UAI 2023 - Schedule



Please note that all dates and times are EST (Eastern Standard Time). The conference is hybrid; most presentations, as well as poster sessions on Tuesday and Thursday will be in-person, however some presenters will be virtual. In addition, there will be a virtual poster session on Wednesday. All sessions of the main conference take place in McConomy Auditorium, Jared L. Cohon University Center, Carnegie Mellon University, Pittsburgh, USA.

A downloadable PDF version of the program is available here.

Zoom links:
For all sessions in McConomy Auditorium: https://tinyurl.com/UAI23Main;
for Connan Room: https://tinyurl.com/UAI23Connan;
for McKenna, Peter, and Wright Room: https://tinyurl.com/UAI23MPW;
for Studio Theater: https://tinyurl.com/UAI23Studio;
for the virtual poster session: https://tinyurl.com/UAI23VirtualPosters.

For a summary of the program, please see the table below:

Time 31-Jul (Mon)
Tutorials
1-Aug (Tue)
Main conference
day 1
2-Aug (Wed)
Main conference
day 2
3-Aug (Thurs)
Main conference
day 3
4-Aug (Fri)
Workshops
9:00 Tutorials

Connan
Room,

McKenna,
Peter, and
Wright Room,

McConomy
Auditorium
Keynote:
Alexandra
Chouldechova
McConomy
Auditorium
Oral Session 3
Causal inference and missing data
McConomy Auditorium
Keynote:
Caroline Uhler
McConomy
Auditorium
Workshops

Studio Theater,

McKenna,
Peter, and
Wright Room,

Connan Room,

McConomy
Auditorium

Lunch
(boxed lunch)

(morning coffee break in Rangos 3; afternoon coffee break informal)
10:00 Coffee break
(30 minutes)
Connan Room
Coffee break
(30 minutes)
Connan Room
10:30 Oral Session 1
Neural networks
and Deep Learning
McConomy
Auditorium
Oral Session 5
Methods for
intractable learning
problems
McConomy
Auditorium
10:40 Coffee break (20 minutes)
11:00 Virtual Poster Session
https://tinyurl.com/UAI23VirtualPosters
11:30
12:10 Spotlight Session 1
McConomy
Auditorium
Spotlight Session 3
McConomy
Auditorium
12:30 Lunch (boxed lunch) Lunch (boxed lunch)
Lunch (boxed lunch)
14:00 Oral Session 2
Uncertainty
quantification and
calibration
McConomy
Auditorium
Oral Session 4
Modelling and learning
McConomy Auditorium
Oral Session 6
Probabilistic circuit
models
McConomy
Auditorium
15:00
15:30
15:40 Spotlight Session 2
McConomy
Auditorium
Coffee break (20 minutes)
Connan Room
Spotlight Session 4
McConomy
Auditorium
16:00 Coffee break
(30 minutes)
Connan Room
Keynote:
Victor Chernozhukov
McConomy Auditorium
Coffee break
(30 minutes)
Connan Room
16:30 In-person
Poster
Session 1

Rangos Hall
In-person
Poster
Session 2

Rangos Hall
17:00 Town Hall and Best Paper
Awards

McConomy Auditorium
18:15
18:30 Opening
Reception

Simmons
A/B in Tepper
Quad
Break/walk to banquet
19:00 Banquet

Phipps Conservatory and Botanical
Gardens
19:30
20:00
21:00


Monday 31st July (Tutorials)

Time Event
9:00 Connan Room: Towards Causal Foundations of Safe AI. James Fox, Tom Everitt [video]
9:00 McKenna, Peter, and Wright Room: Causal Representation Learning. Dhanya Sridhar, Jason Hartford [video]
10:15 Coffee Break (Rangos Hall)
10:30 Continuation of tutorials
12:00 Lunch (on your own)
13:30 McConomy Auditorium: Structure Learning Using Benchpress. Felix L. Rios, Giusi Moffa, Jack Kuipers [video]
15:30 Coffee Break (Rangos Hall)
16:00 McConomy Auditorium: Data Compression With Machine Learning. Karen Ullrich, Yibo Yang, Stephan Mandt [video]
16:00 Connan Room: Online Optimization Meets Federated Learning. Aadirupa Saha, Kumar Kshitij Patel [video]
18:30 Opening reception (Simmons A/B in Tepper Quad)

Tuesday 1st August

Time Event (all in McConomy)
9:00 Opening remarks (Richard Scheines and Peter Spirtes)
9:05 Keynote Talk 1: Alexandra Chouldechova. Algorithms in Unjust Systems. (session chair: Peter Spirtes) [video]
10:05 Coffee Break (Connan Room)
10:30 Oral Session 1 (Neural networks and Deep Learning) (session chair: Nevin L. Zhang)

10:30   129(v)   |   MixupE: Understanding and Improving Mixup from Directional Derivative Perspective   Yingtian Zou, Vikas Verma, Sarthak Mittal, Wai Hoh Tang, Hieu Pham, Juho Kannala, Yoshua Bengio, Arno Solin, Kenji Kawaguchi [slides] [video]

10:55   233   |   Neural Probabilistic Logic Programming in Discrete-Continuous Domains   Lennert De Smet, Pedro Zuidberg Dos Martires, Robin Manhaeve, Giuseppe Marra, Angelika Kimmig, Luc De Raedt [slides] [video]

11:20   402   |   An Improved Variational Approximate Posterior for the Deep Wishart Process   Sebastian W. Ober, Ben Anson, Edward Milsom, Laurence Aitchison [slides] [video]

11:45   517   |   On Minimizing the Impact of Dataset Shifts on Actionable Explanations   Anna P. Meyer, Dan Ley, Suraj Srinivas, Himabindu Lakkaraju [slides] [video]

12:10 Poster Spotlights 1 (session chair: Nicolas Gisolfi, all spotlights virtual) [video]

91   |   Quasi-Bayesian Nonparametric Density Estimation via Autoregressive Predictive Updates   Sahra Ghalebikesabi, Christopher C. Holmes, Edwin Fong, Brieuc Lehmann,

190   |   Conditional Counterfactual Causal Effect for Individual Attribution   Ruiqi Zhao, lei zhang, Shengyu Zhu, Zitong Lu, Zhenhua Dong, Chaoliang Zhang, Jun Xu, Zhi Geng, Yangbo He,

196   |   Random Reshuffling with Variance Reduction: New Analysis and Better Rates   Grigory Malinovsky, Alibek Sailanbayev, Peter Richtárik,

227   |   Multi-View Graph Contrastive Learning for Solving Vehicle Routing Problems   Yuan Jiang, Zhiguang Cao, Yaoxin Wu, Jie Zhang,

303   |   MFA: Multi-scale Feature-aware Attack for Object Detection   Wen Chen, Yushan Zhang, Zhiheng Li, Yuehuan Wang,

325   |   Incentivising Diffusion while Preserving Differential Privacy   Fengjuan Jia, Mengxiao Zhang, Jiamou Liu, Bakh Khoussainov,

472   |   Residual-Based Error Bound for Physics-Informed Neural Networks   Shuheng Liu, Xiyue Huang, Pavlos Protopapas,

617   |   On the Informativeness of Supervision Signals   Ilia Sucholutsky, Ruairidh McLennan Battleday, Katherine M. Collins, Raja Marjieh, Joshua Peterson, Pulkit Singh, Umang Bhatt, Nori Jacoby, Adrian Weller, Thomas L. Griffiths

12:30 Lunch (boxed lunch, Rangos Hall)
14:00 Oral Session 2 (​​Uncertainty quantification and calibration) (session chair: Daniel Andrade)

14:00   482   |   Is the Volume of a Credal Set a Good Measure for Epistemic Uncertainty?   Yusuf Sale, Michele Caprio, Eyke Hüllermeier [slides] [video]

14:25   374   |   Quantifying Aleatoric and Epistemic Uncertainty in Machine Learning: Are Conditional Entropy and Mutual Information Appropriate Measures?   Lisa Wimmer, Yusuf Sale, Paul Hofman, Bernd Bischl, Eyke Hüllermeier [slides] [video]

14:50   631   |   Parity Calibration   Youngseog Chung, Aaron Rumack, Chirag Gupta [slides] [video]

15:15   256(v)   |   Human-in-the-Loop Mixup   Katherine M. Collins, Umang Bhatt, Weiyang Liu, Vihari Piratla, Ilia Sucholutsky, Bradley C. Love, Adrian Weller [slides] [video]

15:40 Poster Spotlights 2 (session chair: Taposh Banerjee) [video]

virtual:

651   |   Adaptivity Complexity for Causal Graph Discovery   Davin Choo, Kirankumar Shiragur,

707   |   Phase-shifted Adversarial Training   Yeachan Kim, Seongyeon Kim, Ihyeok Seo, Bonggun Shin,

804   |   Fast Proximal Gradient Descent for Support Regularized Sparse Graph   Dongfang Sun, Yingzhen Yang,

56   |   Stochastic Generative Flow Networks   Ling Pan, Dinghuai Zhang, Moksh Jain, Longbo Huang, Yoshua Bengio,

654   |   Dirichlet Proportions Model for Hierarchically Coherent Probabilistic Forecasting   Abhimanyu Das, Weihao Kong, Biswajit Paria, Rajat Sen,

in person

186   |   Inference for Mark-Censored Temporal Point Processes   Alex James Boyd, Yuxin Chang, Stephan Mandt, Padhraic Smyth,

643   |   Testing Conventional Wisdom (of the Crowd)   Noah Burrell, Grant Schoenebeck,

297   |   Validation of Composite Systems by Discrepancy Propagation   David Reeb, Kanil Patel, Karim Said Barsim, Martin Schiegg, Sebastian Gerwinn,

480   |   Investigating a Generalization of Probabilistic Material Implication and Bayesian Conditional   Matthias Scheutz, Michael Jahn.

16:00 Coffee Break (Connan Room)
16:30 Poster Session 1 (in-person; Rangos Hall): 8, 35, 88, 100, 136, 143, 219, 220, 236, 247, 251, 281, 288, 290, 307, 328, 332, 356 ,368, 370, 375, 387, 392, 394, 396, 406, 407 420, 421, 433, 434, 437, 443, 445, 449, 457, 460, 462, 467, 470, 495, 499, 531, 536, 540, 541, 549, 552, 560, 566, 571, 583, 587, 589, 598, 601, 663, 672, 713, 731, 741, 748, 750, 757, 773, 777, 793
Spotlights: 186, 297, 643, 480
Orals: 95, 233, 249, 374, 402, 482, 486, 517, 597, 631
19:30 Close

Wednesday 2nd August

Time Event (all in McConomy)
9:00 Oral Session 3 (Causal inference and missing data) (session chair: Negar Kiyavash)

9:00   504(v)   |   Establishing Markov Equivalence in Cyclic Directed Graphs   Tom Claassen, Joris Mooij [slides] [video]

9:25   597   |   On Testability and Goodness of Fit Tests in Missing Data Models   Razieh Nabi, Rohit Bhattacharya [slides] [video]

9:50   486   |   Functional Causal Bayesian Optimization   Limor Gultchin, Virginia Aglietti, Alexis Bellot, Silvia Chiappa [slides] [video]

10:15   249   |   Partial Identification of Dose Responses with Hidden Confounders   Myrl G Marmarelis, Greg Ver Steeg, Andrew Jesson, Elizabeth Haddad, Neda Jahanshad, Aram Galstyan [slides] [video]

10:40 Coffee Break (Connan Room)
11:00 Poster Session 2 (virtual): 11, 24, 31, 34, 42, 82, 85, 116, 139, 142, 153, 155, 159, 205, 212, 213, 217, 234, 243, 246, 250, 268, 277, 298, 309, 310, 320, 322, 341, 358, 397, 442, 458, 465, 496, 505, 520, 537, 558, 576, 580, 590, 596, 604, 606, 608, 632, 648, 665, 676, 677, 688, 695, 696, 704, 732, 756, 775, 780.
Spotlights: 91, 190, 196, 227, 303, 325, 472, 617, 651, 654, 707, 804.
Orals: 129, 256, 380, 447, 504
12:30 Lunch (boxed lunch, Rangos Hall)
14:00 Oral Session 4 (Modelling and learning) (session chair: Gugan Thoppe)

14:00   432   |   Learning from Low Rank Tensor Data: A Random Tensor Theory Perspective   Mohamed El Amine Seddik, Malik Tiomoko, Alexis Decurninge, Maxime Guillaud, Maxim Panov [slides] [video]

14:25   621   |   Keep-Alive Caching for the Hawkes process   Sushirdeep Narayana, Ian A. Kash [slides] [video]

14:50   701   |   Conditional Abstraction Trees for Sample-Efficient Reinforcement Learning   Mehdi Dadvar, Rashmeet Kaur Nayyar, Siddharth Srivastava [slides] [video]

15:15   380(v)   |   Provably Efficient Adversarial Imitation Learning with Unknown Transitions   Tian Xu, Ziniu Li, Yang Yu, Zhi-Quan Luo [slides] [video]

15:40 Coffee Break (Connan Room)
16:10 Keynote Talk 2: Victor Chernozhukov. Long story short: omitted variable bias in causal machine learning (session chair: Ilya Shpitser) [video]
17:10 Townhall and Best Paper Awards
18:30 Break and walk to banquet
19:00 Banquet (Phipps Conservatory and Botanical Gardens)

Thursday 3rd August

Time Event (all in McConomy)
9:00 Keynote Talk 3: Caroline Uhler. Causal Representation Learning and Optimal Intervention Design (session chair: Daniel Malinsky) [video]
10:00 Coffee Break (Connan Room)
10:30 Oral Session 5 (Methods for intractable learning problems) (session chair: Yan Yan)

10:30   447(v)   |   Meta-learning Control Variates: Variance Reduction with Limited Data   Zhuo Sun, Chris J. Oates, Francois-Xavier Briol [slides] [video]

10:55   149   |   The Shrinkage-Delinkage Trade-off: An Analysis of Factorized Gaussian Approximations for Variational Inference   Charles Margossian, Lawrence K. Saul [slides] [video]

11:20   95   |   Towards Physically Reliable Molecular Representation Learning   Seunghoon Yi, Youngwoo Cho, Jinhwan Sul, Seung Woo Ko, Soo Kyung Kim, Jaegul Choo, Hongkee Yoon, Joonseok Lee [slides] [video]

11:45   342   |   Revisiting Bayesian Network Learning with Small Vertex Cover   Juha Harviainen, Mikko Koivisto [slides] [video]

12:10 Poster Spotlights 3 (session chair: Jakob Runge) [video]

79   |   BISCUIT: Causal Representation Learning from Binary Interactions   Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M Asano, Taco Cohen, Efstratios Gavves,

257   |   Composing Efficient, Robust Tests for Policy Selection   Dustin Morrill, Thomas Walsh, Daniel Hernandez, Peter R. Wurman, Peter Stone,

294   |   Nyström $M$-Hilbert-Schmidt Independence Criterion   Florian Kalinke, Zoltán Szabó,

354   |   JANA: Jointly Amortized Neural Approximation of Complex Bayesian Models   Stefan T. Radev, Marvin Schmitt, Valentin Pratz, Umberto Picchini, Ullrich Koethe, Paul Buerkner,

476   |   Causal Inference With Outcome-Dependent Missingness And Self-Censoring   Jacob Morris Chen, Daniel Malinsky, Rohit Bhattacharya,

516   |   CUE: An Uncertainty Interpretation Framework for Text Classifiers Built on Pre-Trained Language Models   Jiazheng Li, ZHAOYUE SUN, Bin Liang, Lin Gui, Yulan He,

556   |   Fast and Scalable Score-Based Kernel Calibration Tests   Pierre Glaser, David Widmann, Fredrik Lindsten, Arthur Gretton,

559   |   "Private Prediction Strikes Back!" Private Kernelized Nearest Neighbors with Individual R\'{e}nyi Filter   Yuqing Zhu, Xuandong Zhao, Chuan Guo, Yu-Xiang Wang.

12:30 Lunch (boxed lunch, Rangos Hall)
14:00 Oral Session 6 (Probabilistic circuit models) (session chair: Rina Dechter)

14:00   430   |   Local Message Passing on Frustrated Systems   Luca Schmid, Joshua Brenk, Laurent Schmalen [slides] [video]

14:25   353   |   On Inference and Learning With Probabilistic Generating Circuits   Juha Harviainen, Vaidyanathan Peruvemba Ramaswamy, Mikko Koivisto [slides] [video]

14:50   526   |   Probabilistic Flow Circuits: Towards Unified Deep Models for Tractable Probabilistic Inference   Sahil Sidheekh, Kristian Kersting, Sriraam Natarajan [slides] [video]

15:15   118   |   Probabilistic Circuits That Know What They Don’t Know   Fabrizio Ventola, Steven Braun, Zhongjie Yu, Martin Mundt, Kristian Kersting [slides] [video]

15:40 Poster Spotlights 4 (session chair: Christopher Quinn) [video]

41   |   Inference and Sampling of Point Processes from Diffusion Excursions   Ali Hasan, Yu Chen, Yuting Ng, Mohamed Abdelghani, Anderson Schneider, Vahid Tarokh,

261   |   Studying the Effect of GNN Spatial Convolutions On The Embedding Space's Geometry   Claire Donnat, So Won Jeong,

747   |   A Decoder Suffices for Query-Adaptive Variational Inference   Sakshi Agarwal, Gabriel Hope, Ali Younis, Erik B. Sudderth,

658   |   Aligned Diffusion Schrödinger Bridges   Vignesh Ram Somnath, Matteo Pariset, Ya-Ping Hsieh, Maria Rodriguez Martinez, Andreas Krause, Charlotte Bunne,

611   |   Bayesian Inference Approach for Entropy Regularized Reinforcement Learning with Stochastic Dynamics   Argenis Arriojas, Jacob Adamczyk, Stas Tiomkin, Rahul V Kulkarni,

797   |   Inference for Probabilistic Dependency Graphs   Oliver Ethan Richardson, Joseph Halpern, Christopher De Sa,

764   |   Robust Gaussian Process Regression with the Trimmed Marginal Likelihood   Daniel Andrade, Akiko Takeda.

16:00 Coffee Break (Connan Room)
16:30 Poster Session 3 (in-person; Rangos Hall): 39, 40, 45, 46, 47, 67, 80, 84, 105, 114, 127, 130, 138, 144, 147, 150, 184, 189, 211, 214, 216, 235, 240, 255, 272, 273, 306, 351, 390, 466, 477, 494, 500, 503, 507, 521, 524, 527, 529, 530, 551, 554, 555, 561, 567, 579, 584, 594, 595, 605, 607, 636, 644, 646, 657, 669, 679, 722, 753, 761, 789.
Spotlights: 41, 79, 257, 261, 294, 354, 476, 516, 556, 559, 611, 658, 747, 764, 797.
118, 149, 342, 353, 430, 432, 526, 621, 701
19:30 Close

Friday 4th August (Workshops)


Causal inference for time series data (Room: Studio Theater)

Epistemic Uncertainty in Artificial Intelligence (Room: Connan Room)

The History and Development of Search Methods for Causal Structure (Room: McConomy Auditorium)

Tractable Probabilistic Modeling (Room: McKenna, Peter, and Wright Room)


Time Event
9:00 Session 1
10:00 Coffee (Rangos 3)
10:30 Session 2
12:30 Lunch (boxed lunch)
14:00 Session 3
16:00 Coffee (informal)
16:30 Session 4
18:30 Close








Sponsors