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Abstract

The choice of how to retain information about
past gradients dramatically affects the con-
vergence properties of state-of-the-art stochas-
tic optimization methods, such as Heavy-ball,
Nesterov’s momentum, RMSprop and Adam.
Building on this observation, we use stochas-
tic differential equations (SDEs) to explicitly
study the role of memory in gradient-based al-
gorithms. We first derive a general continuous-
time model that can incorporate arbitrary types
of memory, for both deterministic and stochas-
tic settings. We provide convergence guar-
antees for this SDE for weakly-quasi-convex
and quadratically growing functions. We then
demonstrate how to discretize this SDE to get
a flexible discrete-time algorithm that can im-
plement a board spectrum of memories rang-
ing from short- to long-term. Not only does
this algorithm increase the degrees of freedom
in algorithmic choice for practitioners but it
also comes with better stability properties than
classical momentum in the convex stochastic
setting. In particular, no iterate averaging is
needed for convergence. Interestingly, our anal-
ysis also provides a novel interpretation of Nes-
terov’s momentum as stable gradient amplifi-
cation and highlights a possible reason for its
unstable behavior in the (convex) stochastic set-
ting. Furthermore, we discuss the use of long
term memory for second-moment estimation in
adaptive methods, such as Adam and RMSprop.
Finally, we provide an extensive experimental
study of the effect of different types of memory
in both convex and nonconvex settings.

∗ Correspondence to [orvietoa@ethz.ch].

1 INTRODUCTION

Our object of study is the classical problem of minimizing
finite-sum objective functions:

x∗ = arg min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x). (P)

Accelerated gradient methods play a fundamental role
in optimizing such losses, providing optimal rates
of convergence for certain types of function classes
such as the ones being convex [Nesterov, 2018]. The
two most popular momentum methods are Heavy-ball
(HB) [Polyak, 1964] and Nesterov’s accelerated gradi-
ent (NAG) [Nesterov, 1983]. They are based on the fun-
damental idea of augmenting gradient-based algorithms
with a momentum term that uses previous gradient direc-
tions in order to accelerate convergence, which yields the
following type of iterative updates:

xk+1 = xk + βk(xk − xk−1)− η∇f(xk), (HB)

with βk an iteration dependent momentum parameter2 and
η a positive number called learning rate (a.k.a. stepsize).

Although both HB and NAG have received a lot of at-
tention in the literature, the idea of acceleration is still
not entirely well understood. For instance, a series
of recent works [Su et al., 2016, Wibisono et al., 2016,
Yang et al., 2018] has studied these methods from a phys-
ical perspective, which yields a connection to damped
linear oscillators. Arguably, the insights provided by
these works are mostly descriptive and have so far not
been able to help with the design of conceptually new
algorithms. Furthermore, the resulting analysis often
cannot be easily translated to stochastic optimization
settings, where stability of momentum methods may
actually be reduced due to inexact gradient informa-
tion [Jain et al., 2018, Kidambi et al., 2018].

2Gradient Descent [Cauchy, 1847] can be seen as a special
case of HB for βk = 0.



This lack of theoretical understanding is rather unsatis-
fying. Why is it that acceleration able to provide faster
rates of convergence for convex functions but fails when
used on non-convex functions or in a stochastic setting?
This question is especially relevant given that momentum
techniques (such as Adam [Kingma and Ba, 2014]) are
commonly used in machine learning in order to optimize
non-convex objective functions that arise when training
deep neural networks.

In order to address this issue, we here exploit an
alternative view on the inner workings of momen-
tum methods which is not physically-inspired but in-
stead builds upon the theoretical work on memory
gradient diffusions developed by [Cabot et al., 2009]
and [Gadat and Panloup, 2014]. In order to leverage this
analogy, we first rewrite HB as follows:

xk+1 = xk−η
k−1∑
j=0

 k∏
h=j+1

βh

∇f(xj)−η∇f(xk)

(HB-SUM)

where x0 = x−1 is assumed. That is, at each iteration k
the next step is computed using a weighted average of past
gradients : xk+1 = xk+η

∑k
j=0 w(j, k)∇f(xk)). In par-

ticular, if βh is constant across all iterations, the memory
— which is controlled by the weights — vanishes exponen-
tially fast (short-term memory). Such averaging provides
a cheap way to 1) adapt to the geometry of ill-conditioned
problems (also noted in [Sutskever et al., 2013]) and 2)
denoise stochastic gradients if the underlying true gra-
dients are changing slowly. Similarly, adaptive meth-
ods [Duchi et al., 2011, Kingma and Ba, 2014] use mem-
ory of past square gradients to automatically adjust the
learning rate during training. For the latter task, it has
been shown [Reddi et al., 2018] that some form of long-
term memory is convenient both for in theory (to ensure
convergence) and in practice, since it has been observed
that, in a mini-batch setting, large gradients are not com-
mon and might be quite informative.

In summary — most modern stochastic optimization
methods can be seen as composition of memory systems.
Inspired by this observation and by the undeniable im-
portance of shining some light on the acceleration phe-
nomenon, we make the following contributions.

1. Following previous work from [Cabot et al., 2009],
we generalize the continuous-time limit of HB to an
interpretable ODE that can implement various types
of gradient forgetting (Sec. 3.1). Next, we extend
this ODE to the stochastic setting (Sec. 3.2).

2. By comparing the resulting SDE to the model for
Nesterov momentum developed in [Su et al., 2016],

we provide a novel interpretation of acceleration as
gradient amplification and give some potential an-
swers regarding the source of instability of stochastic
momentum methods (Sec. 3.3).

3. We study the convergence guarantees of our
continuous-time memory system and show that, in
the convex setting, long-term (polynomial) memory
is more stable than classical momentum (Sec. 4).

4. We discretize this memory system and derive an al-
gorithmic framework that can incorporate various
types of gradient forgetting efficiently. Crucially, we
show the discretization process preserves the conver-
gence guarantees.

5. We run several experiments to support our theory
with empirical evidence in both deterministic and
stochastic settings (Sec. 5).

6. We propose a modification of Adam which uses long-
term memory of gradient second moments to adap-
tively choose the learning rates (Sec. 6).

We provide an overview of our notation in App. A.

2 RELATED WORK

Momentum in deterministic settings. The first accel-
erated proof of convergence for the deterministic setting
dates back to [Polyak, 1964] who proved a local linear
rate of convergence for Heavy-ball (with constant mo-
mentum) for twice continuously differentiable, µ-strongly
convex and L-smooth functions (with a constant which
is faster than gradient descent). [Ghadimi et al., 2015]
derived a proof of convergence of the same method for
convex functions with Lipschitz-continuous gradients, for
which the Cesàro average of the iterates converges in
function value like O(1/k) (for small enough η and β).

A similar method, Nesterov’s Accelerated Gradient
(NAG), was introduced by [Nesterov, 1983]. It achieves
the optimalO(1/k2) rate of convergence for convex func-
tions and, with small modifications, an accelerated (with
respect to gradient desacent) linear convergence rate for
smooth and strongly-convex functions.

Momentum in stochastic settings. Prior work has
shown that the simple momentum methods discussed
above lack stability in stochastic settings, where the evalu-
ation of the gradients is affected by noise (see motivation
in [Allen-Zhu, 2017] for the Katyusha method). In par-
ticular, for quadratic costs, [Polyak, 1987] showed that
stochastic Heavy-ball does not achieve any accelerated
rate but instead matches the rate of SGD. More general
results are proved in [Yang et al., 2016] for these meth-
ods, both for convex and for smooth functions, requiring
a decreasing learning rate, bounded noise and bounded
subgradients (see Tb.1). For strongly-convex func-
tions, [Yuan et al., 2016] also studied the mean-square



Function Gradient Rate Reference
µ-strongly-convex, L-smooth Deterministic f(xk)− f(x∗) ≤ O(qk) [Polyak, 1964]
Convex, L-smooth Deterministic f(x̄k)− f(x∗) ≤ O(1/k) [Ghadimi et al., 2015]
Convex Stochastic E (f(x̄k)− f(x∗)) ≤ O(1/

√
k) [Yang et al., 2016] (*)

Non-convex, L-smooth Stochastic mini≤k E
[
||∇f(xi)||2

]
≤ O(1/

√
k) [Yang et al., 2016] (*)

Table 1: Existing convergence rate for Heavy-ball for general functions (special cases for quadratic functions are mentioned in
the main text). The term x̄k denotes the Cesaro average of the iterates. The constant q is defined as q =

√
L−√µ√
L+
√
µ

. (*) The results

of [Yang et al., 2016] also require bounded noise and bounded gradients as well as a step size decreasing as 1/
√
k.

error stability and showed that convergence requires small
(constant) learning rates. Furthermore, the rate is shown
to be equivalent to SGD and therefore the theoretical ben-
efits of acceleration in the deterministic setting do not
seem to carry over to the stochastic setting.

Continuous-time perspective. The continuous time
ODE model of NAG for convex functions presented
in [Su et al., 2016] led to the developments of sev-
eral variants of Nesterov-inspired accelerated methods
in the deterministic setting (e.g. [Krichene et al., 2015]
and [Wilson et al., 2016]). In this line of research, in-
teresting insights often come from a numerical anal-
ysis and discretization viewpoint [Zhang et al., 2018,
Betancourt et al., 2018]. Similarly, in stochastic set-
tings, guided by SDE models derived from Nesterov’s
ODE in [Su et al., 2016] and by the variational per-
spective in [Wibisono et al., 2016], [Xu et al., 2018a]
and [Xu et al., 2018b] proposed an interpretable alter-
native to AC-SA (an accelerated stochastic approx-
imation algorithm introduced in [Lan, 2012] and
[Ghadimi and Lan, 2012]). This is a sophisticated mo-
mentum method that in expectation achieves a O(L/k2 +
ς2∗d/(µk)) rate3 for µ-strongly convex and L-smooth
functions and O(L/k2 + ς2∗d/

√
k) for convex L-smooth

functions. These rates are nearly optimal, since in the
deterministic limit ς∗ → 0 they still capture acceleration.

Unlike [Xu et al., 2018a, Xu et al., 2018b], we focus on
how the memory of past gradients relates to the classical
and most widely used momentum methods (HB, NAG)
and, with the help of the SDE models, show that the
resulting insights can be used to design building blocks
for new optimization methods.

3 MEMORY GRADIENT SDE
In his 1964 paper, Polyak motivated HB as the discrete
time analogue of a second order ODE:

Ẍ(t) + a(t)X(t) +∇f(X(t)) = 0,
(HB-ODE)

3ς2∗ bounds the stochastic gradient variance in each direction.

which can be written in phase-space as{
V̇ (t) = −a(t)V (t)−∇f(X(t))

Ẋ(t) = V (t)
.

(HB-ODE-PS)

This connection can be made precise: in App. B.1 we
show that HB is indeed the result of semi-implicit Euler
integration4 on HB-ODE-PS.

3.1 MEMORY AND GRADIENT FORGETTING

If the viscosity parameter α = a(t) is time-independent,
HB-ODE, with initial condition Ẋ(0) = 0 and X(0) =
x0, can be cast into an integro-differential equation5:

Ẋ(t) = −
∫ t

0

e−α·(t−s)∇f(X(s))ds.

(HB-ODE-INT-C)

Bias correction. Notice that the instantaneous update
direction of HB-ODE-INT-C is a weighted average of
the past gradients, namely

∫ t
0
w(s, t)∇f(X(s))ds with

w(s, t) := eα(t−s). However, the weights do not integrate
to one. Indeed, for all t, we have

∫ t
0
w(s, t)ds = (1 −

e−αt)/α, which goes to 1/α as t → ∞. As a result, in
the constant gradient setting, the previous sum is a biased
estimator of the actual gradient. This fact suggests a
simple modification of HB-ODE-INT-C, for t > 0:

Ẋ(t) = − α

1− e−αt

∫ t

0

e−α·(t−s)∇f(X(s))ds. (1)

which we write as Ẋ = − α
eαt−1

∫ t
0
eαs∇f(X(s))ds. We

note that this normalization step follows exactly the same
motivation as bias correction in Adam; we provide an
overview of this method in App. B.2. If we define m(t) :=
eαt − 1, the previous formula takes the form:

4 [Hairer et al., 2006] for an introduction.
5By computing Ẍ from HB-ODE-INT-C using the funda-

mental theorem of calculus and plugging in Ẋ(0) = 0.



Ẋ(t) = −
∫ t

0

ṁ(s)

m(t)
∇f(X(s))ds.

(MG-ODE-INT)

This memory-gradient integro-differential equation (MG-
ODE-INT) provides a generalization of HB-ODE-INT-C,
with bias correction. The following crucial lemma is
consequence of the fundamental theorem of calculus.

Lemma 3.1. For any m ∈ C1(R,R) s.t. m(0) = 0, MG-
ODE-INT is normalized :

∫ t
0

ṁ(s)
m(t) ds = 1, for all t > 0.

Proof. Since m(0) = 0,
∫ t
0
ṁ(s)ds = m(t).

Based on Lemma 3.1, we will always set m(0) = 0. What
other properties shall a general m(·) have? Requiring
ṁ(s) 6= 0 for all s ≥ 0 ensures that there does not exist a
time instant where the gradient is systematically discarded.
Hence, since m(0) = 0, m(·) is either monotonically
decreasing and negative or monotonically increasing and
positive. In the latter case, without loss of generality, we
can flip its sign. This motivates the following definition.

Definition. m ∈ C1(R+,R) is a memory function if it
is non-negative, strictly increasing and s.t. m(0) = 0.

For example, eαt − 1, from which we started our dis-
cussion, is a valid memory function. Crucially, we note
that ṁ(·) plays the important role of controlling the speed
at which we forget previously observed gradients. For
instance, let m(t) = t3; since ṁ(s) = 3s2, the system for-
gets past gradients quadratically fast. In contrast, m(t) =
eαt − 1 leads to exponential forgetting. Some important
memory functions are listed in Tb. 2, and their respective
influence on past gradients is depicted in Fig. 1. We point
out that, in the limit α→∞, the weights w(s, t) = ṁ(s)

m(t)
associated with exponential forgetting converge to a
Dirac distribution δ(t − s). Hence, we recover the Gra-
dient Descent ODE [Mertikopoulos and Staudigl, 2018]:
Ẋ(t) = −∇f(X(t)). For the sake of comparability, we
will refer to this as instantaneous forgetting.

Finally, notice that MG-ODE-INT can be written as a
second order ODE. Too see this, we just need to compute
the second derivative. For t > 0 we have that

Ẍ(t) =
ṁ(t)

m(t)2

∫ t

0

ṁ(s)∇f(X(s))ds− ṁ(t)

m(t)
∇f(X(t)).

Plugging in the definition of Ẋ from the integro-
differential equation, we get the memory-gradient ODE:

Ẍ(t) +
ṁ(t)

m(t)
Ẋ(t) +

ṁ(t)

m(t)
∇f(X(t)) = 0.

(MG-ODE)
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Figure 1: Illustration of the influence of past gradients on Ẋ(6)
(i.e. the right hand side of equation MG-ODE-INT with t = 5).
The corresponding memory function can be found in Tb. 2. The
influence is computed as ṁ(s)/m(6). By Lemma 3.1, the area
under all curves is 1.

Forgetting Memory m ODE Coeff. ṁ/m

Decaying log(1 + t) 1/(t log(t+ 1))
Constant t 1/t
Square-root t1.5 1.5/t
Linear t2 2/t
Quadratic t3 3/t
Exponential eαt − 1 αeαt/ (eαt − 1)
Super-exp et

α − 1 αtα−1et
α

/
(
et
α − 1

)
Instantaneous − −

Table 2: Some important examples of memory functions.

Equivalently, we can transform this second order ODE
into a system of two first order ODEs by introducing
the variable V (t) := Ẋ(t) and noting that V̇ (t) =

− ṁ(t)
m(t)V (t) − ṁ(t)

m(t)∇f(X(t)). This is called the phase-
space representation of MG-ODE, which we use in
Sec. 3.2 to provide the extension to the stochastic set-
ting. Also, for the sake of comparison with recent liter-
ature (e.g. [Wibisono et al., 2016]), we provide a varia-
tional interpretation of MG-ODE in App. C.2.

Existence and uniqueness. Readers familiar with
ODE theory probably realized that, since by definition
m(0) = 0, the question of existence and uniqueness
of the solution to MG-ODE is not trivial. This is why
we stressed its validity for t > 0 multiple times dur-
ing the derivation. Indeed, it turns out that such a so-
lution may not exist globally on [0,∞) (see App. C.1).
Nevertheless, if we allow to start integration from any
ε > 0 and assume f(·) to be L-smooth, standard ODE
theory [Khalil and Grizzle, 2002] ensures that the sought
solution exists and is unique on [ε,∞). Since ε can be
made as small as we like (in our simulations in App. F
we use ε = 10−16) this apparent issue can be regarded
an artifact of the model. Also, we point out that the inte-
gral formulation MG-ODE-INT is well defined for every



t > 0. Therefore, in the theoretical part of this work,
we act as if integration starts at 0 but we highlight in the
appendix that choosing the initial condition ε > 0 induces
only a negligible difference (see Remarks C.2 and D.1).

3.2 INTRODUCING STOCHASTIC GRADIENTS

In this section we introduce stochasticity in the MG-
ODE model. As already mentioned in the introduction,
at each step k, iterative stochastic optimization meth-
ods have access to an estimate G(xk) of ∇f(xk): the
so called stochastic gradient. This information is used
and possibly combined with previous gradient estimates
G(x0), . . . ,G(xk−1), to compute a new approximation
xk+1 to the solution x∗. There are many ways to de-
sign G(k): the simplest [Robbins and Monro, 1951] is
to take GMB(xk) := ∇fik(xk), where ik ∈ {1, . . . , n}
is a uniformly sampled datapoint. This gradient es-
timator is trivially unbiased (conditioned on past iter-
ates) and we denote its covariance matrix at point x by
Σ(x) = 1

n

∑n
i=1(∇fi(x)−∇f(x))(∇fi(x)−∇f(x))T .

Following [Krichene and Bartlett, 2017] we model such
stochasticity adding a volatility term in MG-ODE.

dX(t) = V (t)dt

dV (t) = − ṁ(t)
m(t)

V (t)dt

− ṁ(t)
m(t)

[∇f(X(t))dt+ σ(X(t))dB(t)]

(MG-SDE)

where σ(X(t)) ∈ Rd×d and {B(t)}t≥0 is a standard
Brownian Motion. Notice that this system of equations
reduces to the phase-space representation of MG-ODE if
σ(X(t)) is the null matrix. The connection from σ(x)
to the gradient estimator covariance matrix Σ(x) can
be made precise: [Li et al., 2017] motivate the choice
σ(x) =

√
hΣ(x), where

√
· denotes the principal square

root and h is the discretization stepsize.

The proof of existence and uniqueness to the solution
of this SDE6 relies on the same arguments made for
MG-ODE in Sec. 3.1, with one additional crucial differ-
ence: [Orvieto and Lucchi, 2018] showed that f(·) needs
to additionally be three times continuously differentiable
with bounded third derivative (i.e. f ∈ C3b (Rd,R)),
in order for σ(·) to be Lipschitz continuous. Hence,
we will assume this regularity and refer the reader
to [Orvieto and Lucchi, 2018] for further details.

3.3 THE CONNECTION TO NESTEROV’S SDE

[Su et al., 2016] showed that the continuous-time limit
of NAG for convex functions is HB-ODE with time-

6See e.g. Thm. 5.2.1 in [Øksendal, 2003], which gives
sufficient conditions for (strong) existence and uniqueness.

dependent viscosity 3/t: Ẍ(t)+ 3
t Ẋ(t)+∇f(X(t)) = 0,

which we refer to as Nesterov’s ODE. Using Bessel func-
tions, the authors were able to provide a new insightful de-
scription and analysis of this mysterious algorithm. In par-
ticular, they motivated how the vanishing viscosity is es-
sential for acceleration7. Indeed, the solution to the equa-
tion above is s.t. f(X(t)) − f(x∗) ≤ O(1/t2); in con-
trast to the solution to the GD-ODE Ẋ(t) = −∇f(X(t)),
which only achieves a rate O(1/t).

A closer look at Tb. 2 reveals that the choice 3/t is
related to MG-ODE with quadratic forgetting, that is
Ẍ(t) + 3

t Ẋ(t) + 3
t∇f(X(t)) = 0. However, it is nec-

essary to note that in MG-SDE also the gradient term is
premultiplied by 3/t. Here we analyse the effects of this
intriguing difference and its connection to acceleration.

Gradient amplification. A naïve way to speed up the
convergence of the GD-ODE Ẋ(t) = −∇f(X(t)) is to
consider Ẋ(t) = −t∇f(X(t)). This can be seen by
means of the Lyapunov function E(x, t) = t2(f(x) −
f(x∗)) + ‖x − x∗‖2. Using convexity of f(·), we have
Ė(X(t), t) = −t2‖∇f(X(t))‖2 ≤ 0 and therefore, the
solution is s.t. f(X(t)) − f(x∗) ≤ O(1/t2). How-
ever, the Euler discretization of this ODE is the gradient-
descent-like recursion xk+1 = xk− ηk∇f(xk) — which
is not accelerated. Indeed, this gradient amplification by
a factor of t is effectively changing the Lipschitz constant
of the gradient field from L to kL. Therefore, each step
is going to yield a descent only if8 η ≤ 1

kL . Yet, this
iteration dependent learning rate effectively cancels out
the gradient amplification, which brings us back to the
standard convergence rate O(1/k). It is thus natural to
ask: "Is the mechanism of acceleration behind Nesterov’s
ODE related to a similar gradient amplification?"

In App. C.4 we show that {XN (t), VN (t)}t≥0, the solu-
tion to Nesterov’s SDE9, is s.t. the infinitesimal update
direction VN (t) of the position XN (t) can be written as

VN (t) = −
∫ t

0

s3

t3
∇f(X(s))ds+ ζN (t), (2)

where ζN (t) is a random vector with E[ζN (t)] = 0
and Cov[ζN (t)] = 1

7 tσσ
T . In contrast, the solution

{Xm2(t), Vm2(t)})t≥0 of MG-SDE with quadratic for-
getting satisfies

Vm2(t) = −
∫ t

0

3s2

t3
∇f(X(s))ds+ ζm2(t), (3)

7Acceleration is not achieved for a viscosity of e.g. 2/t.
8See e.g. [Bottou et al., 2018].
9Nesterov’s SDE is defined, as for MG-SDE by augmenting

the phase space representation with a volatility term. The result-
ing system is then : dX(t) = V (t)dt; dV (t) = −3/tV (t)dt−
σ(X(t))dB(t).



Figure 2: HB-SDE with α(t) = 3/t (i.e. Nesterov’s SDE)
compared to MG-SDE with quadratic forgetting. Setting as in
[Su et al., 2016]: f(x) = 2 × 10−2x21 + 5 × 10−3x22 starting
from X0 = (1, 1) and Ẋ(0) = (0, 0). Both systems are ex-
posed to the same noise volatility. Simulation using the Milstein
scheme [Mil’shtejn, 1975] with stepsize 10−3.

where ζm2(t) is a random vector with E[ζm2(t)] = 0 but
Cov[ζm2(t)] = 9

5tσσ
T . Even though the reader might

already have spotted an important difference in the noise
covariances, to make our connection to gradient ampli-
fication even clearer, we consider the simpler setting
of constant gradients: in this case, we have VN (t) =
− 1

4 t∇f(X(t))+ζN (t), Vm2(t) = −∇f(X(t))+ζm2(t).
That is, stochastic algorithms with increasing momentum
(i.e. decreasing10 viscosity, like the Nesterov’s SDE) are
systematically amplifying the gradients over time. Yet, at
the same time they also linearly amplify the noise variance
(see Fig. 7 in the appendix). This argument can easily be
extended to the non-constant gradient case by noticing
that E[Vm2(t)] is a weighted average of gradients where
the weights integrate to 1 for all t ≥ 0 (Lemma 3.1) . In
contrast, in E[VN (t)] these weights integrate to t/4. This
behaviour is illustrated in Fig. 2: While the Nesterov’s
SDE is faster compared to MG-SDE with m(t) = t3 at
the beginning, it quickly becomes unstable because of the
increasing noise in velocity and hence position.

This gives multiple insights on the behavior of Nesterov’s
accelerated method for convex functions, both in for de-
terministic and the stochastic gradients:

1. Deterministic gradients get linearly amplified over-
time, which counteracts the slow-down induced by
the vanishing gradient problem around the solution.
Interestingly Eq. (2) reveals that this amplification is
not performed directly on the local gradient but on
past history, with cubic forgetting. It is this feature
that makes the discretization stable compared to the
naïve approach Ẋ = −t∇f(X(t)).

2. Stochasticity corrupts the gradient amplification
by an increasing noise variance (see Eq. (2)),
which makes Nesterov’s SDE unstable and
hence not converging. This finding is in line
with [Allen-Zhu, 2017].

10See the connection between α and β in Thm. B.1.

Furthermore, our analysis also gives an intuition as to why
a constant momentum cannot yield acceleration. Indeed,
we saw already that HB-ODE-INT-C does not allow such
persistent amplification, but at most a constant amplifica-
tion inversely proportional to the (constant) viscosity. Yet,
as we are going to see in Sec. 4, this feature makes the
algorithm more stable under stochastic gradients.

To conclude, we point the reader to App. C.4.2, where
we extend the last discussion from the constant gradient
case to the quadratic cost case and get a close form for the
(exploding) covariance of Nesterov’s SDE (which backs
up theoretically the unstable behavior shown in Fig. 2).
Nonetheless, we remind that this analysis still relies on
continuous-time models; hence, the results above can
only be considered as insights and further investigation is
needed to translate them to the actual NAG algorithm.

Time warping of linear memory. Next, we now turn
our attention to the following question: "How is the
gradient amplification mechanism of NAG related to its
— notoriously wiggling11— path?". Even though Nes-
terov’s ODE and MG-ODE with quadratic forgetting
are described by similar formulas, we see in Fig. 2
that the trajectories are very different, even when the
gradients are large. The object of this paragraph is to
show that Nesterov’s path has a strong link to — sur-
prisingly — linear forgetting. Consider speeding-up
the linear forgetting ODE Ẍ(t) + 2

t Ẋ(t) + 2
t∇f(X(t))

by introducing the time change τ(t) = t2/8 and let
Y (t) = X(τ(t)) be the accelerated solution to linear for-
getting. By the chain rule, we have Ẏ (t) = τ̇(t)Ẋ(τ(t))
and Ÿ (t) = τ̈(t)Ẋ(τ(t)) + τ̇(t)2Ẍ(τ(t)). It can easily
be verified that we recover Ÿ (t) + 3

t Ẏ (t) + ∇f(Y (t)).
However, in the stochastic setting, the behaviour is still
quite different: as predicted by the theory, in Fig. 3 we
see that — when gradients are large — the trajectory of
the two sample paths are almost identical11 (yet, notice
that Nesterov moves faster); however, as we approach
the solution, Nesterov diverges while linear forgetting sta-
bly proceeds towards the minimizer along the Nesterov’s
ODE path, but at a different speed, until convergence to a
neighborhood of the solution, as proved in Sec. 4. Further-
more, in App. C.3 we prove that there are no other time
changes which can cast MG-ODE into HB-ODE, which
yields the following interesting conclusion: the only way
to translate a memory system into a momentum method
is by using a time change τ(t) = O(t2).

4 ANALYSIS AND DISCRETIZATION

In this section we first analyze the convergence proper-
ties of MG-SDE under different memory functions. Next,

11Detailed simulations in App. F.



Forgetting Assumption Rate Reference

Instantaneous (H0c), (H1) E[f(X̄(t))− f(x∗)] ≤ Ci/t+ d σ2
∗/2 [Mertikopoulos and Staudigl, 2018]

Exponential (H0c), (H1) E[f(X̄(t))− f(x∗)] ≤ Ce/t+ d σ2
∗/2 App. D, Thm. D.4

Polynomial (H0c), (H1), p ≥ 2 E[f(X(t))− f(x∗)] ≤ Cp/t+ p d σ2
∗/2 App. D, Thm. D.3

Table 3: Rates of MG-SDE on convex smooth functions . X̄(t) =
∫ t
0
X(s)ds and Ci, Ce, Cp can be found in the references.

Figure 3: Nesterov’s ODE compared to MG-SDE with linear
forgetting (i.e. ṁ(t)/m(t) = 2/t). Same settings as Fig. 2.

we use the Lyapunov analysis carried out in continuous-
time to derive an iterative discrete-time method which
implements polynomial forgetting and has provable con-
vergence guarantees. We state a few assumptions:

(H0c) f ∈ C3b (Rd,R), σ2
∗ := supx ‖σ(x)σ(x)T ‖s <∞.

The definition of σ2
∗ nicely decouples the measure of noise

magnitude to the problem dimension d (which will then,
of course, appear explicitly in all our rates).

(H1) The cost f(·) is L-smooth and convex.

(H2) The cost f(·) is L-smooth and µ-strongly convex.

We provide the proofs (under the less restrictive assump-
tions of weak-quasi-convexity and quadratic growth12), as
well as an introduction to stochastic calculus, in App. D.

4.1 EXPONENTIAL FORGETTING

If m(t) = eαt − 1, then ṁ(t)/m(t) = αeαt

eαt−1 which
converges to α exponentially fast. To simplify the
analysis and for comparison with the literature on HB-
SDE (which is usually analyzed under constant volatility
[Shi et al., 2018]) we consider here MG-SDE with the
approximation ṁ(t)/m(t) ' α. In App. D we show that,
under (H1), the rate of convergence of f(·), evaluated at
the Cesàro average X̄(t) =

∫ t
0
X(s)ds is sublinear (see

12τ -weak-quasiconvexity is implied by convexity and has
been shown to be of chief importance in the context of
learning dynamical systems [Hardt et al., 2018]. Strong
convexity implies quadratic growth with a unique mini-
mizer [Karimi et al., 2016] as well as τ -weak-quasiconvexity.
More details in the appendix.

Tb. 3) to a ball13 around x∗ of size d σ2
∗/2, which is in

line with known results for SGD [Bottou et al., 2018]14.
Note that the size of this ball would change if we were
to study a stochastic version of HB-ODE with constant
volatility (i.e. Ẍ+αẊ+∇f(X)). In particular, it would
depend on the normalization constant in Eq. (1). Also,
in App. D, under (H2), we provide a linear convergence
rate of the form f(X(t))− f(x∗) ≤ O(e−γt) to a ball (γ
depends on µ and α). Our result generalizes the analysis
in [Shi et al., 2018] to work with any viscosity and with
stochastic gradients.

Discretization. As shown in Sec. 3.1, the discrete
equivalent of MG-SDE with exponential forgetting is
Adam without adaptive stepsizes (see App. B.2). As for
the continuous-time model we just studied, for a suffi-
ciently large iteration, exponential forgetting can be ap-
proximated with the following recursive formula:

xk+1 = xk + β(xk − xk−1)− η(1− β)∇f(xk),

which is exactly HB with learning rate (1− β)η. Hence,
the corresponding rates can be derived from Tb. 1.

4.2 POLYNOMIAL FORGETTING

The insights revealed in Sec. 3.3 highlight the impor-
tance of the choice m(t) = tp in this paper. In contrast
to instantaneous [Mertikopoulos and Staudigl, 2018] and
exponential forgetting, the rate we prove in App. D for
this case under (H1) does not involve a Cesàro average —
but holds for the last time point (see Tb. 3). This stability
property is directly linked to our discussion in Sec. 3.3
and shows that different types of memory may react to
noise very differently. Also, we note that the size of the
ball we found is now also proportional to p; this is not
surprising since, as the memory becomes more focused on
recent past, we get back to the discussion in the previous
subsection and we need to consider a Cesàro average.

Discretization. Finally, we consider the burning ques-
tion "Is it possible to discretize MG-SDE — with polyno-

13Note that the term "ball" might be misleading: indeed, the
setNε(x∗) = {x ∈ Rd, f(x)− f(x∗) ≤ ε} is not compact in
general if f(·) is convex but not strongly convex.

14Note that, by definition of σ(·) (see discussion after MG-
SDE), σ2

∗ is proportional both to the learning rate and to the
largest eigenvalue of the stochastic gradient covariance



Figure 4: Synthetic example: f(x1, x2) = 0.8× x41 + 0.4×
x42 with Gaussian noise. Displayed is linear forgetting (i.e.
MemSGD-2), exponential forgetting (denoted p=e) with β =
0.8 and instantaneous forgetting. Average and 95% confidence
interval for 150 runs starting from (1, 1).

mial forgetting — to derive a cheap iterative algorithm
with similar properties?". In App. E, we build this al-
gorithm in a non-standard way: we reverse-engineer the
proof of the rate for MG-SDE to get a method which
is able to mimic each step of the proof. Starting from
x−1 = x0, it is described by the following recursion

xk+1 = xk+
k

k + p
(xk−xk−1)− p

k + p
η∇f(xk).

(MemSGD-p)

As a direct result of our derivation, we show in Thm. E.2
(App. E) that this algorithm preserves exactly the rate of
its continuous-time model in the stochastic setting15:

E[f(xk)− f(x∗)] ≤ (p− 1)2‖x0 − x∗‖2

2ηp(k + p− 1)
+

1

2
pdης2∗ .

We also show that MemSGD-p can be written as xk+1 =

xk − η
∑k
j=0 w(j, k)∇f(xk), where

∑k
j=0 w(j, k) = 1

(in analogy to the bias correction in Adam) and with
w(·, k) increasing as a polynomial of order p − 1 for
all k, again in complete analogy with the model. Fig. 4
shows the behaviour of different types of memory in a
simple convex setting; as predicted, polynomial (in this
case linear) forgetting has a much smoother trajectory
then both exponential and instantaneous forgetting. Also,
the reader can verify that the asymptotic noise level for
MemSGD (p=2) is slightly higher, as just discussed.

For ease of comparison with polynomial memory, we will
often write MemSGD (p=e) to denote exponential forget-
ting (i.e. Adam without adaptive steps) and SGD (p=inf)
to stress that SGD implements instantaneous forgetting.

15Required assumptions: (H1), p ≥ 2, η ≤ p−1
pL

and ς2∗
bounds the gradient variance in each direction of Rd.

5 LARGE SCALE EXPERIMENTS

In order to assess the effect of different types of memory
in practical settings, we benchmark MemSGD with differ-
ent memory functions: from instantaneous to exponential,
including various types of polynomial forgetting. As a
reference point, we also run vanilla HB with constant
momentum as stated in the introduction. To get a broad
overview of the performance of each method, we run
experiments on a convex logistic regression loss as well
as on non-convex neural networks in both a mini- and
full-batch setting. Details regarding algorithms, datasets
and architectures can be found in App. G.1.

Results and discussion. Fig. 5 summarizes our results
in terms of training loss. While it becomes evident that
no method is best on all problems, we can nevertheless
draw some interesting conclusions.

First, we observe that while long-term memory (especially
p = 2) is faster than SGD in the convex case, it does not
provide any empirical gain in the neural network settings.
This is not particularly surprising since past gradients
may quickly become outdated in non-convex landscapes.
Short term memory is at least as good as SGD in all cases
except for the CIFAR-10 CNN, which represents the most
complex of our loss landscapes in terms of curvature.

Secondly, we find that the best stepsize for HB is always
strictly smaller than the one for SGD in the non-convex
setting. MemSGD, on the other hand, can run on stepsizes
as large as SGD which reflects the gradient amplification
of HB as well as the unbiasedness of MemSGD. Interest-
ingly, however, a closer look at Fig. 15 (appendix) reveals
that HB (with best stepsize) actually takes much smaller
steps than SGD for almost all iterations. While this makes
sense from the perspective that memory averages past gra-
dients, it is somewhat counter-intuitive given the inertia
interpretation of HB which should make the method travel
further than SGD. Indeed, both [Sutskever et al., 2013]
and [Goodfellow et al., 2016] attribute the effectiveness
of HB to its increased velocity along consistent direc-
tions (especially early on in the optimization process).
However, our observation, together with the fact that
MemSGD with fast forgetting (p = e and p = 100)
is as good as HB, suggests that there is actually more to
the success of taking past gradients into account and that
this must lie in the altered directions that adapt better to
the underlying geometry of the problem.16

Finally, we draw two conclusions that arise when compar-
ing the mini- and full batch setting. First, the superiority
of HB and fast forgetting MemSGD over vanilla SGD
in the deterministic setting is indeed reduced as soon as

16Note that we find the exact opposite in the convex case,
where HB does take bigger steps and converges faster.
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Figure 5: Log loss over iterations in mini- (top) and full-batch (bottom) setting. Average and 95% CI of 10 random initializations.

stochastic gradients come into play (this is in line with the
discussion in Sec. 3.3). Second, we find that stochasticity
per se is not needed to optimize the neural networks in
the sense that all methods eventually reach very similar
methods of suboptimality. That is, not even the full batch
methods get stuck in any elevated local minima including
the saddle found in the MNIST autoencoder which they
nicely escape (given the right stepsize).

6 MEMORY IN ADAPTIVE METHODS

While the main focus of this paper is the study of the
effect of different types of memory on the first moment of
the gradients, past gradient information is also commonly
used to adapt stepsizes. This is the case for Adagrad and
Adam which both make use of the second moment of past
gradients to precondition their respective update steps.

Of course, the use of polynomial memory generalizes
directly to the second moment estimates and we thus con-
sider a comprehensive study of the effect of long- versus
short-term memory in adaptive preconditioning an ex-
citing direction of future research. In fact, as shown in
[Reddi et al., 2018] the non-convergence issue of Adam
can be fixed by making the method forget past gradients
less quickly. For that purpose the authors propose an
algorithm called AdamNC that essentially differs from
Adam by the choice of β2 = 1 − 1/k, which closely
resembles Adagrad with constant memory. Interestingly,
the memory framework introduced in this paper allows
to interpolate between the two extremes of constant- and
exponential memory (i.e. Adagrad and Adam) in a prin-
cipled way. Indeed, by tuning the additional parameter
p — which specifies the degree of the polynomial mem-
ory function — one can equip Adam with any degree of

short- to long-term memory desired. As a proof of con-
cept, Fig. 6 shows that Adam equipped with a polynomial
memory of the squared gradients (PolyAdam) can in fact
be faster than both Adam and Adagrad.

Figure 6: Cifar-10 CNN: Log loss over iterations (left) and
training accuracy (right). Average and 95% confidence interval
of 10 runs with random initialization.

7 CONCLUSION

We undertook an extensive theoretical study of the role of
memory in (stochastic) optimization. We provided con-
vergence guarantees for memory systems as well as for
novel algorithms based on such systems. This study led
us to derive novel insights on momentum methods. We
complemented these findings with empirical results, both
on simple functions as well as more complex functions
based on neural networks. There, long- and short-term
memory methods exhibit a different behaviour, which sug-
gests further investigation is needed to better understand
the interplay between the geometry of neural networks
losses, memory and gradient stochasticity. On a more
theoretical side, an interesting direction of future work
is the study of the role of memory in state-of-the art mo-
mentum methods such as algorithms that include primal
averaging, increasing gradient sensitivity or decreasing
learning rates (see e.g. [Krichene and Bartlett, 2017]).
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