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Abstract
We study the classical linear bandit problem
on graphs modelling arm rewards through an
underlying graph structure G(V ,E) such that
rewards of neighboring nodes are similar. Previ-
ous attempts along this line have primarily con-
sidered the arm rewards to be a smooth function
over graph Laplacian, which however failed to
characterize the inherent problem complexity in
terms of the graph structure.We bridge this gap
by showing a regret guarantee of Õ(χ(G)

√
T )

1 that scales only with the chromatic number
of the complement graph χ(G), assuming the
rewards to be a smooth function over a general
class of graph embeddings—Orthonormal Rep-
resentations. Our proposed algorithms yield
a regret guarantee of Õ(r

√
T ) for any gen-

eral embedding of rank r. Moreover, if the
rewards correspond to a minimum rank embed-
ding, the regret boils down to Õ(χ(G)

√
T )–

none of the existing works were able to bring
out such influences of graph structures over
arm rewards. Finally, noting that computing the
above minimum rank embedding is NP-Hard,
we also propose an alternative O(|V | + |E|)
time computable embedding scheme—Greedy
Embeddings—based on greedy graph color-
ing, with which our algorithms perform opti-
mally on a large family of graphs, e.g. union
of cliques, complement of k-colorable graphs,
regular graphs, trees etc, and are also shown
to outperform state-of-the-art methods on real
datasets. Our findings open up new roads for ex-
ploiting graph structures on regret performance.

1 Introduction
The problem of multiarmed bandit (MAB) is extremely
well studied in machine learning literature which is widely

∗∗ Both authors contributed equally to the paper.
1Õ(·) notation hides dependencies on log T .

used to model online decision making problems under
uncertainty [7, 37]. Due to their implicit exploration-vs-
exploitation tradeoff, they are quite prevalent in clinical
treatment, movie recommendations, job scheduling etc.
Over the years several variants of MAB has been studied
in the literature, introducing arm features [33, 24, 39],
side information [28, 23, 8, 22], contextual scenarios [26,
27] etc. However, perhaps surprisingly, very few attempts
have been made towards exploring the problem under
graph based assumptions—precisely when bandit arms
are known to be connected by a known relational graph.

Undoubtedly graph structural representations of data are
extremely relevant in various real world scenarios where
the edge connections model the item similarities e.g. con-
nection among friends in a social network, or similar
movies in a recommender systems etc. One might argue
to model arm similarities in terms of feature representa-
tions, however in principle a relational graph has much
more realistic interpretation. Moreover, the information
of exact features may not even be available in reality—can
we actually learn faster (achieve smaller regret) in such
scenarios with just the knowledge of the graph?

Problem Statement. We consider the setting of MAB
with an additional graph structure G(V,E) over the N
arms (nodes), i.e. |V | = N and we denote V = [N ]
henceforth, such that neighboring arms are similar in
terms of their underlying rewards. In particular, if fi is
the expected reward associated to each arm i, we assume
fi =

∑
j∈NG(i) S(i, j)αj , where S ∈ RN×N represents

similarity matrix, unknown to the learner: For any item
pair i, j ∈ [N ], S(i, j) denotes their degree of similarity
as a function of their edge information E(i, j); S(i, j) =
0, if (i, j) /∈ E. NG(i) denotes the neighboring nodes
of i in G. αj ∈ R can be seen as the ‘contribution’ or
‘weight’ factor of arm j on reward of the ith arm, fi.

Clearly, the above structure models the rewards of two
similar nodes (i.e. with similar neighborhood w.r.t. the
graph) similarly—question is does this additional struc-



ture helps us to achieve a smaller regret guarantee? Intu-
itively, it must, as for a fixedN , one can expect to estimate
the arm rewards faster in a denser graph compared to a
sparser one, as in the former case, the knowledge of re-
ward of a particular node reveals a lot more information
about its neighboring nodes, possibly leading to a faster
learning rate. We hence aim to characterize the complex-
ity of the MAB problem in terms the underlying graph
structure. But how to achieve that? What is the right de-
pendency of the underlying graph complexity parameter?

Related Works. One can certainly apply the classical
MAB algorithms [6, 7] for the purpose, but that leads to
a regret of O(

√
NT ), which could be arbitrarily bad for

largeN , precisely due to their inability to exploit the addi-
tional reward structure on f modeled w.r.t. G. The linear
bandit algorithms [33, 39, 11] also fail due to the absence
of any graph information leading to a regret bound of
Õ(
√
dT ) in terms of the feature dimension d. [35] also

addresses a similar setting of linear contextual bandits,
and derive an Õ(

√
d̃T ) regret guarantee, with d̃ being

a notion of dimensionality that decides the underlying
problem complexity. However above regret boils down
to Õ(

√
NT ) for linear finite arm case [29], and more-

over their setting does not consider any graph structure.
[10] addresses a similar problem as that of [35], but their
setting is specifically catered to Gaussian Process kernels.

[28, 23, 22, 2, 3] studied the MAB problem assuming
relation graph over the nodes, however their setting also
requires to reveal reward of a neighboring set of the pulled
arm which boils to a semi-bandit (side information) set-
ting, unlike our setting which is a pure bandit feedback
model that reveals only a noisy reward of the selected arm.
Few of them also requires [16] also consider a stochas-
tic sequential learning problems on graphs but here the
learner gets to observe the average reward of a group of
graph nodes rather than a single one. The online clus-
tering of bandits line of works [9, 14, 36] also attempts
to exploit the item similarities through graphs, however
their setting assumes the graph to be initially unknown
while the goal is to learn the edge connections using addi-
tional contextual information per round. [29, 34] assume
the arm rewards to be a smooth function over a graph,
however their setting is restricted only to the time regime

T < N as their regret is Õ(
√
d̃(G,T )T ) which depends

on a term d̃(G,T ) called ‘effective dimension’—an in-
creasing function of T , and shoots up to N for large T
where their guarantee stands vacuous (see Sec. 4.1 for few
examples). Moreover the quantity d̃(G,T ) is poorly un-
derstood in graph theoretic literature, as it does not relate
to any graph property, e.g. chromatic number, node/edge
connectivity; nor lends itself to any structural information
like graph sparsity etc., which fails to capture the regret

guarantee in terms of the underlying graph structure.

Our results. We thus seek for a more interpretable regret
bounds in terms of known graph theoretic quantities that
directly relates to structural properties of G. Towards this
we formulate the problem of graph bandits over N arms,
where the reward vector f = Sα ∈ RN arms is defined in
terms of a similarity matrix S ∈ RN×N modeled through
an underlying graph structure G([N ], E) over N bandit
arms. Our key idea approaches the problem from the
viewpoint of finding the “right embedding” that best fits
the graph, by using a rich class of graph embeddings—
Orthonormal Graph Representations—going beyond the
usual choice of Laplacian embeddings. Using this, the
regret guarantees of our proposed algorithms are shown
to be of Õ

(
χ(G)

√
T
)
, χ(G) being the chromatic number

of the complement graph G, which bridges our quest for
relating the problem complexity with the graph structure.
Note that the added advantage of above regret bounds is
that for graphs with χ(G) = O(1), we drive a regret of
just Õ(

√
T ) (independent of N ), whereas the state-of-the

art methods [29, 34] still lead to a Õ(
√
NT ) regret with

large enough T . See Sec. 4.1 for specific examples.

• We study the problem of Bandits on Graphs us-
ing a rich family of graph embedding–Orthonormal
Representations–moving beyond the usual choice of
Laplacian embedding, the only embedding used in
the existing literature for any graph based learning
problems [4, 17, 29, 34]. (Sec. 4.2).
• Under above embedding, our proposed algorithms,

OUCB and SupOUCB are shown to achieve a re-
gret guarantee of Õ(r

√
T ) (Thm. 6, 8), r being the

embedding rank, potentially much smaller than N
of data dimension d, and thus improves upon the
O(
√
NT ) or Õ(

√
dT ) regret of classical MAB or

linear bandit algorithms respectively, or state-of-the-

art regret bound Õ(
√
d̃(G,T )T ) [29, 34]. (Sec. 3).

• Our main contribution lies in showing how em-
bedding rank r relates to χ(G) under an optimal
choice of embedding leading to a regret guarantee
of Õ(χ(G)

√
T ) (Cor. 11), χ(G) being chromatic

number of the complement graph G. Thus we relate
the learning rate to the underlying graph structure as
χ(G) is a function of the graph connectivity. This,
for the first time, brings out the inherent complexity
of the underlying problem in terms of well studied
graph theoretic measures—a much desired result,
yet unattained so far. Clearly, a denser graph implies
a small regret rate—an intuitive result. (Sec. 4).
• However, finding the optimal embeddings being NP-

Complete (Cor. 11), we propose to work with a ‘near
optimal embedding’ based on greedy graph color-
ings – called Greedy Embeddings (Algo. 3), which



works inO(N) time, given a valid coloring ofG that
can be easily obtained using any polytime approxi-
mate graph coloring algorithm, e.g. greedy coloring
(runs in O(N + |E|) time complexity) etc. The re-
sulting algorithm is shown to perform with Õ(c

√
T )

regret guarantee (Cor. 13), if c is the total number
of colors used, which is in fact optimal as long as
c = O(χ(G)) and holds good for a large family of
graphs: e.g. regular graphs, union of cliques, planar
graphs, trees, G(n, p) random graphs etc. (Sec. 4.3).

• Finally, we also prove a matching regret lower bound

of Ω
(√

χ(G)T
)

on specific graph instances, prov-
ing optimality our regret bounds for such cases (up

to a factor of
√
χ(G) log T , see Thm. 16),Sec. 5).

Efficacy of proposed algorithms and greedy embedding
schemes are evaluated on different synthetic and real
world graphs, where our proposed method is shown to
outperform all the state of art algorithms (Sec. 6).

Organization. Sec. 2 introduces the preliminary no-
tations and the problem setting along with the related
works. Sec. 3 describes our proposed algorithms, OUCB
and SupOUCB , with their regret guarantees. Sec. 4 re-
lates the above regret guarantee to structural properties
of the graph by proposing a polynomial time computable
greedy embedding scheme (based on graph colorings). In
Sec. 5, we derive a possible lower bound for our problem
setup. Finally we study the comparative performances of
our proposed algorithms with state-of-the-art methods on
several synthetic and real world datasets in Sec. 6. Sec. 7
concludes the paper with some future directions.

2 Preliminaries and Problem Settings

Preliminaries. We denote [n] = {1, 2, . . . n}, for any
n ∈ N. For any graph G(V,E), let its vertex set
V (G) = {v1, v2, . . . vN} and edge set E(G) ⊆ V × V .
Clearly |V | = N . The Laplacian of graph G is defined
by LG = DG − AG, AG being the adjacency matrix
of G and DG is a diagonal matrix with DG(i, i) being
the degree of vi. χ(G) and α(G) respectively denotes
the chromatic and independence number of G. For any
real, square, symmetric matrix A ∈ Rm×m, we denote
its eigenvalues by λm(A) ≥ · · · ≥ λ1(A), rank by r(A),
determinant by |A| and trace by Tr(A). Sn+ denotes
the family of n × n symmetric positive semi-definite
matrices, A† the pseudo inverse of A. In denotes the
n-dimensional identity matrix.

The MAB problem [6, 7]. The problem of multiarmed
bandit (MAB) consists of a learner presented with a set
of N arms, with each arm i ∈ [N ] being associated to
an unknown reward fi ∈ R. At each round t ∈ [T ], the
learner’s task is to select an arm it ∈ [N ] from [N ], upon

which the nature provides a noisy reward rt ∈ R with
E[rt] = fit . The objective is to minimize the expected
regret in T rounds, with respect to the ‘best arm’ i∗ =
argmax
i∈[n]

fi, defined as:

RT :=

T∑
t=1

(fi∗ − fit). (1)

2.1 Problem setting: Bandit on Graphs

We define the problem of “Bandits on Graphs”, which
is special case of famously studied multiarmed bandit
problem (MAB) with additional knowledge of arm depen-
dencies modeled through a graph structure. The formal
problem statement is defined as follows:

Bandit on Graphs. Given a simple undirected graph
G([N ], E) defined on the set of N bandit arms, the prob-
lem assumes an unknown reward vector f = Sα̃ ∈ RN ,
over the arm set [N ], where α̃ ∈ RN and S ∈ RN×N rep-
resents a similarity matrix that models pairwise similarity
S(i, j) between any two items i, j ∈ [N ] as a function of
their edge information E(i, j); in particular, S(i, j) = 0,
if (i, j) /∈ E. Thus above implies that for any node i,
fi =

∑
j∈N (i) S(i, j)α̃j , N (i) = {j ∈ [N ] | (i, j) ∈

E} denotes the neighboring nodes of i.

Locality Assumptions on Rewards. Above implies two
arms with similar structure (i.e. neighborhood) would
have similar rewards – an intuitive locality property over
the arm rewards. Formally we assume f to be such that
‖fi − fj‖ ≤ b, b ∈ R+ being a small constant.

Objective. Similar to the setting of MAB, the goal of the
learner is to play an arm it ∈ [N ] at each round t, upon
which a noisy reward feedback is observed:

rt = fit + ηt, (2)
where ηt is a zero-mean R-sub-Gaussian noise, i.e.
E[ηt] = 0, and ∀a ∈ R,E [eaηt ] ≤ exp

(
a2R2

2

)
. As

before, the objective of the learner is to minimize the
cumulative regret of T rounds as defined in (1).

2.2 Finding a graph Embedding: Key Intuition

Note that, denoting si as the ith row of S we can alter-
natively write fi = s>i α̃, ∀i ∈ [n]. Thus our problem
would have reduced to linear bandits if the arm features
si were known [33, 39, 11]. However recall that unlike
linear bandits the learner has only access to the G and
not the underlying embedding matrix S. Then how to
proceed with a solution and how much error do we incur
for not having the knowledge of S?

The key to our approach is to find a suitable graph embed-
ding that ‘best fits’ the underlying matrix S. We choose
to work with the class of orthonormal representations of
graphs for this purpose since it is rich enough to represent
any f in its range space. Moreover the properties of any



such embedding closely resembles that of S, as evident
from its definition:

Definition 1 (Orthonormal Representation of Graphs.).
An orthonormal representation of G = ([N ], E) is
given by a matrix U = [u1, . . . ,uN ] ∈ Rd×N ,
such that u>i uj = 0 whenever (i, j) /∈ E and
‖ui‖2 = 1 ∀i ∈ [N ]. Let the set Lab(G) denotes
all orthonormal representations of G, i.e. Lab(G) =
{U | U is an Orthonormal Representation}, and con-
sider the set K(G) := {K ∈ SN+ | Kii = 1,∀i ∈
[N ]; Kij = 0,∀(i, j) /∈ E}. [21] showed that the two
sets are equivalent i.e. for each U ∈ Lab(G), we can
have K ∈ K(G) and vice-versa. We will term K(G) as
the set of orthonormal embedding kernels of G.

Now note that for a fixed K ∈ K(G), any matrix S ∈
RN×N can always be decomposed as S = KŜ + E,
where KE = 0N×N and Ŝ = (K>K)†(KS) (as K ∈
SN+ , K> = K). Or equivalently we can decompose
f = (KŜ + E)α̃ = Kβ + e, where β = Ŝα̃, and
Ke = 0. Assume ‖e‖∞ = ε and ki denote the ith

column (equivalently row) of matrix K. From (1), we can
then further derive (see details in Appendix A):

RT ≤
T∑
t=1

(k>itβ − k>i∗β) + 2εT (3)

Remark 2 (Tradeoff between K vs ε). If we find a K
such that ε = o( 1

T ), we can still hope to have a sublinear
regret as long as the first term of (3) is sublinear in T .
E.g. if we choose K = IN , (IN being the N -Identity
matrix. Note IN ∈ K(G) for any graph on [N ]), clearly
ε = 0. However the ‘complexity’ of the embedding is very
high since rank r(K) = N . On the contrary, setting a
very low rank K will poorly approximate f resulting a
high ε and the second term of (3) dominates.

Thus our goal here is quantity the above tradeoff, i.e. how
the first term of (3) varies with different choices of K.
For this, we henceforth assume f = Kβ with ε = 0, to
analyze the regret dependency on K.

3 Proposed Algorithms
Similar to classical UCB-algorithm for MAB [6], the
main idea of our proposed algorithms is to keep an esti-
mate of f (or equivalently β, as we assumed f = Kβ,
for some K ∈ K(G), or since ∃U ∈ Lab(G), such that
K = U>U, equivalently f = U>α, where β = U†α)
with high confidence and pick the arms optimistically
at each round based on that. Further we also assume
‖α‖ ≤ B. Our algorithms and their regret analysis
are presented next. We use ridge regression to estimate
f , see (4). We denote the reward estimate obtained
from the observations of rounds s to t by f̂s,t (or α̂s,t),

1 ≤ s < t ≤ T , estimated as:

f̂s,t = argmin
g∈Kβ̂

(
t−1∑
τ=s

(gvτ − rτ )2 + γg>K†g

)
, or

β̂s,t = argmin
β′∈RN

(
‖K>s,tβ

′ − rs,t‖22 + γβ′>Kβ′
)
,

α̂s,t = argmin
α′∈RN

(
‖X>s,tα′ − rs,t‖22 + γ‖α′‖2

)
(4)

where rs,t = [rs rs+1 . . . rt−1]> ∈ Rt−s being the
vector of observed rewards in rounds s to t, Xs,t =
[xs xs+1 . . .xt−1] ∈ RN×t−s, xτ = uvτ ∈ RN repre-
sents the arm vτ , played at round τ ∈ {s, s+1, . . . t−1}.
γ > 0 denotes the regularization parameter.

Remark 3 (Choice of regularization (g>K†g)). Recall
our regularity assumptions on f implies the arm rewards
to vary “smoothly” over the graph: i.e., if (i, j) ∈ E then
fi ≈ fj , ∀i, j ∈ [N ], which is precisely ensured by our
above choice of regularization. This is because f = Kβ,
f lies in the Reproducing Kernel Hilbert Space (RKHS)
of the kernel matrix K. Now, it is well known from the
literature of kernel methods that the above smoothness
condition equivalently implies f to be bounded in terms
of the RKHS norm ‖f‖K = f>K†f , say ‖f‖K ≤ B,
for some small constant B > 0. (A detailed discussion on
smoothness of RKHS functions is given in Appendix B).

Lemma 4. The least square estimate of α in (4) is given
by α̂s,t = (Xs,tX

>
s,t + γIN )−1Xs,trs,t, which gives the

following estimated reward vector:

f̂s,t(v) = u>v α̂s,t = k̂
v

s,t(K̂s,t + γIt−s)
−1rs,t ∀v ∈ [N ]

where K̂s,t ∈ Rt−s×t−s is such that K̂s,t(τ, τ
′) =

K(vτ , vτ ′), ∀τ, τ ′ ∈ {s, s + 1, . . . t − 1}. k̂
v

s,t =
[K(v, vs) K(v, vs+1) . . .K(v, vt−1)]. For ease of nota-
tions we also denote Ms,t = (K̂s,t+γIt−s)

−1 and using
block matrix inversion rule, we get:

Ms,t+1 =

[
K̂s,t + γIt−s k̂s,t

(k̂s,t)
> K(vt, vt) + γ

]−1

=

[
Ms,t + zMs,tk̂s,tk̂

>
s,tMs,t zMs,tk̂s,t

zk̂
>
s,tMs,t z

]
, (5)

where z = 1/(1 + γ − k̂
>
s,tMs,tk̂s,t), and as

K(vt, vt) = 1. Also we abbreviate k̂s,t = k̂
vt
s,t =

[K(vs, vt) K(vs+1, vt) . . .K(vt−1, vt)]
>.

Our first algorithm is developed on the idea of estimat-
ing the reward vector f (alternatively α) using ridge-
regression on the entire past observations and select the
arms optimistically based on their upper confidence es-
timates. Formally, at each round t, OUCB estimates the
reward of each arm v ∈ [N ] using f̂1,t(v) (Eqn. (4)),
along with a confidence term V vt , and plays the arm with
highest estimated reward (line 4). Thus the noise on the



reward feedback observed at round t is not independent
of the earlier rewards till time t− 1. Due to this, we use
self-normalized martingale inequalities [39], to obtain
confidence width on the estimated reward f̂1,t. Details of
OUCB is given in Algorithm 1.

Algorithm 1 OUCB

input : K ∈ K(G) : Embedding kernel
T, δ Time horizon and confidence parameter
B,R: Upper bound on ‖α‖ and noise ηt respectively.
γ : Regularization parameter.

init : M1,1 = 1
1: for each round t = 1, 2, · · · , T do
2: r1,t = [r1, · · · , rt−1]T

3: Bt = 2R
√
r(K) log(1 + T

γ ) + 2 log(1/δ)+γ
1
2B

4: Play vt = argmax
v∈[N ]

(
k̂
v

1,tM1,tr
>
1,t + V vt

)
,

where V vt = Bt

(
K(v, v)− (k̂

v

1,t)
>M1,tk̂

v

1,t

)
5: Observe the reward rt.
6: Update M1,t+1 using equation (5).
7: end for

At any round t ∈ [T ], OUCB gives the following confi-
dence bound on the estimated reward:
Lemma 5. Let δ ∈ (0, 1), and Bt is same as defined in
OUCB . Then any v ∈ [N ], we have

Pr
(
|f̂1,t(v)− f(v)| ≤ Bt

)
≥ 1− δ,

where f̂1,t(v) = k̂
v

1,tM1,tr
>
1,t is the reward estimate of

arm v at round t (as obtained using Lemma 4).

Using Lemma 5, we further get:

Theorem 6. Given any δ ∈ (0, 1) and f ∈ [−1, 1]N ,
with probability at least 1− δ, the regret of OUCB algo-
rithm with embedding kernel K ∈ K(G) is:

RT ≤ 2

(
2R

√
r(K) log(1 +

T

γ
) + 2 log(1/δ) + γ

1
2B

)

×

√
2r(K)T log

(
1 +

T

γ

)
= O(r(K) log T

√
T )

Our second algorithm, SupOUCB , is in spirit similar to
our first algorithm OUCB except it divides the T rounds
into dlog T e phases, and at each round, the arms are cho-
sen independent of past rewards within that phase. This
ensures the independence of the observed rewards in the
successive rounds within a phase which allows to obtain
confidence bounds on the arms’ estimated rewards us-
ing tail-inequality on sub-Gaussian quadratic forms [12].
SupOUCB adopts its key idea from Sup-LinUCB [11]
algorithm for linear bandits. The advantage of above
trick gives a

√
log T factor improvement on the regret of

SupOUCB compared to OUCB .

Algorithm 2 SupOUCB

input : K ∈ K(G) : Embedding kernel
T, δ Time horizon and confidence parameter
B,R: Upper bound on ‖α‖ and noise ηt respectively.
γ : Regularization parameter.

init : A1 ← [N ], and B′=γ−1
(
Bmax

(
1, 1√

γ

)
+

√
R
(
r(K) + 2

√
r(K) log 1

δ + 2 log 1
δ

))
1: for each j = 1, 2, . . . , dlog T e do
2: sj = 2j−1, tj = min(2j − 1, T ), Mlj ,lj = 1
3: for each round t = lj to tj do
4: Play vt = argmax

v∈Aj

[
K(v, v)− (k̂

v

sj ,t)
TMsj ,tk̂

v

sj ,t

]
5: Observe the reward rt
6: Compute Msj ,t+1 using equation (5)
7: end for
8: rj = [rsj , · · · , rtj ]T

9: k̂
v

j = [K(vsj , v), . . .K(vtj , v)]T , ∀v ∈ [N ]
10: Eliminate nodes that are not promising:

p = max
v∈Aj

(
(k̂
v

j )
TMsj ,tj+1rj − V vj

)
Aj+1 = {v ∈ Aj | (k̂

v

j )
TMsj ,tj+1rj +V vj ≥ p},

where V vj = B′(K(v, v)−(k̂
v

j )
>Msj ,tj+1k̂

v

j ).
11: end for

More formally, here each phase j ∈ dlog T e has 2j−1

rounds, which begins at round sj = 2j−1 and ends at
tj = min(2j − 1, T ). At each round t, SupOUCB plays
the arm with largest confidence (line 4). At the end of
each phase, we eliminate the arms v ∈ [N ] that are not
promising in terms of their optimistic estimated reward —
the ridge estimate f̂sj ,tj+1 added with a confidence term
V vj (line 10). Algorithm 2 describes SupOUCB .

SupOUCB gives the following confidence bound on the
estimated reward per phase j:
Lemma 7. Let δ ∈ (0, 1), and is as de-
fined in SupOUCB . Then at any phase
j ∈ [dlog T e], for any v ∈ RN , we have

Pr
(
|f̂sj ,tj+1(v)− f(v)| ≤ B′

(
1− (k̂

v

j )
>Msj ,tj+1k̂

v

j

))
≥

1− δ, f̂sj ,tj+1(v) = (k̂
v

j )
TMsj ,tj+1rj being the reward

estimate of arm v at the end of phase j (from Lem. 4).
Theorem 8. Given any δ ∈ (0, 1), and f ∈ [−1, 1]N ,
with probability at least 1 − δ, the regret of SupOUCB
algorithm with embedding kernel K ∈ K(G) is:

RT ≤ 8

(
R

√√√√(r(K) + 2

√
r(K) log

1

δ
+ 2 log

1

δ

)

+Bmax
(

1,
1
√
γ

))
×

√
r(K)T log

(
1 +

T

γ

)
= O(r(K)

√
T log T )



Remark 9. Given a fixed choice of embedding K, thus
our regret bound depends of embedding rank r(K). The
question that still remains is to actually find an embedding
with lowest possible rank that optimally fits the reward
vector f with small enough ε

(
= O( 1

T )
)

that leads to a
sublinear regret. This answers tradeoff of Remark 2.

4 Towards Interpretable Bounds
In this section we explore the relationship of the regret
bounds, obtained in the previous section, with the struc-
tural properties of the underlying graph G. In particular
we show the optimal regret can be linked to the Chromatic
number of its complement graph χ(G). We start with the
observation that our regret bounds in Thm. 6 and 8 sug-
gests that the best possible regret can be achieved with
the orthonormal embedding of minimum rank defined as:

Definition 10. Orthonormal Rank [32]. Given any
graph G, its orthonormal rank is defined as d∗ =
min{r(U) | U ∈ Lab(G)}. We denote the embedding
corresponding to d∗ by U∗.

Corollary 11. Given a graph G, for any δ ∈ [0, 1], with
probability at least (1− δ),

1. The regret of SupOUCB with embedding ker-
nel K∗ = U∗>U∗ is given by, RT =
O
(
χ(G)

√
T log T

)
.

2. Computing the kernel K∗ is NP-complete problem.

4.1 Implication of our Regret Bound

In this section we analyze what improvement does our
new regret guarantee (Cor. 11) offer over the existing

results (specifically the Õ
(√

d̃(G,T )T
)

regret of [29]
due to having a very similar problem setting), though
some specific graph instances:

Example-1: Union of cliques. Consider the graph
G([N ], E) to be a union of c cliques, each with N

c ver-
tices, c > 0 being some constant. E.g. c = 1 for Com-
plete graph, c = 10 for union of 10 cliques etc.

Note that, for above family of graphs, χ(G) = c. Also
if L denotes the graph Laplacian, the eigenvalues of L
are: λi(L) = 0, ∀i ∈ [c], and λi(L) = N

c , ∀i > c. Now
the effective dimension d̃(G,T ) [29] of the problem is
defined to be the largest k such that: (k − 1)λk(L) ≤

T
log(1+T

λ )
, λ > 0 being some constant. Clearly for large

enough T , d̃(G,T ) can shoot up to N as it is an in-
creasing function of T . Let us fix c = 10, N = 100,
and λ = 1. Then for any time iteration T > 300,
we have T

log(1+T
λ )

> 300
log(301) ≈ 121.031 > 12 ∗ 10,

which implies it has to be the case that d̃(G,T ) > 13
as λk(L) = N

c = 10 for any k > 10. Similarly for
any T > 5000, d̃(G,T ) reaches 100 which becomes is

orderwise larger than χ(G). Whereas χ(G) = 10 is a con-
stant through out, independent of T . Thus the regret of

Õ(
√
d̃(G,T )T ) becomes Õ(

√
NT ) for large T whereas

our proposed methods give just Õ(
√
T ) regret (Cor. 11).

Example-2: Regular graphs Consider a r-regular graph
G([N ], E) with each node of degree r ∈ [N ]. Clearly
χ(G) = n−r. Let us construct a dense regular graph with
r = 90, N = 100, and assume λ = 1. It can be shown
that for this graph the largest eigenvalue of the Laplacian
is λN (L) = r. From a similar calculation as of Example
1, we here get that as T reaches O(104), d̃(G,T ) → N
leading to a regret of Õ(

√
NT ), whereas χ(G) being only

n− r = 10, we are done with just Õ(
√
T ) regret.

Example-3: Complement of Planar graphs. Consider
the graphG([N ], E) to be any planar graph, then we know
that χ(G) ≤ 4 (Four-color theorem [5]). But similarly in
this case too, for large enough T , d̃(G,T ) becomes N .

We can show similar results on more graph families, Sec.
4.3 shows few more examples.

4.2 Greedy Graph Embeddings
Cor. 11 shows the existence of an optimal embedding ker-
nel K∗ which leads to O

(
χ(G)

√
T log T

)
regret, how-

ever finding such K∗ is NP-hard [30]. Hence we propose
a polynomial time embedding scheme, namely Greedy
Graph Embedding, which has small rank for a large fam-
ily of graphs, and can be shown to perform optimally
(same as K∗) on certain specific graph families.

Algorithm 3 Coloring based Orthogonal Embedding

input Coloring function of G, C : V (G) 7→ N
output Uc ∈ RN×|V | s.t. Uc ∈ Lab(G), r(Uc) = |C|.

1: for color classes Ck ∈ C(G) = {C1, . . . , C|C|} do
2: Embed each node i ∈ Ck by ek, i.e. set Uci = ek,

ek ∈ {0, 1}N being the kth standard basis of RN .
3: end for

A coloring of a graph G(V,E) can be defined as a func-
tion C : V (G) → N where C(i) 6= C(j) if (i, j) /∈ E,
for any i, j ∈ V . We define (with a slight abuse of no-
tation) |C| := |{C(v) | v ∈ V }| as the number of colors
used by C to color the nodes of G. The graph is said to
be c colorable if there exists a coloring function C such
that c = |C|. Also given a coloring C, its color classes,
denoted by C(G), are obtained by clustering the nodes
of same color together, i.e C(G) = {C1, · · · , Cc}, where
Ck = {i ∈ V | C(i) = k}. Clearly ∪ci=1Ci = V and
Ci ∩ Cj = ∅. It is easy to see that given C, one can
derive it color classes C(G) in O(|V |) time. Given a
graph G(V,E), we below give an algorithm to construct
an orthogonal embedding U ∈ Lab(G), with embedding
rank r(U) = |C(G)|, provided any coloring function its
complement graph G, say C : V (G) 7→ N. (Alg. 3).



Lemma 12. The embedding Uc returned by Algorithm
3 belongs to the class of orthogonal embedding Lab(G)
with rank |C|. Thus if Kc = U>c Uc, then K ∈ K(G)
such that r(Kc) = |C|. Further Algorithm 3 runs in
O(N) time, just linear in number of nodes.

Corollary 13. Given a graph G(V,E), and a coloring
function C : V (G) 7→ N of G, one can find an embedding
kernel Kc ∈ K(G) in poly(|V |) time, such that for any
δ ∈ (0, 1), with probability at least (1 − δ), SupOUCB
achieves regret RT = O(|C|

√
T log T ), using Kc as the

embedding kernel (where the true reward f ∈ RN lies in
the column space of K∗, i.e. f = K∗β).

However note that, in Corollary 13, SupOUCB requires
the knowledge of the actual color classes C(G), and it
leads to least regret when |C| = O(χ(G)). But this
requires an optimal graph coloring algorithm which is
known to be a NP-Hard problem in general. One can
potentially use any of the existing approximate graph col-
oring algorithm for the purpose, e.g. using greedy graph
coloring [19]. The algorithm is described below:

Algorithm 4 Greedy Graph Coloring Algorithm

input : Graph G(V,E), and an ordered list of vertices
W =

(
v1, v2, · · · , v|V |

)
, vi ∈ V,∀i ∈ [|V |].

output A coloring function of graph G, Cg : V 7→ N.
1: Initialize coloring Cg(vi) = 0, ∀vi ∈W
2: for i = 1 to |V | do
3: Cg(vi)← min[|V |]− ∪{j|(i,j)∈E}Cg(vj)
4: end for

Theorem 14. [19] Given any graph G′, the number of
colors used by Alg. 4 is at most dmax(G′) + 1.

Above theorem along with Cor. 13 immediately leads to:

Corollary 15. Given a graph G(V,E), if Cg(G) denotes
the coloring function of G obtained using greedy col-
oring algorithm, and Ug be the embedding returned
by Algorithm 3 upon Cg(G) as the input, then for any
δ ∈ (0, 1), with high probability (1 − δ), SupOUCB
achieves the regret RT = O(dmax(G)

√
T log T ) upon

using Kg = U>U as the embedding kernel, dmax(G)
being the maximum degree of graph G.

Remark Similarly one can derive results similar to Cor.
13 and 15 for our other algorithm OUCB as well.

4.3 Be Greedy: Graph Families where Greedy
Embedding Performs Optimally

We now show that how our proposed algorithms, OUCB
and SupOUCB perform optimally with greedy embedding
Kg (i.e. same as that of knowing true K∗) on large family
of graphs. Due to Cor. 15, we see that for any graph G
such that maximum degree of Ḡ is constant, greedy em-
beddings yields a regret guarantee of just O(

√
T log T ).

Let us study some specific graph families:

(1). Complete or isolated graphs, note that χ(G) is equal
to 1 and N respectively, and r(Kg) = χ(G). (2). When
G is complement of a q-regular graphs, χ(G) = q + 1 =
r(Kg) (last equality follows from Thm. 14). Thus our
proposed algorithms with greedy kernel embedding leads
to the regret of O(q

√
T log T ). (3). If G is a k-ary tree,

similarly we can show that χ(G) = k + 1 = r(Kg)
which implies O(k

√
T log T ) regret. (4). For G to be

union of k disconnected cliques, χ(G) = k, and again
Thm. 14 shows that r(Kg) = k which leads to regret
guarantee of O(k

√
T log T ). (5). For complement of

planar graphs one can obtain a regret of O(
√
T log T ) as

greedy algorithm colors any planar graph with at most 6
colors, i.e. r(Kg) ≤ 6 [13]. (6). For Erdős Réyni random
G(n, p) graphs (with constant p ∈ [0, 1]), we also have
r(Kg) ≤ 2χ(G) as for almost all G(n, p) graphs greedy
gives a two factor approximation of the chromatic number
[18], which again implies optimal learning rate. Our
experimental results also shows the advantages of greedy
embeddings on synthetic and real world graphs (Sec. 6).

5 Lower Bound
In this section, we prove a matching lower bound of the
regret guarantee as derived in (Cor. 11, Sec. 4).

Theorem 16. For any online learning algorithmA, there
exists a graph G([N ], E), and a reward assignment f ∈
RN , such that regret incurred by A on our problem setup

is atleast Ω
(√

χ(G)T
)
, given any time horizon T > 0.

Proof. (sketch). The main idea is to construct a graph
composed of χ(G) almost disconnected components such
that nodes within a same component has identical rewards,
and reduce it to standard N -armed MAB setup for which
the lower bound is known to be Ω(

√
NT ) [7].

Remark 17. Thm. 16 does not give a lower bound for
any general graph, but we show a family of graphs where

R(T ) = Ω
(√

χ(G)T
)

, and thus the performance of our
proposed algorithms (Cor. 11) are tight for these cases

(up to a factor of
√
χ(G) log T ).

6 Experiments
We run experiments on both synthetic and real datasets
to compare our algorithms, OUCB and SupOUCB (with
greedy graph embedding, Sec. 4.2), against the state of
the art SpectralUCB [29], LinUCB [24] and KernelUCB
[35]. All the results reported are averaged across 50 runs.
For all experiments, we set the confidence parameter
δ = 0.001, upper bound on noise R = 0.01, and B,
the upper bound on ‖α‖, as B = log T if T < N else
clamped asB = logN if T >= N (as suggested in [29]).
The regularization parameter γ is set using the best value
from the range [10−3, 10] separated by a multiplicative



gap of 0.1 and report the performances at which algo-
rithms converge with the smallest regret. For KernelUCB,

parameter η =
√

log(2TK/δ)
2λ was set as suggested in [35].

The different experimental setups are described below:

6.1 Experiments on Synthetic Datasets
Recall that our problem formulation requires the knowl-
edge of the underlying graph G(V,E), and considers an
unknown assignment of the reward vector f ∈ RN over
the N arms (Sec. 2.1). For the experiments, we simulate
the above in the following ways:

Type of graphs. We consider four types of synthetic
graphs, with N = 500 nodes. For each graph we com-
pute the coloring number Cg(G) by greedy algorithm
or χ(G) (if it is easy to compute): (1) Erdos-Reyni
(G(N, p)) graphs with p = 0.03 and for the generated
graph |Cg(G)| = 234 i.e., the estimated coloring num-
ber given by greedy algorithm, (2) Random k-Regular
graphs with degree k = 400 with |Cg(G)| = 30, (3)
Union of Disconnected cliques with total 25 cliques
each clique containing 20 nodes, and hence χ(G) = 25,
and (4) Barabasi-Albert(BA) graphs [1] with the param-
eter Connectivity (degree) cp = 3 and |Cg(G)| = 271.
Reward models. We experimented on the following two

reward models: 1. Laplacian based rewards. This is the
reward model used in the state of the art (see Sec. 2 and
6.1 of [29]) i.e.,α (as used in [29]) is generated randomly
with sparsity factor k = 5, such that α is bounded by
some constant C as ||α||Σ = α>Lα ≤ C, where L =
QΣQT (the eigenvalue decomposition of the Laplacian
L), C is set same as B described above. 2. Orthogonal
embedding based rewards. Here we use our proposed
reward model (Eqn. (2)) with orthogonal embedding (Sec.
2.2), and use greedy labellings Kg of the corresponding
graphs to generate K (computed using Algorithm 3).
6.1.1 Performance on Synthetic Graphs
We run our algorithms, OUCB and SupOUCB for greedy
coloring(Sec. 4.2), and plot the averaged regret of all five
algorithms with varying T i.e., until one of the algorithms
converged, for all the four types of graph models. The
comparative results for Laplacian and orthogonal embed-
ding based rewards are respectively shown in Figure 1
and 2. Both LinUCB and KernelUCB are run with feature
vectors used to generate the rewards as context vectors
(i.e. depending on reward model either with Laplacian
eigenvectors [29], or Orthogonal embedding (Sec. 2.2).

Discussion. Our results in Figure 1 and 2 show a vast
improvement of OUCB over the baseline algorithms, and
converges much earlier on both the reward settings and
even for higher values of |Cg(G)|. SupOUCB generally
outperforms all the baselines but defeats to OUCB , in
spite of having an O(

√
log T )-factor better regret guar-

antee. This behaviour corroborates with other similar

algorithms, e.g. SupLinUCB [11] or Spectral Eliminator
[29] was shown to fare poorly compared to LinUCB or
SpectralUCB respectively, although later ones excel theo-
retically in similar way. KernelUCB generally performs
poorly due to not being able to exploit the influence of the
underlying graph on the arm rewards (locality property).

Figure 1: Regret performances on Laplacian rewards

Figure 2: Performance of algorithms on orthogonal em-
bedding based rewards, as defined in (2)

Runtime performance. We also plot the run-time per-
formances of both SupOUCB and OUCB and compare
it with that of baselines over graph families of G(n, p)
and disconnected cliques for T = 2000 across varying
sizes N . We observe that runtimes are better than base-
lines. We see an expected increase with N across all
algorithms except SupOUCB as it eliminates arms peri-
odically. The performance of SpectralUCB and LinUCB
are worst since they require to perform a matrix inversion
at each round, whereas KernelUCB performs almost as
good as our algorithms SupOUCB and OUCB .

Figure 3: Running time for T rounds



6.1.2 Regret vs node size (N) and χ(Ḡ)

We also run two experiments for analyzing the true ef-
fect of the graph properties on the regret of our proposed
algorithms. The underlying graph is chosen to be discon-
nected cliques, since we have a direct handle on χ(G)
value of these graphs by simply controlling its number
of disconnected components. We use OUCB algorithm
with greedy coloring embedding on our proposed reward
model of (2). The first experiment compares the regret
of OUCB for a fixed χ(Ḡ) = 20, varying N in range
1100 − 2000 (increments of 100). On the contrary, the
second experiment run for a fixed N = 500 with varying
χ(G) = 5, 10, 20, 40, 50, 100, 125, 250. In both cases,
the algorithms are run until one of them has converged.

Discussion. The results are shown in Figure 4. As ex-
pected, the regret of OUCB is seen to be varying only
with χ(G) (right plot), and remains constant with varying
N as long as χ(G) is fixed (left plot), rightfully justifying
its theoretical guarantee (Cor. 11). In both cases, OUCB
converges the fastest and its regret significantly less com-
pared to the all other baselines due to inherent ability to
exploit the dependency of the graph on the arm rewards
through suitable embeddings, which others can not.

Figure 4: Regret of OUCB with (left) varying N fixed
χ(Ḡ) and (right) varying χ(Ḡ) with fixed N

6.2 Experiments on Real-World Datasets
We use two popular real world dataset for the purpose: (1)
MovieLens and (2) Flixster. For the sake of fair compar-
isons, we mimick the same experimental setup of [29] in-
cluding graph construction and imputation of the missing
ratings as discussed below. The values of the parameters
are set to values as discussed earlier. Same as Sec. 6.1
LinUCB and KernelUCB are again run using the feature
vectors used to construct the graphs (as described below).

MovieLens [25] It has 6k users who rated 1 million
movies. We split the dataset into two equal parts, on one
of them, we used OptSpace algorithm [31] for perform-
ing low-rank matrix factorization 2 to impute the missing
ratings. On the other split, we again perform matrix fac-
torization and using the latent vectors obtained for movies
we build a similarity graph for the movies. The graph con-
tains an edge between movie i and j if the j is one of the
10 nearest neighbors of the movie i(Euclidean distance).
Note that here each user defines one independent instance
of the problem: We use a random sample of 50 users, and

2https://github.com/scheinerman/matgraph

evaluate the algorithms on each, for T = 2000 rounds.
Flixster [20] This dataset has 1 million users on 49000

movies with 8.2 million ratings. We extracted a subset of
popular movies and active users, where each movie has at
least 1000 ratings and each user rated at least 300 movies.
This resulted in a dataset of 1712 movies and 8465 users.
As with the MovieLens, the dataset is imputed and sim-
ilarity graph is built (on 10 nearest neighbours same as
Movielens) by splitting dataset and carrying out low-rank
matrix factorization. A random sample of 50 users are
used to evaluate the algorithms, for T = 3000 rounds.

Figure 5: Performance of algorithms on real datasets

Discussion. The results are given in Figure 5, which again
shows the superiority of OUCB over other baselines, and
consistently outperforms others across different users, for
both the datasets. This reflects the practicability of our
reward model, as well as the effectiveness of our greedy
embedding based algorithms for real world scenarios.

7 Conclusion and Future works
We address the problem of linear bandit on graphs, where
arm rewards follow a locality property according to a
given graph structure G([N ],E). For any general or-
thogonal embedding based rewards we show a regret of
Õ(r
√
T ) in terms of rank of the underlying graph embed-

ding r. Above bound further boils down to Õ(χ(Ḡ)
√
T )

under minimum rank orthogonal embedding of G, which
immediately relates the inherent problem complexity in
terms of the structure of graph G–a faster learning rate
for denser graphs–as also intuitive due to the graph-based
locality assumption on rewards. However, we show com-
puting the above minimum rank orthogonal embedding
is NP-Hard in general, towards which we propose an
O(N + |E|) time embedding scheme–greedy coloring–
with which our proposed algorithms are shown to perform
optimally on a large family of graphs. Moreover, our
experimental results reveal that our proposed greedy em-
bedding based algorithms also perform well in practice
on standard benchmark real datasets, and outperforms the
state-of-the-art methods, both in terms of regret and run-
time performances. Our findings open up new directions
for exploiting graph structures on regret complexity of
bandits. In future it would be interesting to explore other
class of graph embeddings, and dependence of the regret
on G. Analysing our problem setup for weighted graphs
also remains a matter of future investigation.
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