
Variational Training for Large-Scale Noisy-OR Bayesian Networks

Geng Ji1,2 Dehua Cheng2 Huazhong Ning2,3 Changhe Yuan2,4

Hanning Zhou2 Liang Xiong2 Erik B. Sudderth1

1UC Irvine 2Facebook AI 3WeRide.ai 4CUNY Queens College

Abstract

We propose a stochastic variational inference
algorithm for training large-scale Bayesian
networks, where noisy-OR conditional distri-
butions are used to capture higher-order rela-
tionships. One application is to the learning of
hierarchical topic models for text data. While
previous work has focused on two-layer net-
works popular in applications like medical di-
agnosis, we develop scalable algorithms for
deep networks that capture a multi-level hi-
erarchy of interactions. Our key innovation
is a family of constrained variational bounds
that only explicitly optimize posterior proba-
bilities for the sub-graph of topics most re-
lated to the sparse observations in a given doc-
ument. These constrained bounds have compa-
rable accuracy but dramatically reduced com-
putational cost. Using stochastic gradient up-
dates based on our variational bounds, we learn
noisy-OR Bayesian networks orders of magni-
tude faster than was possible with prior Monte
Carlo learning algorithms, and provide a new
tool for understanding large-scale binary data.

1 INTRODUCTION

Probabilistic graphical models provide an elegant, in-
terpretable framework for characterizing uncertainty in
relationships within high-dimensional data (Koller and
Friedman, 2009). For binary directed graphical mod-
els, or Bayesian networks, noisy-OR conditional dis-
tributions effectively capture higher-order dependen-
cies for applications including medical diagnosis (Shwe
et al., 1991), dimensionality reduction (Šingliar and
Hauskrecht, 2006), and text mining (Liu et al., 2016).
Noisy-OR conditionals assume the activity of each vari-
able is independently influenced by each parent, allowing
correlations to be modeled with cost linear (rather than
exponential) in the degree of each variable node.

While the restricted noisy-OR parameterization im-

proves the efficiency of individual inference algorithm
updates, standard methods struggle with web-scale data,
where graphs with thousands of variables may be used
to model corpora with millions of observations. In
this paper, we develop a rigorous stochastic variational
inference algorithm that allows training of noisy-OR
Bayesian networks whose scale is orders of magnitude
larger. Our approach involves three complementary tech-
nical innovations that enable learning of deep graph
structures, with many thousands of variable nodes, from
very large training databases.
Our first innovation is to develop a family of variational
bounds (Wainwright and Jordan, 2008) that is applicable
to deep hierarchies of variable relationships. Many prior
noisy-OR Bayesian networks, like the classic QMR-DT
network for medical diagnosis (Shwe et al., 1991), have
a bipartite structure where all hidden (unobserved) vari-
able nodes have no parents. There is an extensive lit-
erature on inference and learning algorithms tailored to
this limited model family, including (Jaakkola and Jor-
dan, 1999; Šingliar and Hauskrecht, 2006; Gogate and
Domingos, 2010; Halpern and Sontag, 2013). However,
such two-layer network structures are obviously limited
by the assumption that the hidden “causal” variables are
mutually independent. We generalize prior variational
bounds for bipartite noisy-OR networks to support ar-
bitrary directed acyclic graphs, and thus capture hierar-
chical dependencies among latent topics or causes. Un-
like loopy belief propagation, which may be unstable
for noisy-OR networks with sparse data (Murphy et al.,
1999), our variational updates are always convergent.
Our second innovation enables scalability to graphs with
large numbers of variables. Most prior work has focused
on models with only hundreds of latent variables, due to
limitations in computational speed and memory usage.
We show that a rigorous family of constrained variational
bounds may be constructed via a “local model” that only
explicitly includes topic nodes connected to the set of
active (positive) evidence nodes. Regardless of the over-
all model size, our variational bound may be optimized
with cost proportional to the number of active observa-
tions; for real-world applications where observations are



typically sparse, the computational savings are dramatic.

Our third innovation enables scalability to big training
databases. Standard variants of the expectation maxi-
mization (EM) algorithm, including Monte Carlo EM al-
gorithms (Liu et al., 2016), must process all training data
to compute the expected statistics required for each max-
imization step. For large corpora, each iteration may then
take hours or days of computational effort. Moreover,
some parameter update schemes require storage of in-
termediate variables that scales linearly with the number
of nodes and training samples (Šingliar and Hauskrecht,
2006), which may lead to very high memory usage. We
instead develop a variant of the stochastic variational in-
ference (Hoffman et al., 2013) algorithm that incremen-
tally samples small batches of data from the training cor-
pus, uses variational inference to analyze that data given
the current model, and then takes a (stochastic) gradient
step to improve the weight parameters defining the noisy-
OR network. This approach dramatically reduces mem-
ory usage and speeds convergence, and because our lo-
cal models define rigorous variational bounds, the over-
all stochastic variational inference scheme is guaranteed
to converge. We validate our approach using datasets of
scientific abstracts from DBLP (Tang et al., 2008) and
restaurant reviews from Yelp, and learn effective models
for hundreds of thousands of documents and topics.

2 RELATED WORK

The QMR-DT network proposed by Shwe et al. (1991)
is a two-layer, bipartite graph created by domain experts
capturing how about 600 major diseases influence about
4000 possible symptoms. Each disease has an indepen-
dent probability of producing each symptom, as inte-
grated via noisy-OR conditionals (Horvitz et al., 1988).

Given an observed set of symptoms, the QMR-DT model
is used to infer the posterior probability of each dis-
ease. Because exact inference is computationally in-
feasible, Shwe et al. (1991) used the bipartite network
structure to develop a stochastic simulation algorithm.
Other Monte Carlo methods like (Gogate and Domin-
gos, 2010) support more general network structures, but
become slow for graphs with hundreds of nodes. Al-
ternatively, Jaakkola and Jordan (1999) derive varia-
tional upper and lower bounds for the QMR-DT posterior
marginals, which we generalize in this work.

Two-layer noisy-OR belief networks (like QMR-DT)
are sometimes called BN2O models (Henrion, 1991).
To learn BN2O model parameters from observed data,
Šingliar and Hauskrecht (2006) propose a variational EM
approach based on the bounds of Jaakkola and Jordan
(1999). Halpern and Sontag (2013) propose an alterna-
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Figure 1: Graphical representation of a noisy-OR
Bayesian network with binary variables. Shaded nodes
are observed vocabulary tokens, and their ancestors cor-
respond to hidden topics. The leak node is not shown.

tive learning algorithm based on the method of moments
which avoids local optima of the data log-likelihood, but
requires the network to be sufficiently sparse.

It is attractive to generalize BN2O graph structures to
deeper hierarchies capturing rich dependencies among
hidden topics. Jaakkola and Jordan (2000) consider an
alternative family of binary Bayesian networks with con-
ditionals based on logistic regression. Murphy (2012,
Sec. 26.5.4) briefly sketches a deep noisy-OR network
used within Google to model the semantic content of text
data, but provides few technical details. In this paper we
generalize the variational bounds of Jaakkola and Jordan
(1999) to support multi-layer noisy-OR networks, and
formulate extensions that enable learning of large topic
graphs from big document corpora.

Liu et al. (2016) also aim to learn general noisy-OR
Bayesian networks, but instead propose a Monte Carlo
method inspired by the independent cascade model
(Wang et al., 2012). Some aspects of their approach
are heuristic: log-likelihoods are scaled by token counts
in a way that is not consistent with an underlying gen-
erative model, and no theory supports their restriction
of sampling updates to document-specific subsets of the
topic graph. We include comparisons to variants of their
Monte Carlo inference algorithm in Sec. 6.

3 NOISY-OR BAYESIAN NETWORKS

We use binary Bayesian networks as in Fig. 1 to model
vectors of binary features. For the text analysis applica-
tions that our experiments focus on, observations are in-
dicators of whether particular tokens (words or phrases)
appear in documents. Leaf nodes j ∈ O of the network
correspond to the vocabulary, where yj = 1 if term j ap-
pears in some document. The hidden topic nodes i ∈ H
have binary variables xi ∈ {0, 1} indicating whether top-
ics appear in that document. For notational simplicity
we define a leak node, with index 0, that is always active
(x0 = 1). It allows some probability of token and topic
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Figure 2: Local models for input queries about space sci-
ence (top) and computer science (bottom). Our inference
algorithm correctly infers the two different meanings of
token “program” from its context. Topic nodes with vari-
ational probabilities greater than 0.5 are shaded green,
and otherwise are shaded red. Some less relevant parts
of the local models are not plotted to improve clarity.

activation even when other parent nodes are inactive.

Topic nodes are linked by an arbitrary directed acyclic
graph, where P(i) are the parents of node i (excluding
the leak node). Hierarchical relationships between top-
ics are captured by the graph structure. Topic activation
probabilities are defined by a noisy-OR distribution:

p(xi | xP(i)) (1)

=

[
1− exp

(
−w0→i −

∑
k∈P(i)

wk→i · xk
)]xi

×
[
exp

(
− w0→i −

∑
k∈P(i)

wk→i · xk
)]1−xi

.

Activation probabilities for tokens yj are defined simi-
larly. From Eq. (1) it follows that the influence of parent
nodes factorizes. If parent k is active (xk = 1), it ac-
tivates child node i with probability 1 − exp(−wk→i),
regardless of the states of other parents. If xk = 0, par-
ent k has no influence on the state of xi. If all parents
are inactive, the activation probability 1 − exp(−w0→i)
is determined by the leak node.

The noisy-OR structure is useful for reasoning about
cases where observations may have multiple hidden
causes (Russell and Norvig, 2003): if a variable is ac-
tive, then it is likely that at least one of its parents is also
active. For example in medical diagnosis, it captures the
fact the observed symptoms may be caused by multiple
diseases. In hierarchical topic models it effectively cap-
tures polysemy, where a word or phrase may have multi-
ple possible meanings. We provide an example in Fig. 2.

4 NOISY-OR STOCHASTIC
VARIATIONAL INFERENCE

For each document d, we define a variational distribution
q(xd) that factorizes over the hidden topics:

q(xd) ,
∏
i∈H

q(xdi ) =
∏
i∈H

(qdi )
xd
i (1− qdi )1−x

d
i . (2)

Here qdi approximates the posterior probability that topic
i is active in document d. As the leak node is al-
ways on, we fix qd0 = 1. For any q(xd), the marginal
log-likelihood of the observed tokens yd can be lower
bounded by Jensen’s inequality as follows:

log p(yd) ≥ Eq(xd)

[
log p(xd, yd)− log q(xd)

]
(3)

=
∑
i∈H

Eq(xd
i , x

d
P(i)

)

[
log p(xdi | xdP(i))

]
+
∑
j∈O

Eq(xd
P(j)

)

[
log p(ydj | xdP(j))

]
−
∑
i∈H

[
qdi log q

d
i + (1− qdi ) log(1− qdi )

]
.

Using Eq. (1), the expectation of the noisy-OR log-
probability for each topic can be decomposed as follows:

Eq(xd
i , x

d
P(i)

)

[
log p(xdi | xdP(i))

]
= qdi · (4)

Eq(xd
P(i)

)

[
log
(
1− exp

(
−w0→i −

∑
k∈P(i)

wk→ix
d
k

))]
+
(
1− qdi

)
·
(
− w0→i −

∑
k∈P(i)

wk→iq
d
k

)
.

Due to the non-conjugate structure of the noisy-OR dis-
tribution, the expectation in the second line of Eq. (4)
requires enumerating all joint states of the parent nodes,
which has complexity exponential in the node degree. To
simplify, we first define the concave function

f(a) , log
(
1− exp(−a)

)
. (5)

Because both w0→i and wk→ix
d
k are non-negative, we

can use Jensen’s inequality to derive a lower bound as in
Jaakkola and Jordan (1999):

f
(
w0→i +

∑
k∈P(i)

wk→ix
d
k

)
(6)

≥ f(w0→i) +
∑

k∈P(i)

rdk→ix
d
k

[
f(udk→i)− f(w0→i)

]
.

Here we introduce an auxiliary parameter rdk→i for each
non-leak parent edge, with the constraints

rdk→i ≥ 0,
∑

k∈P(i)

rdk→i = 1, (7)



and define udk→i , w0→i +wk→i/r
d
k→i. We then define

a lower bound with complexity linear in the node degree:

Eq(xd
P(i)

)

[
f
(
w0→i +

∑
k∈P(i)

wk→ix
d
k

)]
≥ (8)

f(w0→i) +
∑

k∈P(i)

rdk→iq
d
k

[
f(udk→i)− f(w0→i)

]
.

A similar lower bound can be constructed for token
nodes’ expectations of log p(ydj | xdP(j)) in Eq. (3). The
overall variational objective for document d is then

Ld(q
d, rd, w) ,

∑
i∈H

qdi · (9)[
f(w0→i) +

∑
k∈P(i)

rdk→iq
d
k

(
f(udk→i)− f(w0→i)

)]
+ (1− qdi ) ·

(
− w0→i −

∑
k∈P(i)

wk→iq
d
k

)
+
∑
j∈O

ydj ·[
f(w0→j) +

∑
k∈P(j)

rdk→jq
d
k

(
f(udk→j)− f(w0→j)

)]
+ (1− ydj ) ·

(
− w0→j −

∑
k∈P(j)

wk→jq
d
k

)
−
∑
i∈H

[
qdi log q

d
i + (1− qdi ) log(1− qdi )

]
.

4.1 EXPECTATION STEP

In this section, we derive closed-form update equations
for local parameters qd and rd of each document. For
notational simplicity, we omit the document index d.

4.1.1 Fixed Point Update for Edge Parameters r

For every topic and active token node i, we optimize the
auxiliary parameters rk→i given a fixed variational distri-
bution q. Inactive tokens are excluded because if yj = 0,
the fourth line of Eq. (9) has no dependence on rk→j .
We show in Appendix A that this optimization problem
is concave and has a unique global maximum. Following
Jaakkola and Jordan (1999) we derive a fixed-point algo-
rithm by setting the partial derivative of Eq. (9) to zero
after adding a Lagrange multiplier enforcing the normal-
ization constraint of Eq. (7):

rk→i ∝ qkrk→i (10)

×
[
f(uk→i)− f(w0→i)−

wk→i

rk→i
· f ′(uk→i)

]
.

Here f ′(a) = exp(−a)
1−exp(−a) is the derivative of f(a). Be-

cause the updates of r for different nodes are indepen-
dent, the for-loop in line 15 of Alg. 1 may be easily par-
allelized. This iterative update monotonically increases
Ld and rapidly converges to the global maximum.

4.1.2 Coordinate Update for Node Parameters q

To update the variational posterior q given fixed auxiliary
parameters r, we cannot directly use prior work special-
ized to two-layer noisy-OR networks (Jaakkola and Jor-
dan, 1999). Instead we directly optimize q by taking the
partial derivative of Eq. (9) and setting to zero:

qi =
1

1 + exp
(
− g(qP(i), qC(i), y, r, w)

) . (11)

Here C(i) are the children of node i, and

g(·) , f(w0→i) + w0→i +
∑

k∈P(i)

wk→iqk (12)

+
∑

k∈P(i)

qkrk→i

(
f(uk→i)− f(w0→i)

)
+

∑
`∈C(i)∩H

q`ri→`

(
f(ui→`)− f(w0→`)

)
− (1− q`)wi→`

+
∑

m∈C(i)∩O

ymri→m

(
f(ui→m)− f(w0→m)

)
− (1− ym)wi→m.

The logistic function in Eq. (11) ensures 0 < qi < 1.
The update for node i depends only on the states of its
parents and children, not its full Markov blanket (which
includes the childrens’ parents), and is thus simpler than
computing the posterior required by a Gibbs sampler.

4.1.3 Initialization of Expectation Parameters

The updates for q and r are coupled by the variational ob-
jective of Eq. (9). Our experiments initialize by setting
rk→i ∝ wk→i. In Appendix B, we show that this cor-
responds to the optimal solution whenever the activation
probabilities qk for all parent nodes k ∈ P(i) are equal.

4.2 NOISY-OR WEIGHT OPTIMIZATION

Given optimized local parameters for all data, previous
work by Šingliar and Hauskrecht (2006) directly maxi-
mizes a (simplified, BN2O model) likelihood bound by
solving a non-linear equation for each edge. This re-
quires explicit storage of the E-step results for all doc-
uments, and thus has high computation and storage com-
plexity scaling with the product of the number of nodes
and documents. We instead employ stochastic gradient
updates of the edge weights w, allowing parameter up-
dates to be frequently interleaved with variational analy-
ses of small batches of documents. Memory usage is also
reduced because the variational posteriors for individual
documents need not be explicitly stored.



4.2.1 Gradients for Non-leak Edge Weights

From Eq. (9), the partial derivative of an edge weight
between (non-leak) topic node k and a topic node i is

∂Ld

∂wk→i
= qdk

(
qdi

1− exp(−udk→i)
− 1

)
. (13)

Similarly, if node k is linked to a token node j, then

∂Ld

∂wk→j
= qdk

(
ydj

1− exp(−udk→j)
− 1

)
. (14)

4.2.2 Gradient for Leak Edge Weights

For an edge between leak node 0 and topic node i,

∂Ld

∂w0→i
= qdi f

′(w0→i)− (1− qdi ) (15)

+ qdi
∑

k∈P(i)

qdkr
d
k→i

(
f ′(udk→i)− f ′(w0→i)

)
.

Similarly, if the leak node is linked to a token node j,

∂Ld

∂w0→j
= ydj f

′(w0→j)− (1− ydj ) (16)

+ ydj
∑

k∈P(j)

qdkr
d
k→j

(
f ′(udk→j)− f ′(w0→j)

)
.

Note that the gradient for non-leak edges depends only
on the leak edge weight of the child node, but the gradi-
ent for leak edges depends on that child’s other parents.

4.2.3 Stochastic Gradient Weight Updates

We use a variant of stochastic variational inference
(Hoffman et al., 2013), where a stochastic estimate of
the gradient of the variational bound is estimated from
a mini-batch of sampled data. Due to the non-conjugate
noisy-OR likelihood, we optimize a point estimate of the
edge weights rather than a full posterior, as Paisley et al.
(2012) did for logistic-normal distributions. The edge
weights w(t) at iteration t are updated as follows:

w(t+1) = w(t) + ρtA∇LD(t)(w). (17)

Here D(t) is the mini-batch of data at iteration t. This
stochastic scheme is guaranteed to converge to a local
maximum of L if the learning rate ρt satisfies the con-
ditions of Robbins and Monro (1951) and the precondi-
tioner A is positive definite (Paisley et al., 2012). To en-
sure that all weights wk→i > 0, we use a projected gra-
dient ascent algorithm that replaces any negative weights
with a small constant: w(t+1)

k→i ← max(w
(t+1)
k→i , ε).

Our experiments use a constant learning rate ρ as in
Mandt et al. (2017). While the simplest choice for the

Algorithm 1 Stochastic Variational Inference.
Input:

w(t): current edge weights
D(t): data mini-batch for current iteration
{NE , NQ, NR}: variational hyperparameters
{ρ, c}: weight update hyperparameters

Output:
w(t+1) : updated edge weights

1: function STOCHASTICVARIATIONALUPDATE
2: Initialize the gradient∇LD(t) := 0.
3: # Variational Expectation Step
4: for instance d ∈ D(t) do
5: Build local model as in Sec. 5.1.
6: Initialize rd as in Sec. 4.1.3.
7: for ne := 1→ NE do
8: # Update node parameters
9: for nq := 1→ NQ do

10: for i ∈ Hd do
11: Update qdi using Eq. (11).
12: end for
13: end for
14: # Update edge parameters
15: for i ∈ {Hd ∪ O+

d } do
16: Update rdk→i using Eq. (10),
17: k ∈ P(i); repeat NR times.
18: end for
19: end for
20: # Accumulate gradient information
21: Compute∇Ld using Eqs. (13, 14, 15, 16).
22: ∇LD(t) += ∇Ld/|D(t)|.
23: end for
24: # Stochastic Weight Optimization Step
25: Apply the gradient update using Eq. (17).
26: return w(t+1)

27: end function

preconditionerA is the identity matrix, to accelerate con-
vergence we scale the non-leak edges with a constant
c > 1 so that their magnitudes are more comparable
to the leak edges. Relative to more complicated scal-
ings such as the inverse Hessian (Paisley et al., 2012)
or Fisher information matrix (Hoffman et al., 2013), this
simple preconditioner is more computationally efficient,
while still rapidly converging to high-likelihood models.

5 VARIATIONAL MODEL PRUNING

The stochastic variational inference algorithm of Sec. 4
still requires inference of all variational parameters for
each document in the sampled mini-batch. For models
defined by large directed graphs, this can have very high
computational demands. We thus develop a more effi-
cient algorithm that focuses only on document-specific



“local models”, that contain a small subset of the nodes
and edges of the full model. Computation then becomes
sub-linear in the overall graph size, instead scaling with
the number of active observations in each document. We
first describe how to construct data-dependent local mod-
els, and then link to the variational updates of Sec. 4.

5.1 LOCAL MODEL CONSTRUCTION

Our construction of local models is motivated by the
observation that real-world observations are typically
sparse: only a small subset of token nodes are active for
each document (Madsen et al., 2005). For inactive to-
kens, the posterior probability of their ancestor topics is
typically very small. These parts of the graph have lit-
tle influence on parameter updates because the absolute
values of edge weight gradients, as in Eqs. (13,14), are
proportional to topic activation probabilities qk.

The goal of our local model construction process is to
prune these irrelevant subsets of the graph, while still re-
taining the nodes that contain information crucial to the
subsequent parameter update. Specifically, we construct
a document-specific local model (as in Fig. 3) as follows:

1. Select O+
d , the set of active tokens for document d.

2. Select Hd, the ancestors of nodes in O+
d excluding

the leak node. We do explicit variational inference
updates only for this subset of topic nodes.

3. Select the direct children of Hd, which are a sub-
set of the other topic nodes and the inactive tokens.
Constrain their activation probabilities to zero.

4. Link the leak node to all of the other selected nodes.

5.2 LOCAL VARIATIONAL INFERENCE

We adapt the stochastic variational inference algorithm
of Sec. 4 to the local model defined in Sec. 5.1, dramat-
ically reducing computation and memory demands. Our
theoretically sound approach optimizes a constrained
family of variational bounds, whose optimum is similar
to the original unconstrained variational bound.

5.2.1 Local Model Expectation Step

As can be verified from inspection of Eq. (9), perform-
ing an expectation step with our specified local model
is equivalent to constrained variational inference on the
full model where we fix qdi = 0 for all i ∈ H \ Hd.
Adding constraints to the original optimization problem
is equivalent to optimizing a lower bound on the original
variational objective. As we verify empirically in Sec. 6,
because we only apply constraints to topics that have no
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Figure 3: By selecting only the nodes most related to a
sparse set of active tokens, local models may dramati-
cally reduce the graph size. Here, lightly shaded nodes
and edges are pruned. Comparing to the full model of
Fig. 1, explicit inference of activation probabilities is
only needed for three of nine topic nodes.

active descendants, the resulting local bound is a tight ap-
proximation. Note that for all i ∈ H \Hd, fixing qdi = 0
also cancels the corresponding auxiliary variables rk→i

in Eq. (9), which need not be stored or updated.

5.2.2 Local Model Weight Optimization

Although our expectation step is only explicitly per-
formed for local models, we must ensure that gradient
updates for all edge weights are still correctly computed.
For edges that are included in the local model, we simply
use the full model gradient updates from Sec. 4.2.

For non-leak edges outside the local model, each of their
parent nodes k must satisfy k ∈ H \Hd; if this were not
true, then their children would be included in the local
model. It thus follows that such parent nodes have acti-
vation probability qdk = 0, and according to Eqs. (13,14),
the resulting gradient will also be exactly zero.

For leak edges outside the local model, the gradient of
the edge weights can be shown to equal −1. We verify
this by considering two cases. First, if the edge’s child
node j is a token, it must be inactive (ydj = 0). All terms
scaled by ydj in Eq. (16) then cancel, and only the −1 re-
mains. Alternatively, if the edge’s child node i is a topic,
then i ∈ H \ Hd and qdi = 0. The partial gradient in
Eq. (15) then simplifies to −1, reducing the prior activa-
tion probabilities for topics with no active descendants.

6 EXPERIMENTS

We now evaluate our variational training algorithm on
datasets of various scales (see Table 1). Using a small
corpus of newsgroup data where training with the full
model is computationally feasible, we illustrate the ef-
fectiveness of our local model, the similarity of our vari-
ational estimates to expensive Monte Carlo approxima-



Table 1: Model Structure Statistics for Each Dataset
Dataset # Topics # Tokens # Edges

Newsgroups 44 100 707
DBLP 49543 199861 1268551
Yelp 125798 117702 960419

tions, the influence of hyperparameter c on convergence
speed, and qualitative features of learned topic models.
Then on two larger datasets, we show that variational
training with local models is the only computationally
feasible option, and verify the improved efficiency of
stochastic variational inference updates.

Our learning algorithm assumes the graph structure has
already been determined, perhaps via external sources
like knowledge bases. As we don’t possess such meta-
data for the text data used in the experiments, we employ
a greedy hierarchical clustering method that generalizes
the DBScan algorithm (Ester et al., 1996). It constructs
a layered graph structure recursively based on the co-
occurrence statistics of token or topic pairs in the previ-
ous layer, and also prunes small edges to ensure sparsity.
Our approach could be easily integrated with other, more
advanced graph learning algorithms.

Unless specified otherwise, we set hyperparameters as
follows: NE = NQ = NR = 10, ρ = 0.01, c = 1000.

6.1 TINY 20 NEWSGROUPS

This dataset is a “tiny” version of the famous 20 News-
groups corpus, with binary occurrence data for 100
words across 16,242 postings.1 Each posting (document)
is labeled with one of the four highest-level newsgroup
categories. Our topic graph contains 44 topic nodes ar-
ranged in two layers, as summarized in Table 1.

Variational Inference via Local Models. For this
small dataset, we compute gradients using the full dataset
rather than stochastic mini-batches. 70% of the docu-
ments are randomly selected for training. On the remain-
ing 30% we evaluate the average evidence lower bound
(ELBO), by computing the mean of Eq. (9) across all test
documents; see Table 2. The inference algorithm used
to evaluate test documents (VI or MCMC, full or local
model) is matched to that used during training. The qual-
ity of the initialization is assessed using local-model VI.
Error bars indicate variability (under the same network
structure) across five random train-test splits.

ELBO values in Table 2 indicate that our variational in-
ference algorithm, whether using full or local models, in-

1https://cs.nyu.edu/∼roweis/data/20news w100.mat

Table 2: Average Held-out ELBO and Log Likelihood of
Tiny 20 Newsgroups Dataset± Two Standard Deviations

Method ELBO Log-Likelihood

VI full −14.50± 0.06 −14.43± 0.07
VI local −14.51± 0.08 −14.43± 0.07
MCMC full −15.36± 0.15 −14.18± 0.07
MCMC local −19.22± 0.47 −17.11± 0.12
Initialization −24.15± 0.11 −21.98± 0.08

creases the log-likelihood bound per document to about
−14.5 from the initialization of −24.2. As one verifi-
cation of the effectiveness of our variational optimiza-
tion algorithm, these ELBO values are higher than those
achieved by MCMC (−15.4), which exactly computes
marginal probabilities in the limit where the number of
sampling iterations becomes very large (Liu et al., 2016).

More importantly, we find that the difference between
the variational bounds achieved by full and local model
training is negligible (−14.50 vs −14.51, smaller than
the variability from the train-test split). This comparison
justifies our use of local models for larger datasets, where
full-model variational inference is prohibitively slow.

As a baseline, we also tried MCMC training using lo-
cal models constructed in the same way. Compared to
using the full model, MCMC test log-likelihoods drop
dramatically from −14.2 to −17.1. This deterioration is
probably caused by our deterministic procedure for con-
structing local models, which causes the MCMC edge
weight updates to be systematically biased. In contrast,
for variational inference local models lead to a principled
family of bounds on the overall log-likelihood.

Lower Bounds on Data Log-Likelihood. We also ap-
proximately evaluate the marginal log-likelihood of the
observed test documents. We construct a simple lower
bound by summing up the joint probabilities of all the
unique samples drawn over one million iterations of
MCMC inference. This lower bound is potentially con-
servative, because there are 244 ≈ 1013 possible config-
urations of the latent topic variables. Nevertheless, we
verify that our variational objective does bound these ap-
proximate log-likelihoods by checking that the MCMC
estimates always exceed the corresponding ELBO val-
ues in Table 2. Previous work demonstrated the accuracy
of variational bounds for directed graphical models with
discrete hidden variables (Beal and Ghahramani, 2006).

Convergence Speed Acceleration. The precondi-
tioner A was set to an identity matrix when running the
preceding experiments. With this choice, thousands of
iterations are required for convergence. Empirically, this

https://cs.nyu.edu/~roweis/data/20news_w100.mat
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Figure 4: Accelerated convergence via hyperparameter c,
the scaling of non-leak edge weights in the precondi-
tioner A for stochastic gradient updates (see Sec. 4.2.3).

occurs because the gradients for non-leak edge weights
have small magnitude, often about two or three orders
of magnitude smaller than the gradients for leak edge
weights. To better balance these gradients and improve
convergence speed, we explore alternative values for the
preconditioning hyperparameter c defined in Sec. 4.2.3.

As shown in Fig. 4, the learning algorithm does not con-
verge after hundreds of epochs when c = 1. As we in-
crease its value, the magnitudes of leak and non-leak gra-
dients become better balanced, so that convergence be-
comes much more rapid. The fastest convergence speed
is reached when 100 ≤ c ≤ 1000. For larger values of
c, the step size for non-leak edges becomes too large and
optimization may become unstable.

Qualitative and Quantitative Analysis. Qualitatively,
running inference on our trained model naturally visual-
izes the activated topics of input queries. Fig. 2 shows
two examples where the activated topics are each related
to space and computer science. In particular, as the token
“program” has different meanings for each area, differ-
ent topics are activated based on the context provided by
other tokens. Other tokens like “software” have only one
meaning, but may nevertheless be shared among multi-
ple topics. The strength of each relationship in the topic
graph is determined by the learned edge weights.

Topic models are sometimes used to define features
for document classification and retrieval (Yi and Allan,
2009). We use the activation probabilities qd of each
document d as a feature representation for classification
tasks. One-vs-all linear SVMs (Fan et al., 2008) are
trained based on the four newsgroup labels, where the
regularization parameter is selected via five-fold cross-
validation. To make features more consistent across doc-
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Figure 5: Classification accuracy on the tiny 20 news-
groups dataset for variants of our training algorithm, and
Bernoulli LDA models with 2 ≤ K ≤ 9 topics.

uments, activation probabilities are standarized within
each document by subtracting the mean and dividing
by the standard deviation. The baseline model we
compare with is latent Dirichlet allocation (LDA, Blei
et al. (2003)), where multinomial topics are replaced by
Bernoulli distributions to model binary observations. For
variational training, the numbers of global parameters in
LDA is the product of the vocabulary size (100 in this
case) and topic countK. Fig. 5 provides the results when
2 ≤ K ≤ 9, which is of similar size to our model that
contains 707 edges. The LDA models reach the best per-
formance in this range when K is 4 or 5, corresponding
roughly to the 4 newsgroup labels. The different variants
of our graph-based learning algorithms are all superior.

6.2 DBLP PAPERS AND YELP REVIEWS

Now we evaluate our algorithm on two larger datasets.
The first one comes from the DBLP bibliography of ma-
jor computer science publications (Tang et al., 2008).2

We get 430,213 training documents by extracting paper
titles and abstracts in venues for database, data mining,
machine learning, natural language processing, and com-
puter vision research. The other dataset is constructed
from the Yelp Open Dataset3, where we extract reviews
from the top 250 businesses in the “Restaurants” cate-
gory to produce 483,448 training documents. The to-
kens for each document are segmented using the method
of Liu et al. (2015), which removes both rare and com-
mon (stop) words, and also groups words into common
phrases. We build a four-layer topic graph for each
dataset, whose statistics are summarized in Table 1.

2http://aminer.org/billboard/aminernetwork
3https://www.yelp.com/dataset

http://aminer.org/billboard/aminernetwork
https://www.yelp.com/dataset
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Figure 6: ELBO evaluations on the test sets of DBLP (left) and Yelp (right). In both cases, stochastic variational
inference converges much faster than standard, full-batch inference. Each pair of X markers in the plots compares
equal numbers of edge weight updates. Their tiny differences in ELBO values indicates that the noise in stochastic
gradient updates does not have a significant impact on the convergence speed. Held-out ELBO values decrease over
time for MCMC, likely due to biases caused by its heuristic use of local models. (A regularizer is added to MCMC to
avoid edge weights decaying to zero; without this, its performance deteriorates further.)
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Figure 7: Time used for running one E-step iteration on
the full-batch data of DBLP and Yelp using 50 CPUs.
Local-model VI is the only feasible option for both
datasets to run multiple inference iterations till conver-
gence. As restaurant reviews are usually longer than pa-
per titles and abstracts, local models for Yelp tend to be
larger than DBLP, and thus need more time for inference.

For models of these scales, the only computationally
feasible option is variational training on local models
(Fig. 7). In Fig. 6, we compare the convergence speed
of full-batch and stochastic training, with mini batches
of 50,000 documents. Test documents are the same as
in Liu et al. (2016), with 500 paper abstracts for DBLP
and 1000 restaurant reviews for Yelp. Each point in
the plot represents the average held-out ELBO evaluated
using the full model. By interleaving local and global
updates more frequently, stochastic training converges
much faster than full-batch inference for both datasets.

As gradient-based weight updates are very fast, the varia-
tional inference updates in the expectation step dominate
computation time. The overhead required by frequent
stochastic weight updates is thus negligible.

7 DISCUSSION

We have developed a stochastic variational inference al-
gorithm for training large-scale, hierarchical noisy-OR
Bayesian networks. We use these models to capture
high-order dependencies within the hidden topics and
observed tokens in text data. By exploiting the spar-
sity of input data, our method creates a rigorous varia-
tional bound for each document that significantly prunes
the model for fast inference. This principled algorithm
scales the learning of noisy-OR networks to data and
models that are orders of magnitude larger than prior
work focusing on simpler, bipartite graphs. Our algo-
rithms could potentially be used to model causal interac-
tions within many other types of data, adapted to other
model families like the noisy-AND networks used in ed-
ucational assessment (Conati et al., 1997), or extended to
learn graph structures jointly with their parameters.
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