈ Rp belongs to B(F ) if and only if it is of the
form

∑
(i,j)∈E pij(χi − χj) and pij ∈ [0, 1] for every

(i, j) ∈ E. Hence, we have

P (r) =
{ ∑
{i,j}∈E

pij(χi−χj) | pij ∈ [0, 1] ∀(i, j) ∈ E
}
.

The rest of the argument is very similar to the case
of the generalized fused Lasso. The only difference
is the replacement of ι[−1,1] with ι[0,1] in Eq. (9).

Group Lasso: In group Lasso, r(x) =∑
G∈G rG(x), where G is a family of disjoint

subsets of [p] and rG(x) = maxg∈G |x(i)|. Then, the
function r can be identified with |f | : Rp → R asso-
ciated with a submodular function F =

∑
G∈G FG,

where FG : 2[p] → R is a submodular function
defined as F (S) = [S ∩G 6= ∅].

A vector g ∈ Rp belongs to |P |(FG) if and only if
|g|(S) ≤ [S ∩G 6= ∅] for every S ⊆ [p] which means
that g(i) = 0 for every i ∈ [p] \G and g(G) ≤ 1. It
follows that a vector g ∈ Rp belongs to |P |(F ) if and
only if |g|(G) ≤ 1 for every G ∈ G. Hence, we have

P (r) = {g ∈ Rp | |g|(G) ≤ 1 ∀G ∈ G}.

Then, the computation of ming∈P (r) Ψ(g) for group
Lasso is equivalent to solving the following problem:

min
g∈Rp

1

2
‖X>y − g‖2

M−1
X,σ,η

+
∑
G∈G

ι[0,1](|g|(G)).

We regard |g|(G) as a one-dimensional vector. The
proximity operator for group Lasso is a projection
onto the `1-ball [9]. Because the second term is a sum
of indicator functions, we obtain an upper bound for
group Lasso by simply employing a generalization of
the proximal gradient method [23].

6 APPROXIMATION
GUARANTEE

In Section 3, we saw that Z is an upper bound on
Z. In this section, we derive an approximation ratio
for Z. More specifically, we show the following.
Theorem 6.1. We have

Z ≤ Z ≤ exp
(B

2

(
1 +

2p

η
+ ‖X+y‖22

))
Z,

where B is the maximum `2-norm of a point in P (r)
and X+ is the pseudoinverse of X.

As we have mentioned, any extreme point of the base
polytope of a submodular function can be constructed
by Edmonds’ algorithm [10]. Then, we can easily
derive that B =

√
p for Lasso, B =

√
|G| for group

Lasso, and B is upper-bounded by the square root of
the maximum size of a cut for generalized fused Lasso
and that of a directed cut for generalized isotonic
regression.

To derive a lower bound on Z, we give an upper
bound on r(w):

Lemma 6.2. For any w ∈ Rp, we have

r(w) ≤ B

2
(1 + ‖w‖22),

where B is the maximum `2-norm of a point in P (r).

Proof. We have

r(w) = max
z∈P (r)

z>w ≤ max
z∈P (r)

‖z‖2‖w‖2

≤ B‖w‖2 ≤
B

2
(1 + ‖w‖22).

Proof of Theorem 6.1. By Lemma 6.2, we can lower-
bound Z by

Zg :=

∫
Rp
e−

1
2σ2
‖Xw−y‖22−

(η+B)
2 ‖w‖22−B2 dw.

Following the calculations in Sections 3 and 4, we
obtain

Z := min
g∈B(F )

Zg

=

√
(2π)

p

detMX,σ,η+B
× max

w∈Rp
e−

1
2σ2
‖Xw−y‖22−

η+B
2 ‖w‖

2
2−B2 ,

which is also a lower bound on Z.1

Let w∗ be the maximizer in the maximization prob-
lem in the statement of Theorem 4.1. Then, we
have

Z =

√
(2π)

p

detMX,σ,η
× e−

1
2σ2
‖Xw∗−y‖22−

η
2 ‖w

∗‖22−λr(w
∗).

Z ≥

√
(2π)

p

detMX,σ,η+B
× e−

1
2σ2
‖Xw∗−y‖22−

η+B
2 ‖w

∗‖22−B2 .

1Although maxg∈B(F ) Zg is a tighter lower bound on
Z, the present lower bound is more convenient for our
analysis.



Further, we note that ‖w∗‖2 ≤ ‖X+y‖2. It follows
that

Z
Z
≤ Z
Z
≤

√
detMX,σ,η+B

detMX,σ,η
e
B
2 ‖w

∗‖22+B
2 −λr(w

∗)

≤
(

1 +
B

η

)p
e
B
2 (1+‖X+y‖22) ≤ e

B
2 (1+ 2p

η +‖X+y‖22)

and the claim holds.

7 EXTENSION TO KERNEL
REGRESSION

In this section, we consider the extension to kernel
regression model [25]. In this model, the negative log
posterior density for w |y, F is given by

1

2σ2
‖Kw − y‖22 +

η

2
‖w‖2K + λr(w),

where K ∈ Rn×n is the kernel matrix. Then, the
partition function is given by

Z =

∫
Rp
e−

1
2σ2
‖Kw−y‖22−

η
2 ‖w‖

2
K−λr(w)dw.

and we define an upper bound on Z by following the
argument in Section 3. Then, we obtain the following
theorem following the argument in Section 4.
Theorem 7.1. If K is positive definite, then we
have

Z =

√
(2π)

p

detM ′
K,σ,η

· max
w∈Rp

e−
1

2σ2
‖Kw−y‖22−

η
2 ‖w‖

2
K−λr(w),

where
M ′

K,σ,η := K>K/σ2 + ηK.

The modification to the methods for computing Z
described in Section 5 is trivial.

8 EXPERIMENTS

In this section, we investigate the empirical per-
formance of our variational upper bound (VUB)
on Bayesian Lasso [22], Bayesian group Lasso [18],
Bayesian fused Lasso, Spike-and-Slab model [17], and
Spike-and-Slab model for group Lasso [32].

As publicly available data sets, we used diabetes
data (p = 10, n = 442) [11], eye data (p = 200, n =
130) [4], and colon data (p = 2000, n = 62) [1] for
Lasso, used birthwt data (p = 16, n = 189) [16],
splice data (p = 28, n = 400) [34], and bardet data
(p = 100, n = 120) [33] for group Lasso, and used two
leukemia data (p = 3564, n = 36 and p = 7128, n =
72) [29] for fused Lasso. We employed the same group
and graph structures as in previous works [29, 19].

Tuning hyperparameters Following the
Bayesian Lasso, which puts a gamma prior on λ,
our upper bound on the log marginal likelihood in
Eq. (4) with a gamma prior for a minimizer g∗ ∈ Rp
of ming∈P (r) Ψ(g) can be rephrased as:

1

2

∥∥∥X>y
σ2

− λg∗
∥∥∥2

M−1
X,σ,η

− 1

2
logZ0

+ (α− 1) log λ− βλ+ C,

where α > 0 and β > 0 are the shape and scale
parameters for the prior, and C is a constant. We
set α to 0.1, and set β to p/n, |G|/2, and |E|/2 for
Lasso, group Lasso, and fused Lasso, and set η to a
small value such as 0.1, respectively, which is default
hyperparameters of prior experiments.

In each of the experiments below, we selected λ that
obtained the highest (estimated) marginal likelihood
for each dataset. Fig. 1 shows examples of the es-
timated upper bounds of the marginal likelihood
without a constant for some of the datasets.

Prediction performance As we have seen in Sec-
tion 6, our variational upper bound can approximate
the partition function with a guaranteed ratio. To
evaluate the effectiveness of our upper bound, we
conducted predictive experiments.

For each dataset, we randomly sampled 90% obser-
vations as the training data and set the rests as the
test data for each experiment. For VUB, we used
the MAP solution as an estimator. As baseline meth-
ods, we used a Gibbs sampler, which estimates the
posterior mean by sampling λ, the MAP solution
from five-fold cross validation (CV) with the same λ
grid as our method, and the Spike-and-Slab model
(Spike-and-Slab)2. We ran experiments ten times
and measured the root mean squared error (RMSE)
for the test data.

Table 1 summarizes the averages and standard devi-
ations of RMSE obtained by our method, the Gibbs
sampler, the CV, and the Spike-and-Slab, where bold-
face denotes the smaller average. We can confirm that
our MAP solutions with the selected λ are compara-
ble or even superior to the posterior mean computed
by the Gibbs sampler, the CV and the Spike-and-
Slab. On colon and leukemia data for which p� n,
the performance of the Gibbs sampler was unstable
because its computation contains matrix inversion
calculus.

2We used spikeslab and MBSGS codes obtained from
CRAN

https://cran.r-project.org/


(a) diabetes data (b) bardet data (c) leukemia data

Figure 1: Variational upper bound on log marginal likelihood on real data sets.

Table 1: Average and standard deviation of RMSE
Data set Model VUB Gibbs CV Spike-and-Slab

diabetes Lasso 0.71± 0.07 0.71± 0.07 0.71± 0.07 0.93± 0.08
eye Lasso 0.09± 0.03 0.10± 0.04 0.09± 0.03 0.68± 0.15
colon Lasso 0.27± 0.01 0.46± 0.13 0.30± 0.09 0.49± 0.12
birthwt Group Lasso 0.66± 0.15 0.65± 0.16 0.66± 0.16 0.72± 0.23
splice Group Lasso 0.28± 0.02 0.28± 0.02 0.28± 0.02 1.10± 0.10
bardet Group Lasso 0.78± 0.46 0.88± 0.46 0.97± 0.97 0.98± 0.70
leukemia Fused Lasso 0.26± 0.11 5.16± 1.87 0.47± 0.06 -
leukemia (big)) Fused Lasso 0.24± 0.06 12.12± 2.79 0.48± 0.04 -

Table 2: Robustness against the change of the number of observed samples
eye data bardet data

n VUB Gibbs CV n VUB Gibbs CV

120 0.09± 0.04 0.10± 0.05 0.09± 0.04 120 0.78± 0.46 0.88± 0.46 0.97± 0.97
100 0.08± 0.02 0.09± 0.02 0.08± 0.02 100 0.78± 0.52 0.79± 0.52 0.98± 1.05
80 0.08± 0.03 0.10± 0.03 0.08± 0.02 80 0.80± 0.54 0.77± 0.55 0.99± 1.13
60 0.09± 0.03 0.10± 0.03 0.09± 0.03 60 0.75± 0.37 0.75± 0.33 0.77± 0.36
40 0.10± 0.04 0.11± 0.04 0.08± 0.04 40 0.75± 0.43 0.79± 0.38 0.92± 0.43

Table 3: Log marginal likelihood on the diabetes
data

n VUB Gibbs

442 −488.52± 1.67 −480.63± 48.45
200 −229.85± 1.44 −244.47± 40.28
100 −118.96± 1.00 −141.20± 37.75
50 −68.19± 0.77 −75.77± 18.42
30 −43.18± 0.45 −53.18± 14.46
20 −30.61± 0.35 −37.71± 9.85
10 −16.56± 0.19 −34.87± 6.39

Robustness of prediction Next, we examined
the robustness of our method, the Gibbs sampler and
the CV on several data sets against the change of the
number of observed samples. Table 2 summarizes
the averages and standard deviations of RMSE on
data sets obtained by subsampling the eye and bardet
data. Our method seems to show robust performance
comparable or superior to that of baselines the Gibbs
sampler and the CV. The computational time for
selecting λ on our estimation method was shorter

than baseline methods because ours did not need
any heavy operation, such as matrix inversions or
parameter estimations on validation sets.

Tightness of approximation Finally, we empiri-
cally examined the tightness of our variational upper
bound on synthetic and diabetes data sets. Although
it has been known as a loose estimator of the marginal
likelihood, we compared our method with the har-
monic mean estimator [20] of the Gibbs sampler be-
cause no other method has been proposed to evaluate
the marginal likelihood of a hierarchical probabilistic
model such as we considered in this work.

We now describe how we generated synthetic data
sets. In the Lasso experiment, all the elements ofX ∈
Rn×p and 20% of elements of w ∈ Rp were sampled
from the standard normal distribution independently
from others. Other elements of w were set to 0.
Then, we sampled y(i) for each i ∈ [p] from the
normal distribution with mean (Xw)(i) and variance
ε > 0 independently from others. In the fused Lasso
experiment, we set 50% of elements of w ∈ Rp to −1



(a) Lasso

(b) Fused Lasso

(c) Group Lasso

Figure 2: Log marginal likelihood on synthetic data
sets

and the remaining elements to 1. As the underlying
graph, we used a path of length p−1. Other variables,
that is, X and y were generated as in the Lasso
experiment.

We run five experiments and calculated the aver-
ages and standard deviations of estimators. We also
examined the approximated marginal log-likelihood
on diabetes data, whose p is the smallest among
the datasets considered, with different numbers of
observations.

The graphs in Fig. 2 show estimated marginal like-
lihoods for varying choices of n and ε when p = 10,
λ = 1, η = 0.01. The estimated upper bounds ob-
tained by our method were close to those of the har-

monic mean method, and our method seems to show
smaller variances than the harmonic mean method.
And, Table 3 shows the averages and standard de-
viations on the diabetes data for the same setting.
This also seems to show that our method provides
average values similar to the harmonic mean with
more stable calculation.

9 CONCLUSIONS

In this paper, we have developed a hierarchical proba-
bilistic formulation of linear regression and its kernel
extension regularized by the Lovász extensions of
submodular functions, and have proposed a varia-
tional inference scheme for posterior inference on
this model. We first developed an upper bound on
the partition function, and showed that calculating
our variational upper bound can be seen as MAP
inference on the posterior distribution with a spe-
cial condition. Then, we showed that minimizing
this bound is equivalent to the minimization of a
quadratic function over the polyhedron determined
by the corresponding submodular function. For some
special cases, the minimization problems are equal
to constrained convex minimization problems, which
can be solved efficiently by the proximal gradient
algorithm and its variants. Furthermore, we showed
an approximation guarantee of our variational upper
bound. Our scheme gives a natural extension of the
Bayesian Lasso for MAP estimation to a variety of
regularizers inducing structured sparsity, and thus
this work provides a principled way to transfer the
advantages of the Bayesian formulation into those
models. Finally, we empirically confirmed the effec-
tiveness of our scheme with several datasets.

This work was supported by JSPS KAKENHI Grant
Numbers 18H03287 and 18H05291 and JST ACT-I
Grant Number JPMJPR18UG.
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