
Random Search and Reproducibility for Neural Architecture Search

Liam Li
Carnegie Mellon University

Ameet Talwalkar
Carnegie Mellon University

Abstract

Neural architecture search (NAS) is a promis-
ing research direction that has the potential to
replace expert-designed networks with learned,
task-specific architectures. In order to help
ground the empirical results in this field, we
propose new NAS baselines that build off the
following observations: (i) NAS is a special-
ized hyperparameter optimization problem; and
(ii) random search is a competitive baseline
for hyperparameter optimization. Leveraging
these observations, we evaluate both random
search with early-stopping and a novel random
search with weight-sharing algorithm on two
standard NAS benchmarks—PTB and CIFAR-
10. Our results show that random search with
early-stopping is a competitive NAS baseline,
e.g., it performs at least as well as ENAS [39], a
leading NAS method, on both benchmarks. Ad-
ditionally, random search with weight-sharing
outperforms random search with early-stopping,
achieving a state-of-the-art NAS result on PTB
and a highly competitive result on CIFAR-10.
Finally, we explore the existing reproducibility
issues of published NAS results.

1 INTRODUCTION

Deep learning offers the promise of bypassing the process
of manual feature engineering by learning representations
in conjunction with statistical models in an end-to-end
fashion. However, neural network architectures them-
selves are typically designed by experts in a painstak-
ing, ad-hoc fashion. Neural architecture search (NAS)
presents a promising path for alleviating this pain by au-
tomatically identifying architectures that are superior to
hand-designed ones. Since the work by Zoph and Le

[49], there has been explosion of research activity on this
problem [29, 30, 37, 11, 41, 1, 21, 5, 39, 48, 32, 45, 7].
Notably, there has been great industry interest in NAS, as
evidenced by the vast computational [49, 50, 41] and mar-
keting resources [16] committed to industry-driven NAS
research. However, despite a steady stream of promising
empirical results [49, 50, 41, 32, 33, 7], we see three fun-
damental issues with the current state of NAS research:

Inadequate Baselines. Leading NAS methods exploit
many of the strategies that were initially explored in the
context of traditional hyperparameter optimization tasks,
e.g., evolutionary search [38, 19], Bayesian optimization
[42, 4, 18], and gradient-based approaches [2, 34]. More-
over, the NAS problem is in fact a specialized instance of
the broader hyperparameter optimization problem. How-
ever, in spite of the close relationship between these two
problems, existing comparisons between novel NAS meth-
ods and standard hyperparameter optimization methods
are inadequate. In particular, to the best of our knowledge,
no state-of-the-art hyperparameter optimization methods
have been evaluated on standard NAS benchmarks. With-

out benchmarking against leading hyperparameter opti-

mization baselines, it difficult to quantify the performance

gains provided by specialized NAS methods.

Complex Methods. We have witnessed a proliferation of
novel NAS methods, with research progressing in many
different directions. New approaches introduce a signifi-
cant amount of algorithmic complexity in the search pro-
cess, including complicated training routines [1, 39, 45,
7], architecture transformations [44, 41, 6, 30, 11], and
modeling assumptions [21, 24, 48, 5, 29] (see Figure 1
and Appendix A.1 for more details). While many techni-
cally diverse NAS methods demonstrate good empirical
performance, they often lack corresponding ablation stud-
ies [33, 48, 7], and as a result, it is unclear what NAS

component(s) are necessary to achieve a competitive em-

pirical result.

Lack of Reproducibility. Experimental reproducibility

is of paramount importance in the context of NAS re-
search, given the empirical nature of the field, the com-
plexity of new NAS methods, and the steep computational
costs associated with empirical evaluation. In particular,
there are (at least) two important notions of reproducibil-
ity to consider: (1) “exact” reproducibility i.e., whether it
is possible to reproduce explicitly reported experimental
results; and (2) “broad” reproducibility, i.e., the degree
to which the reported experimental results are themselves
robust and generalizable. Broad reproducibility is diffi-
cult to measure due to the computational burden of NAS
methods and the high variance associated with extremal
statistics. However, most of the published results in this
field do not even satisfy exact reproducibility. For exam-

ple, of the 12 papers published since 2018 at NeurIPS,

ICML, and ICLR that introduce novel NAS methods (see

Table 5), none are exactly reproducible.
1

While addressing these challenges will require
community-wide efforts, in this work we present results
that aim to make some initial progress on each of these
issues. In particular, our contributions are as follows:

1. We help ground existing NAS results by providing
a new perspective on the gap between traditional hy-
perparameter optimization and leading NAS methods.
Specifically, we evaluate a general hyperparameter
optimization method combining random search with
early-stopping [28] on two standard NAS benchmarks
(CIFAR-10 and PTB). With approximately the same
amount of compute as DARTS [32], a state-of-the-art
(SOTA) NAS method, this simple method provides a
much more competitive baseline for both benchmarks:
(1) on PTB, random search with early-stopping reaches
test perplexity of 56.4 compared to the published result
for ENAS [39], a leading NAS method, of 56.3,2 and
(2) for CIFAR-10, random search with early-stopping
achieves a test error of 2.85%, whereas the published
result for ENAS is 2.89%. While SOTA NAS methods
like DARTS still outperform this baseline, our results
demonstrate that the gap is not nearly as large as that
suggested by published random search baselines on
these tasks [39, 32].

2. We identify a small subset of NAS components that
1It is important to note that these works vary drastically in

terms of what materials they provide, and some authors such as
Liu et al. [32], provide a relatively complete codebase for their
methods. However, even in the case of DARTS, the code for the
CIFAR-10 benchmark is not deterministic. We were thus not
able to reproduce the results in Liu et al. [32], but we were able
to use the DARTS code repository (https://github.com/
quark0/darts) as the launching point for our experimental
setup.

2We could not reproduce this result using the final architec-
ture and code provided by the authors.

are sufficient for achieving good empirical results. We
construct a simple algorithm from the ground up start-
ing from vanilla random search, and demonstrate that
properly tuned random search with weight-sharing is
competitive with much more complicated methods
when using similar computational budgets. In particu-
lar, we identify the following meta-hyperparameters
that impact the behavior of our algorithm: batch size,
number of epochs, network size, and number of evalu-
ated architectures. We evaluate our proposed method
using the same search space and evaluation scheme as
DARTS [32]. We explore a few modifications of the
meta-hyperparameters to improve search quality and
make full use of available GPU memory and computa-
tional resources, and observe SOTA performance on
the PTB benchmark and comparable performance to
DARTS on the CIFAR-10 benchmark. We emphasize
that we do not perform additional hyperparameter tun-
ing of the final architectures discovered at the end of
the search process.

3. We open-source the code, random seeds, and docu-
mentation necessary to reproduce our experiments.3
Our single machine results shown in Table 6 and Ta-
ble 1 follow a deterministic experimental setup, given
a fixed random seed, and satisfy exact reproducibility.
For these experiments on the two standard benchmarks,
we study the broad reproducibility of our random
search with weight-sharing results by repeating our
experiments multiple times. We observe non-trivial
variance across independent runs and identify poten-
tial sources for these differences. Our results highlight
the need for more careful reporting of experimental
results, increased transparency of intermediate results,
and more robust statistics to quantify the performance
of NAS methods.

2 RELATED WORK

Figure 1 shows the three components of a general hyper-
parameter optimization problem, each of which can have
NAS-specific approaches: (1) the search space defines
a set of possible hyperparameter configurations, (2) the
search method is used to select candidate configurations
to evaluate, and (3) the evaluation method is used to ob-
tain an estimate of the quality of different configurations.
A more detailed discussion of each component is avail-
able in Appendix A.1. Given this background, we provide
additional context for the three issues we identified re-
garding the current state of NAS research in Section 1.

3All material available at https://github.com/
liamcli/randomNAS_release.

https://github.com/quark0/darts
https://github.com/quark0/darts
https://github.com/liamcli/randomNAS_release
https://github.com/liamcli/randomNAS_release

Search
Space

Search
Method

Evaluation
Method

Reinforcement
Learning

Evolutionary Search

Gradient-Based
Optimization

Bayesian
Optimization

Full Training

Partial Training

Hypernetworks

Weight-Sharing
Network MorphismCell Block

Meta-Architecture

Unstructured &
Structured

Continuous &
 Discrete Random Search

Figure 1: Components of hyperparameter optimiza-
tion. Primarily NAS-specific methods are lined in purple.

2.1 INADEQUATE BASELINES

Existing works in NAS do not provide adequate compari-
son to random search and other hyperparameter optimiza-
tion methods. Some works either compare to random
search given a budget of just of few evaluations [39, 32]
or Bayesian optimization methods without efficient archi-
tecture evaluation schemes [21]. While Real et al. [41]
and Cai et al. [6] provide a thorough comparison to ran-
dom search, they use random search with full training
even though partial training methods have been shown
to be orders-of-magnitude faster than standard random
search [27, 28].

Although certain hyperparameter optimization methods
[42, 34, 25] require non-trivial modification in order to
work with NAS search spaces, others are easily applicable
to NAS problems [18, 4, 10, 13, 27, 28]. Of these applica-
ble methods, we choose to use a simple method combin-
ing random search with early-stopping called ASHA [28]
to provide a competitive baseline for standard hyperpa-
rameter optimization. Li et al. [28] showed ASHA to be
a state-of-the-art, theoretically principled, bandit-based
partial training method that outperforms leading adaptive
search strategies for hyperparameter optimization. We
compare the empirical performance of ASHA with that
of NAS methods in Section 4.

2.2 COMPLEX METHODS

Much of the complexity of NAS methods is introduced in
the process of adapting search methods for NAS-specific
search spaces, which usually involve discrete hyperpa-
rameters with a DAG representation where each node
represents local computations and edges of the DAG rep-
resent the flow of data from one node to another [39, 32].
Evolutionary approaches need to define a set of possi-
ble mutations to apply to different architectures [40, 41];
Bayesian optimization approaches [21, 24] rely on spe-

cially designed kernels; gradient-based methods trans-
form the discrete architecture search problem into a con-
tinuous optimization problem [33, 32, 45, 7]; and Zoph
and Le [49], Zoph et al. [50], and Pham et al. [39] use
reinforcement learning to train a recurrent neural network
controller to generate good architectures. All of these
search approaches add a significant amount of complex-
ity with no clear winner, especially since methods some
times use different search spaces and evaluation methods.
To simplify the search process and help isolate important
components of NAS, we use random search to sample
architectures from the search space.

Additional complexity is also introduced by NAS-specific
evaluation methods—like network morphisms; hypernet-
works and performance prediction; and weight-sharing—
that exploit the structure of NAS search spaces to speed
up the evaluation of the quality of different architectures.
Network morphisms require architecture transformations
that satisfy certain criteria; hypernetworks and perfor-
mance prediction methods encode information from pre-
viously seen architectures in an auxiliary network; and
weight-sharing methods [39, 32, 1, 45, 7] use a single set
of weights for all possible architectures and hence, can
require careful training routines.

Despite their complexity, these more efficient NAS eval-
uation methods are 1 to 3 orders-of-magnitude cheaper
than full training (see Table 1 and Table 6), at the expense
of decreased fidelity to the true performance. Of these
evaluation methods, network morphism still requires on
the order of 100 GPU days [29, 11] and, while hyper-
networks and prediction performance based methods can
be cheaper, weight-sharing is less complex since it does
not require training an auxiliary network. In addition to
the computational efficiency of weight-sharing methods
[32, 39, 7, 45], which only require computation on the
order of fully training a single architecture, this approach
has also achieved the best result on the two standard
benchmarks [32, 7]. Hence, we use random search with
weight-sharing as our starting point for a simple and effi-
cient NAS method.

Our work is inspired by the result of Bender et al. [1],
which showed that random search, combined with a well-
trained set of shared weights can successfully differentiate
good architectures from poor performing ones. However,
their work required several modifications to stabilize train-
ing (e.g., a tunable path dropout schedule over edges of
the search DAG and a specialized ghost batch normaliza-
tion scheme [17]). Furthermore, they only report exper-
imental results on the CIFAR-10 benchmark, on which
they fell slightly short of the results for leading NAS meth-
ods. In contrast, our combination of random search with
weight-sharing greatly simplifies the training routine and

we identify key variables needed to achieve competitive
results on both CIFAR-10 and PTB benchmarks.

2.3 LACK OF REPRODUCIBILITY

The earliest NAS results lacked exact and broad repro-
ducibility due to the tremendous amount of computation
required to achieve the results [49, 50, 41]. Recently, it
has become feasible to evaluate the exact and broad repro-
ducibility of many SOTA methods due to their reduced
computational cost. However, while many authors have
released code for their work [e.g., 39, 32, 5, 6], others
have not made their code publicly available [e.g., 45, 48],
including the work most closely related to ours by Bender
et al. [1].

Table 5 of Appendix A.4 summarizes the reproducibility
of recent NAS publications at some of the major machine
learning conferences according to the availability of com-
ponents necessary for exact reproducibility: architecture
search code, model evaluation code, random seeds used
for search and evaluation, and documentation for hyper-
parameter tuning. None of the 12 papers shown in Table 5
satisfy exact reproducibility.

In terms of broad reproducibility, with the exception of
NASBOT [24] and DARTS [32], the methods in Table 5
only report the performance of the best found architec-
ture, presumably resulting from a single run of the search
process. Although this is understandable in light of the
computational costs for some of these methods [33, 6],
the high variance of extremal statistics makes it difficult
to isolate the impact of the novel contributions introduced
in each work. DARTS is particularly commendable in
acknowledging its dependence on random initialization,
prompting the use multiple runs to select the best archi-
tecture. In our experiments in Section 4, we go one step
further and evaluate the broad reproducibility of our re-
sults with multiple sets of random seeds.

3 METHODOLOGY

We now introduce our NAS algorithm that combines ran-
dom search with weight-sharing. Our algorithm is de-
signed for an arbitrary search space with a DAG represen-
tation.

For concreteness, consider the search space used by
DARTS for designing a recurrent cell for the PTB bench-
mark: the DAG considered for the recurrent cell has
N = 8 nodes and the operations considered include tanh,
relu, sigmoid, and identity. Figure 2 shows an example
of an architecture from this search space. To sample an
architecture from this search space, we apply random
search in the following manner:

x_{t}
0

h_{t-1}

1relu

2tanh

5sigmoid

8
identity

3tanh

4identity

6relu
h_{t}

7identity

Figure 2: Recurrent Cell on PTB Benchmark. The best
architecture found by random search with weight-sharing
in Section A.3 is depicted. Each numbered square is a
node of the DAG and each edge represents the flow of
data from one node to another after applying the indicated
operation along the edge. Nodes with multiple incoming
edges (i.e., node 0 and output node h_{t} concatenate
the inputs to form the output of the node).

1. For each node in the DAG, determine what decisions
must be made. In the case of the PTB search space,
we need to choose a node as input and a corresponding
operation to apply to generate the output of the node.

2. For each decision, identify the possible choices for the
given node. In the case of the PTB search space, if
we number the nodes from 1 to N , node i can take the
outputs of nodes 0 to node i � 1 as input (the initial
input to the cell is index 0 and is also a possible in-
put). Additionally, we can choose an operation from
{tanh, relu, sigmoid, and identity} to apply to the out-
put of node i.

3. Finally, moving from node to node, we sample uni-
formly from the set of possible choices for each deci-
sion that needs to be made.

In order to combine random search with weight-sharing,
we simply use randomly sampled architectures to train
the shared weights. In the case of the PTB benchmark,
the same weights are applied to all possible inputs to a
node. Shared weights are updated by selecting a single
architecture for a given minibatch and updating the shared
weights by back-propagating through the network with
only the edges and operations as indicated by the architec-
ture activated. Hence, the number of architectures used
to update the shared weights is equivalent to the total
number of minibatch training iterations.

After training the shared weights for a certain number of
epochs, we use these trained shared weights to evaluate
the performance of a number of randomly sampled archi-
tectures on a separate held out dataset. We select the best

performing one as the final architecture, i.e., as the output
of our search algorithm.

3.1 RELEVANT META-HYPERPARAMETERS

There are a few key meta-hyperparameters that impact
the behavior of our search algorithm. We describe each
of them below, along with a description of how we expect
them to impact the search algorithm, both in terms of
search quality and computational costs.

Training epochs. Increasing the number of training
epochs while keeping all other parameters the same in-
creases the total number of minibatch updates and hence,
the number of architectures used to update the shared
weights. Intuitively, training with more architectures
should help the shared weights generalize better to what
are likely unseen architectures in the evaluation step. Un-
surprisingly, more epochs increase the computational time
required for architecture search.

Batch size. Decreasing the batch size while keeping all
other parameters the same also increases the number of
minibatch updates but at the cost of noisier gradient up-
date. Hence, we expect reducing the batch size to have a
similar effect as increasing the number of training epochs
but may necessitate adjusting other meta-hyperparameters
to account for the noisier gradient update. Intuitively,
more minibatch updates increase the computational time
required for architecture search.

Network size. Increasing the search network size in-
creases the dimension of the shared weights. Intuitively,
this should boost performance since a larger search net-
work can store more information about different architec-
tures. Unsurprisingly, larger networks require more GPU
memory.

Number of evaluated architectures. Increasing the
number of architectures that we evaluate using the shared
weights allows for more exploration in the architecture
search space. Intuitively, this should help assuming
that there is a high correlation between the performance
of an architecture evaluated using shared weights and
the ground truth performance of that architecture when
trained from scratch [1]. Unsurprisingly, evaluating more
architectures increases the computational time required
for architecture search.

Other learning meta-hyperparameters will likely need
to be adjusted accordingly for different settings of the
key relevant meta-hyperparameters listed above. In our
experiments in Section 4, we tune gradient clipping as a
fifth meta-hyperparameter, though there are other possible
meta-hyperparameters that may benefit from additional
tuning (e.g., learning rate, momentum).

In Section 4, following these intuitions, we incrementally
explore the design space of our search method in order to
improve search quality and make full use of the available
GPU memory and computational resources.

3.2 MEMORY FOOTPRINT

Since we train the shared weights using a single architec-
ture at a time, the memory footprint of our random search
with weight-sharing can be reduced to that of a single
model. In this sense, our approach is similar to Proxy-
lessNAS [7] and allows us to perform architecture search
with weight-sharing on the larger “proxyless” models that
are usually used in the final architecture evaluation step
instead of the smaller proxy models that are usually used
in the search step. We take advantage of this in a subset of
our experiments for the PTB benchmark in Section A.3;
performing random search with weight-sharing on a prox-
yless network for the CIFAR-10 benchmark is a direction
for future work.

In contrast, Bender et al. [1] trains the shared weights
with a path dropout schedule that incrementally prunes
edges within the DAG so that the sub-DAGs used to train
the shared weights become sparser as training progresses.
Under this training routine, since most of the edges in the
search DAG are activated in the beginning, the memory
footprint cannot be reduced to that of a single model to
allow a proxyless network for the shared weights.

4 EXPERIMENTS

In line with prior work [49, 39, 32], we consider the two
standard benchmarks for neural architecture search: (1)
language modeling on the Penn Treebank (PTB) dataset
[35] and (2) image classification on CIFAR-10 [26]. For
each of these benchmarks, we consider the same search
space and use the same experimental setups as DARTS
[32], and by association SNAS [45], to facilitate a fair
comparison of our results to existing work.

To evaluate the performance of random search with
weight-sharing on these two benchmarks, we proceed
in the same three stages as Liu et al. [32]:

Stage 1: Perform architecture search for a cell block on a
cheaper search task.

Stage 2: Evaluate the best architecture from the first stage
by retraining a larger network formed from multiple cell
blocks from scratch. This stage is used to select the best
architecture from multiple trials.

Stage 3: Perform a full evaluation of the best found archi-
tecture from the second stage by either training for more
epochs (PTB) or training with more seeds (CIFAR-10).

We start with the same meta-hyperparameter settings used
by DARTS to train the shared weights. Then, we incre-
mentally modify the meta-hyperparameters identified in
Section 3.1 to improve performance until we either reach
state-of-the-art performance (for PTB) or match the per-
formance of DARTS and SNAS (for CIFAR-10).

For our evaluation of random search with early-stopping
(i.e., ASHA) on these two benchmarks, we apply partial
training to the stage (2) evaluation network and then select
the best architecture for stage (3) evaluation. For both
benchmarks, we run ASHA with a starting resource per
architecture of r = 1 epoch, a maximum resource of 300
epochs, and a promotion rate of ⌘ = 4, indicating the top
1/4 of architectures will be promoted in each round and
trained for 4⇥ more resource.

Due to space limitations, we present the results for the
more commonly studied CIFAR-10 benchmark [45, 48]
below and defer the results for the PTB benchmark, which
mirror that for CIFAR-10, to Appendix A.3. For the PTB
benchmark, our results in Table 6 of the Appendix show
ASHA to be a competitive baseline for NAS, matching the
published performance of the best architecture found by
ENAS, and random search with weight-sharing to reach
SOTA for NAS methods.

4.1 CIFAR-10 BENCHMARK

The DAG considered for the convolutional cell has N =
4 search nodes and the operations considered include
3⇥ 3 and 5⇥ 5 separable convolutions, 3⇥ 3 and 5⇥ 5
dilated separable convolutions, 3 ⇥ 3 max pooling, and
3 ⇥ 3 average pooling, and zero [32]. To sample an
architecture from this search space, we have to choose,
for each node, 2 input nodes from previous nodes and
associated operations to perform on each input (there
are two initial inputs to the cell that are also possible
choices); we sample in this fashion twice, once for the
normal convolution cell and one for the reduction cell
(e.g., see Figure 3).

Due to higher memory requirements for weight-sharing,
Liu et al. [32] uses a smaller network with 8 stacked cells
and 16 initial channels to perform the convolutional cell
search, followed by a larger network with 20 stacked cells
and 36 initial channels to perform the evaluation. Again,
we will refer to the network used in the first stage as the
proxy network and the network in the second stage the
proxyless network.

We will next present the final search results for the CIFAR-
10 benchmark, and then dive deeper into these results
to explore the impact of meta-hyperparameters on stage
(2) intermediate results, and finally evaluate associated
reproducibility ramifications.

4.1.1 Final Search Results

We now present our results after performing the final eval-
uation in stage (3). We use the same evaluation scheme
used to produce the results in Table 1 of Liu et al. [32].
In particular, we train the proxyless network configured
according to the best architectures found by different
methods with 10 different seeds and report the average
and standard deviation. We discuss these results in the
context of the three issues—baselines, complex methods,
reproducibility—introduced in Section 1.

First, we evaluate the ASHA baseline using 9 GPU days,
which is comparable to the 10 GPU days we allotted to
our independent run of DARTS. In contrast to the one
random architecture evaluated by Pham et al. [39] and the
24 evaluated by Liu et al. [32] for their random search
baselines, ASHA evaluated over 700 architectures in the
allotted computation time. The best architecture found by
ASHA achieves an average error of 3.03± 0.13, which is
significantly better than the random search baseline pro-
vided by Liu et al. [32] and comparable to DARTS (first
order). Additionally, the best performing seed reached a
test error of 2.85, which is lower than the published result
for ENAS. Similar to the PTB benchmark, these results
suggest that the gap between SOTA NAS methods and
standard hyperparameter optimization is much smaller
than previously reported [39, 32].

Next, we evaluate random search with weight-sharing
with tuned meta-hyperparameters (see Section 4.1.2 for
details). This method finds an architecture that achieves
an average test error of 2.85 ± 0.08, which is compara-
ble to the reported results for SNAS and DARTS, the
top 2 weight-sharing algorithms that use a comparable
search space, as well as GHN [48]. Note that while the
two manually tuned architectures we show in Table 1
outperform the best architecture discovered by random
search with weight-sharing, they have over 7⇥ more pa-
rameters. Additionally, the best-performing efficient NAS
method, ProxylessNAS, uses a larger proxyless network
and a significantly different search space than the one
we consider. As mentioned in Section 3, random search
with weight-sharing can also directly search over larger
proxyless networks since it trains using discrete architec-
tures. We hypothesize that using a proxyless network and
applying random search with weight-sharing to the same
search space as ProxylessNAS would further improve our
results; we leave this as a direction for future work.

Finally, we examine the reproducibility of the NAS meth-
ods using a comparable search space with available code
for both architecture search and evaluation (i.e., DARTS
and ENAS; to our knowledge, code is not currently avail-
able for SNAS). For DARTS, exact reproducibility was
not feasible since the code is non-deterministic and Liu

Table 1: CIFAR-10 Benchmark: Comparison with state-of-the-art NAS methods and manually designed net-
works. The results are grouped by those for manually designed networks, published NAS methods, and the methods
that we evaluated. Models for all methods are trained with cutout. Test error for our contributions are averaged over
10 random seeds. Table entries denoted by "-" indicate that the field does not apply, while entries denoted by "N/A"
indicate unknown entries. The search cost is measured in GPU days. Note that the search cost is hardware dependent
and the search cost shown for our results are calculated for Tesla P100 GPUs; all other numbers follow those reported
by Liu et al. [32].
⇤ We show results for the variants of these networks with comparable number of parameters. Larger versions of these
networks achieve lower errors.
Reported test error averaged over 5 seeds.
† The stage (1) cost shown is that for 1 trial as opposed to the cost for 4 trials shown for DARTS and Random search WS.
It is unclear whether multiple trials followed by stage (2) evaluation are required in order to find a good architecture.
‡ Due to the longer evaluation we employ in stage (2) to account for unstable rankings, the cost for stage (2) is 1 GPU
day for results reported by Liu et al. [32] and 6 GPU days for our results.

Test Error Params Search Cost Comparable Search
Architecture Source Best Average (M) Stage 1 Stage 2 Total Search Space? Method
Shake-Shake# [9] N/A 2.56 26.2 - - - - manual
PyramidNet [46] 2.31 N/A 26 - - - - manual
NASNet-A#⇤ [50] N/A 2.65 3.3 - - 2000 N RL
AmoebaNet-B⇤ [41] N/A 2.55± 0.05 2.8 - - 3150 N evolution
ProxylessNAS† [7] 2.08 N/A 5.7 4 N/A N/A N gradient-based
GHN#† [48] N/A 2.84± 0.07 5.7 0.84 N/A N/A N hypernetwork
SNAS† [45] N/A 2.85± 0.02 2.8 1.5 N/A N/A Y gradient-based
ENAS† [39] 2.89 N/A 4.6 0.5 N/A N/A Y RL
ENAS [32] 2.91 N/A 4.2 4 2 6 Y RL
Random search baseline [32] N/A 3.29± 0.15 3.2 - - 4 Y random
DARTS (first order) [32] N/A 3.00± 0.14 3.3 1.5 1 2.5 Y gradient-based
DARTS (second order) [32] N/A 2.76± 0.09 3.3 4 1 5 Y gradient-based
DARTS (second order)‡ Ours 2.62 2.78± 0.12 3.3 4 6 10 Y gradient-based
ASHA baseline Ours 2.85 3.03± 0.13 2.2 - - 9 Y random
Random search WS‡ Ours 2.71 2.85± 0.08 4.3 2.7 6 9.7 Y random

et al. [32] do not provide random seeds for the search pro-
cess; hence, we focus on broad reproducibility of the re-
sults. In our independent run, DARTS reached an average
test error of 2.78± 0.12 compared to the published result
of 2.76 ± 0.09. Notably, we observed that the process
of selecting the best architecture in stage (2) is unstable
when training stage (2) models for only 100 epochs; see
Section 4.1.3 for details. Hence, we use 600 epochs in
all of our CIFAR experiments, including our independent
DARTS run, which explains the discrepancy in stage (2)
costs between original DARTS and our independent run.

For ENAS, the published results do not satisfy exact re-
producibility due to the same issues as those for DARTS.
We show in Table 1 the broad reproducibility experiment
conducted by Liu et al. [32] for ENAS; here, ENAS found
an architecture that achieved a comparable test error of
2.91 in 8⇥ the reported stage (1) search cost. We then
investigated the reproducibility of random search with
weight-sharing. We verified exact reproducibility and
then examined broad reproducibility by evaluating 5 ad-
ditional independent runs of our method. We observe
performance below 2.90 test error in 2 of the 5 runs and
an average of 2.92 across all 6 runs. We investigate vari-

ous sources for these discrepancies in Section 4.1.3.

4.1.2 Impact of Meta-Hyperparameters

We next detail the meta-hyperparameter settings that we
tried in order to reach competitive performance on the
CIFAR-10 benchmark via random search with weight-
sharing. Similar to DARTS, in these preliminary experi-
ments we performed 4 separate trials of each version of
random search with weight-sharing, where each trial con-
sists of executing stage (1) followed by stage (2). In stage
(1), we train the shared weights and use them to evaluate
a given number of randomly sampled architectures on the
test set. In stage (2), we select the best architecture, ac-
cording to the shared weights, to train from scratch using
the proxyless network for 600 epochs.

We incrementally tune random search with weight-sharing
by adjusting the following meta-hyperparameters that im-
pact both the training of shared weights and the evaluation
of architectures using these trained weights: number of
training epochs, gradient clipping, number of architec-
tures evaluated using shared weights, and network size.
The settings we consider for random search proceed as

Table 2: CIFAR-10 Benchmark: Comparison of Stage (2) Intermediate Search Results for Weight-Sharing
Methods. In stage (1), random search is run with different settings to train the shared weights. The shared weights
are then used to evaluate the indicated number of randomly sampled architectures. In stage (2), the best of these
architectures for each trial is then trained from scratch for 600 epochs. We report the performance of the best architecture
after stage (2) for each trial for each search method.

Setting
Gradient Initial # Archs Trial

Method Epochs Clipping Channels Evaluated 1 2 3 4 Best Average
Reproduced DARTS† 50 5 16 - 2.92 2.77 3.00 3.05 2.77 2.94

Random (1) 50 5 16 1000 3.25 4.00 2.98 3.58 2.98 3.45
Random (2) 150 5 16 5000 2.93 3.80 3.19 2.96 2.93 3.22
Random (3) 150 1 16 5000 3.50 3.42 2.97 2.95 2.97 3.21
Random (4) 300 1 16 11000 3.04 2.90 3.14 3.09 2.90 3.04

Random (5) Run 1 150 1 24 5000 2.96 3.33 2.83 3.00 2.83 3.03

follows:

Random (1): We start by training the shared weights with
the proxy network used by DARTS and default values for
number of epochs, gradient clipping, and number of initial
filters; all other meta-hyperparameters are the same.

Random (2): We increase the number of training epochs
from 50 to 150, which concurrently increases the number
of architectures used to update the shared weights.

Random (3): We reduce the maximum gradient norm
from 5 to 1 to adjust for discrete architectures instead of
the weighted combination used by DARTS.

Random (4): We further increase the number of epochs
for training the proxy network with shared weights to 300
and increase the number of architectures evaluated using
the shared weights to 11k.

Random (5): We separately increase the proxy network
size to be as large as possible given the available memory
on a Nvidia Tesla P100 GPU (i.e. by ⇡ 50% due to
increasing the number of initial channels from 16 to 24).

The performance of the final architecture after retraining
from scratch for each of these settings is shown in Ta-
ble 2. The best setting for random search was Random
(5), which has a larger network size. The best trial for this
setting reached a test error of 2.83 when retraining from
scratch; we show the normal and reduction cells found
by this trial in Figure 3. In light of these stage (2) results,
we focus in stage (3) on the best architecture found by
Random (5) Run 1, and achieve an average test error of
2.85± 0.08 over 10 random seeds as shown in Table 1.

4.1.3 Investigating Reproducibility

Our results in this section show that although DARTS ap-
pears broadly reproducible, this result is surprising given
the unstable ranking in architectures observed between

100 and 600 epochs for stage (2) evaluation. To begin,
the first row of Table 2 shows our reproduced results
for DARTS after training the best architecture for each
trial from scratch for 600 epochs. In our reproduced run,
DARTS reaches an average test error of 2.94 and a mini-
mum of 2.77 across 4 trials (see Table 2). Note that this is
not a direct comparison to the published result for DARTS
since there, the stage (2) evaluation was performed after
training for only 100 epochs.

Table 3: CIFAR-10 Benchmark: Ranking of Interme-
diate Test Error for DARTS. Architectures are retrained
from scratch using the proxyless network and the error
on the test set is reported after training for the indicated
number of epochs. Rank is calculated across the 4 trials.
We also show the average over 10 seeds for the best archi-
tecture from the top trial for reference.

Epochs Across
Search 100 600 10 Seeds
Method Trial Value Rank Value Rank Min Avg

Reproduced 1 7.63 2 2.92 2
Darts‡ 2 7.67 3 2.77 1 2.62 2.78± 0.12

3 8.38 4 3.00 3
4 7.51 1 3.05 4

Delving into the intermediate results, we compare the
performance of the best architectures across trials from
our independent run of DARTS after training each from
scratch for 100 epochs and 600 epochs (see Table 3). We
see that the ranking is unstable between 100 epochs and
600 epochs, which motivated our strategy of training the
final architectures across trials to 600 epochs in order to
select the best architecture for final evaluation across 10
seeds. This suggests we should be cautious when using
noisy signals for the performance of different architec-
tures, especially since architecture search is conducted
for DARTS and Random (5) for only 50 and 150 epochs

Table 4: CIFAR-10 Benchmark: Broad Reproducibility of Random Search WS We report the stage 3 performance
of the final architecture from 6 independent runs of random search with weight-sharing.
† This run was performed using the DARTS code before we corrected for non-determinism (see Appendix A.4).

Test Error Across 10 Seeds
Run 1 Run 2† Run 3 Run 4 Run 5 Run 6 Average

2.85± 0.08 2.86± 0.09 2.88± 0.10 2.95± 0.09 2.98± 0.12 3.00± 0.19 2.92

respectively.

Finally, we investigate the variance of random search
with weight-sharing with 5 additional runs as shown in
Table 4. The stage (3) evaluation of the best architec-
ture for these 5 additional runs reveal that 2 out of 5
achieve similar performance as Run 1, while the 3 re-
mainder underperform but still reach a better test error
than ASHA. These broad reproducibility results show that
random search with weight-sharing has high variance be-
tween runs, which is not surprising given the change in
intermediate rankings that we observed for DARTS.

5 CONCLUSION

We conclude by summarizing our results and proposing
suggestions to push the field forward and foster broader
adoption of NAS methods.

Better baselines that accurately quantify the perfor-
mance gains of NAS methods. The performance of ran-
dom search with early-stopping evaluated in Section 4 re-
veals a surprisingly small performance gap between lead-
ing general-purpose hyperparameter optimization meth-
ods and specialized methods tailored for NAS. In tradi-
tional hyperparameter optimization, an informative mea-
sure of the performance of a novel algorithm is its ‘multi-
ple of random search,’ i.e., how much more compute
would random search need to achieve similar perfor-
mance [27]. An analogous baseline could be useful for
NAS, where the impact of a novel NAS method can be
quantified in terms of a multiplicative speedup relative to
a standard hyperparameter optimization method such as
random search with early-stopping.

Ablation studies that isolate the impact of individual
NAS components. Our head-to-head experimental evalu-
ation of two variants of random search (with early stop-
ping and with weight-sharing) allows us to pinpoint the
performance gains associated with the cheaper weight-
sharing evaluation scheme. In contrast, the fact that
random search with weight-sharing is comparable in
performance to leading NAS methods calls into ques-
tion the necessity of the complicated algorithmic compo-
nents employed by ENAS, SNAS, and DARTS. Relatedly,
while ProxylessNAS achieves better average test error
on CIFAR-10 than random search with weight-sharing,

it is unclear to what degree these performance gains are
attributable to the search space, search method, and/or
proxyless shared-weights evaluation method. To promote
scientific progress, we believe that ablation studies should
be conducted to answer these questions in isolation.

Reproducible results that engender confidence and
foster scientific progress. Reproducibility is a core tenet
of scientific progress and crucial to promoting wider adop-
tion of NAS methods. In traditional hyperparameter opti-
mization, it is standard for empirical results to be reported
over 10 independent experimental runs [14, 25, 23, 27].
In contrast, as we discuss Section 2, results for NAS
methods are often reported over a single experimental run
[39, 7, 45, 48], without exact reproducibility. This is a
consequence of the steep time and computational cost re-
quired to perform NAS experiments. However, in order to
adequately differentiate between various methods, results
need to be reported over several independent experimental
runs, especially given the nature of the extremal statistics
that are being reported. Consequently, we conclude that
either significantly more computational resources need to
be devoted to evaluating NAS methods and/or more com-
putationally tractable benchmarks need to be developed
to lower the barrier for performing adequate empirical
evaluations.

Acknowledgments

We thank Maruan Al-Shedivat, Sebastian Caldas, Greg
Ganger, Kevin Jamieson, Angela Jiang, Mikhail Khodak,
Gregory Plumb, Afshin Rostamizadeh, Virginia Smith,
and Daniel Wong for helpful comments and valuable dis-
cussion. Thanks also to Julien Siems and Frank Hutter’s
group for their efforts to reproduce our work, which led
to insights on reproducibility and motivated additional
experiments. Finally, this work was supported in part
by DARPA FA875017C0141, the National Science Foun-
dation grants IIS1705121 and IIS1838017, an Okawa
Grant, a Google Faculty Award, an Amazon Web Ser-
vices Award, and a Carnegie Bosch Institute Research
Award. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of
DARPA, the National Science Foundation, or any other
funding agency.

References
[1] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan,

and Q. Le. Understanding and simplifying one-shot
architecture search. In International Conference on

Machine Learning, 2018.
[2] Y. Bengio. Gradient-based optimization of hyperpa-

rameters. In Neural Computation, 2000.
[3] J. Bergstra and Y. Bengio. Random search for hyper-

parameter optimization. Journal of Machine Learn-

ing Research, 13(Feb):281–305, 2012.
[4] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl.

Algorithms for hyper-parameter optimization. In
Advances in neural information processing systems,
pages 2546–2554, 2011.

[5] A. Brock, T. Lim, J. Ritchie, and N. We-
ston. SMASH: One-shot model architecture search
through hypernetworks. In International Conference

on Learning Representations, 2018.
[6] H. Cai, J. Yang, W. Zhang, S. Han, and Y. Yu. Path-

level network transformation for efficient architec-
ture search. In International Conference on Machine

Learning, 2018.
[7] H. Cai, L. Zhu, and S. Han. ProxylessNAS: Di-

rect neural architecture search on target task and
hardware. In International Conference on Learning

Representations, 2019.
[8] S. Cao, X. Wang, and K. M. Kitani. Learnable em-

bedding space for efficient neural architecture com-
pression. In International Conference on Learning

Representations, 2019.
[9] T. Devries and G. W. Taylor. Improved regulariza-

tion of convolutional neural networks with cutout.
arXiv:1708.04552, 2017.

[10] T. Domhan, J. T. Springenberg, and F. Hutter. Speed-
ing up automatic hyperparameter optimization of
deep neural networks by extrapolation of learning
curves. In International Joint Conferences on Artifi-

cial Intelligence, 2015.
[11] T. Elsken, J. H. Metzen, and F. Hutter. Multi-

objective Architecture Search for CNNs.
arXiv:1804.09081, 2018.

[12] T. Elsken, J. H. Metzen, and F. Hutter. Neural ar-
chitecture search: A survey. Journal of Machine

Learning Research, 20(55):1–21, 2019.
[13] S. Falkner, A. Klein, and F. Hutter. Bohb: Robust

and efficient hyperparameter optimization at scale.
In International Conference on Machine Learning,
2018.

[14] M. Feurer, A. Klein, K. Eggensperger, J. Springen-
berg, M. Blum, and F. Hutter. Efficient and robust

automated machine learning. In Advances in Neural

Information Processing Systems, 2015.
[15] D. Golovin, B. Sonik, S. Moitra, G. Kochanski,

J. Karro, and D.Sculley. Google vizier: A service
for black-box optimization. In SIGKDD Conference

on Knowledge Discovery and Data Mining, 2017.
[16] Google. Google AutoML. https://cloud.

google.com/automl/, 2018.
[17] E. Hoffer, I. Hubara, and D. Soudry. Train longer,

generalize better: closing the generalization gap in
large batch training of neural networks. In Advances

in Neural Information Processing Systems, 2017.
[18] F. Hutter, H. Hoos, and K. Leyton-Brown. Sequen-

tial model-based optimization for general algorithm
configuration. In Proc. of LION-5, 2011.

[19] M. Jaderberg, V. Dalibard, S. Osindero, W. Czar-
necki, J. Donahue, A. Razavi, O. Vinyals, T. Green,
I. Dunning, K. Simonyan, et al. Population based
training of neural networks. arXiv:1711.09846,
2017.

[20] K. Jamieson and A. Talwalkar. Non-stochastic best
arm identification and hyperparameter optimization.
In International Conference on Artificial Intelli-

gence and Statistics, 2015.
[21] H. Jin, Q. Song, and X. Hu. Auto-Keras: Effi-

cient Neural Architecture Search with Network Mor-
phism. arXiv:1806.10282, 2018.

[22] K. Kandasamy, G. Dasarathy, J. B. Oliva, J. Schnei-
der, and B. Póczos. Gaussian process bandit optimi-
sation with multi-fidelity evaluations. In Advances

in Neural Information Processing Systems, 2016.
[23] K. Kandasamy, G. Dasarathy, J. Schneider, and

B. Póczos. Multi-fidelity Bayesian optimisation
with continuous approximations. In International

Conference on Machine Learning, 2017.
[24] K. Kandasamy, W. Neiswanger, J. Schneider, B. Poc-

zos, and E. Xing. Neural Architecture Search with
Bayesian Optimization and Optimal Transport. Ad-

vances in Neural Information Processing Systems,
2018.

[25] A. Klein, S. Falkner, S. Bartels, P. Hennig, and
F. Hutter. Fast Bayesian optimization of machine
learning hyperparameters on large datasets. Inter-

national Conference on Artificial Intelligence and

Statistics, 2017.
[26] A. Krizhevsky. Learning multiple layers of features

from tiny images. In Technical report, Department

of Computer Science, Univsersity of Toronto, 2009.
[27] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh,

and A. Talwalkar. Hyperband: Bandit-based config-
uration evaluation for hyperparameter optimization.

https://cloud.google.com/automl/
https://cloud.google.com/automl/

International Conference on Learning Representa-

tion, 17, 2017.

[28] L. Li, K. G. Jamieson, A. Rostamizadeh, E. Gonina,
M. Hardt, B. Recht, and A. Talwalkar. Massively
parallel hyperparameter tuning. arXiv:1810.05934,
2019.

[29] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-
J. Li, L. Fei-Fei, A. Yuille, J. Huang, and K. Murphy.
Progressive Neural Architecture Search. European

Conference on Computer Vision, 2018.

[30] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and
K. Kavukcuoglu. Hierarchical representations for
efficient architecture search. In International Con-

ference on Learning Representations, 2018.

[31] H. Liu, K. Simonyan, and Y. Yang. DARTS: dif-
ferentiable architecture search. arXiv:1806.09055,
2018.

[32] H. Liu, K. Simonyan, and Y. Yang. DARTS: Differ-
entiable architecture search. In International Con-

ference on Learning Representations, 2019.

[33] R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu. Neu-
ral Architecture Optimization. Advances In Neural

Information Processing Systems, 2018.

[34] D. Maclaurin, D. Duvenaud, and R. Adams.
Gradient-based hyperparameter optimization
through reversible learning. In International

Conference on Machine Learning, 2015.

[35] M. Marcus, M. Marcinkiewicz, and B. Santorini.
Building a large annotated corpus of english: The
penn treebank. Computational Linguistics, 19(2):
313–330, 1993.

[36] S. Merity, N. Keskar, and R. Socher. Regularizing
and optimizing LSTM language models. In Inter-

national Conference on Learning Representations,
2018.

[37] R. Negrinho and G. Gordon. DeepArchitect: Au-
tomatically Designing and Training Deep Architec-
tures. arXiv:1704.08792, 2017.

[38] R. S. Olson and J. H. Moore. Tpot: A tree-based
pipeline optimization tool for automating machine
learning. In Workshop on Automatic Machine Learn-

ing, 2016.

[39] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean.
Efficient neural architecture search via parameters
sharing. In International Conference on Machine

Learning, 2018.

[40] E. Real, S. Moore, A. Selle, S. Saxena, Y. Leon Sue-
matsu, Q. Le, and A. Kurakin. Large-scale evolution
of image classifiers. In ICML, 2017.

[41] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Reg-
ularized Evolution for Image Classifier Architecture
Search. arXiv:1802.01548, 2018.

[42] J. Snoek, H. Larochelle, and R. P. Adams. Practical
Bayesian optimization of machine learning algo-
rithms. In Advances in Neural Information Process-

ing Systems, 2012.

[43] K. Swersky, J. Snoek, and R. Adams. Multi-task
Bayesian optimization. In Advances in Neural In-

formation Processing Systems, 2013.

[44] T. Wei, C. Wang, Y. Rui, and C. W. Chen. Network
morphism. In International Conference on Machine

Learning, 2016.

[45] S. Xie, H. Zheng, C. Liu, and L. Lin. SNAS: stochas-
tic neural architecture search. In International Con-

ference on Learning Representations, 2019.

[46] Y. Yamada, M. Iwamura, and K. Kise. Shakedrop
regularization. arXiv:1802.02375, 2018.

[47] Z. Yang, Z. Dai, R. Salakhutdinov, and W. W. Cohen.
Breaking the softmax bottleneck: A high-rank RNN
language model. In International Conference on

Learning Representations, 2018.

[48] C. Zhang, M. Ren, and R. Urtasun. Graph hyper-
networks for neural architecture search. In Inter-

national Conference on Learning Representations,
2019.

[49] B. Zoph and Q. V. Le. Neural Architecture Search
with Reinforcement Learning. International Confer-

ence on Learning Representation, 2017.

[50] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le.
Learning transferable architectures for scalable im-
age recognition. In Conference on Computer Vision

and Pattern Recognition, 2018.

	INTRODUCTION
	RELATED WORK
	INADEQUATE BASELINES
	COMPLEX METHODS
	LACK OF REPRODUCIBILITY

	METHODOLOGY
	RELEVANT META-HYPERPARAMETERS
	MEMORY FOOTPRINT

	EXPERIMENTS
	CIFAR-10 BENCHMARK
	Final Search Results
	Impact of Meta-Hyperparameters
	Investigating Reproducibility

	CONCLUSION
	APPENDIX
	BACKGROUND
	REPRODUCIBILITY OF RECENT WORK
	PTB BENCHMARK
	Final Search Results
	Impact of Meta-Hyperparameters
	Investigating Reproducibility

	CIFAR-10 BENCHMARK
	AVAILABLE CODE

