Towards Physically Reliable MolecularRepresentation Learninguai2023

Seunghoon Yi, Youngwoo Cho, Jinhwan Sul, Seung Woo Ko, Soo Kyung Kim, Jaegul Choo, Hongkee Yoon, Joonseok Lee

Visual Information Processing Lab

Stanford Research Institute

Estimating the total energy of a given molecule!

3

Estimating the total energy of a given molecule!

- To estimate physical / chemical properties of a molecule
- To predict chemical reactions on complex systems

Estimating the total energy of a given molecule!

- To estimate physical / chemical properties of a molecule
- To predict chemical reactions on complex systems

Estimating the total energy of a given molecule!

- To estimate physical / chemical properties of a molecule
- To predict chemical reactions on complex systems

Estimating the total energy of a given molecule!

- To estimate physical / chemical properties of a molecule
- To predict chemical reactions on complex systems

TorchMDNet (Thölke and De Fabritiis, 2022)

Estimating the total energy of a novel molecule!

- To estimate physical / chemical properties of a molecule
- To predict chemical reactions on complex systems

TorchMDNet (Thölke and De Fabritiis, 2022)

Indeed, existing models precisely estimates the energy!

Indeed, existing models precisely estimates the energy!

Model	ForceNet	SchNet	DimeNet	TorchMDNet	MXMNet
Energy MAE (meV)	18.6	14.0	7.3	6.2	5.9

• Thermal fluctuation in room temperature(k_bT) ~ 25 meV

Indeed, existing models precisely estimates the energy!

Model	ForceNet	SchNet	DimeNet	TorchMDNet	MXMNet
Energy MAE (meV)	18.6	14.0	7.3	6.2	5.9

• Thermal fluctuation in room temperature(k_bT) ~ 25 meV

Is small energy error enough for a physically reliable model?

• Let's assess the reliability by structure optimization:

- Let's assess the reliability by structure optimization:
 - A stable molecule has lower energy than unstable ones.

- Let's assess the reliability by structure optimization:
 - A stable molecule has lower energy than unstable ones.
 - If we slightly perturb atoms in a molecule, the energy will get higher.

- Let's assess the reliability by structure optimization:
 - A stable molecule has lower energy than unstable ones.
 - If we slightly perturb atoms in a molecule, the energy will get higher.
 - Once we optimize it again, the structure should be recovered if the perturbation is small enough.

• Surprisingly, previous models fail to recover the stable structure!

Conducted on QM9 dataset.

- Surprisingly, previous models fail to recover the stable structure!
 - Indicating they have been over-optimized only to energy estimation.

- Limited amount of data!
 - Due to data sparsity, models have trouble learning a reliable potential energy surface (PES).

• Limited amount of data!

• Limited amount of data!

- Due to data sparsity, models have trouble learning a reliable potential energy surface (PES).
- Optimally utilizing physical constraints is essential for training.

• Limited amount of data!

- Due to data sparsity, models have trouble learning a reliable potential energy surface (PES).
- Optimally utilizing physical constraints is essential for training.

Our Approaches

• Parametrized energy calculation

- Parametrized energy calculation
 - We consider self-energy and bond energy:

- Parametrized energy calculation
 - We consider self-energy and bond energy:

- Parametrized energy calculation
 - We consider self-energy and bond energy:

- Parametrized energy calculation
 - We consider self-energy and bond energy:

- Parametrized energy calculation
 - We consider self-energy and bond energy:

- Parametrized energy calculation
 - We consider self-energy and bond energy:

$$E_{i,j}=-eta_1rac{eta_0}{d_{i,j}}+eta_2igggl[iggl(rac{eta_4}{d_{i,j}}iggr)^{2eta_3}-2iggl(rac{eta_4}{d_{i,j}}iggr)^{eta_3}iggr]$$

- Parametrized energy calculation
 - We consider self-energy and bond energy:

$$E_{i,j} = -\beta_1 \frac{\beta_0}{d_{i,j}} + \beta_2 \left[\left(\frac{\beta_4}{d_{i,j}} \right)^{2\beta_3} - 2 \left(\frac{\beta_4}{d_{i,j}} \right)^{\beta_3} \right]$$
Van der Waals: $V_{LJ}(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right]$

$$E_{i,j}$$

$$E_{i,j} \rightarrow 0$$

$$F_{i,j} \rightarrow 0$$

$$G_{i,j} \rightarrow 0$$

$$F_{i,j} \rightarrow 0$$

$$F_{i,j} = 0$$

- Parametrized energy calculation
 - We consider self-energy and bond energy:

$$E_{i,j} = -\beta_1 \frac{\beta_0}{d_{i,j}} + \beta_2 \left[\left(\frac{\beta_4}{d_{i,j}} \right)^{2\beta_3} - 2 \left(\frac{\beta_4}{d_{i,j}} \right)^{\beta_3} \right]$$

Electrostatic: $V_E(r) = k \cdot \frac{q_1 q_2}{r}$ Van der Waals: $V_{LJ}(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right]$
 $E_{i,j}$
 $F_{i,j} \to 0$
 $f_{i,j} \to 0$

- Parametrized energy calculation
 - We consider self-energy and bond energy:

$$E_{i,j} = \boxed{-\beta_1 \frac{\beta_0}{d_{i,j}}} + \beta_2 \left[\left(\frac{\beta_4}{d_{i,j}} \right)^{2\beta_3} - 2 \left(\frac{\beta_4}{d_{i,j}} \right)^{\beta_3} \right]$$

Electrostatic: $V_E(r) = k \cdot \frac{q_1 q_2}{r}$ Van der Waals: $V_{LJ}(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right]$

• Parametrized by β , which depends on the species of pair of atoms

Our Approach 2: Physics-inspired Constraints

Two constraints when given a **stable** molecular structure:
- Inequality bound condition
 - Locally, a perturbed state energy must be greater than the stable state.

$$\mathcal{L}_{\text{bound}} = \begin{cases} \hat{E}_{\text{mol}} - \hat{E}_{\text{mol}}^* & \text{if } \hat{E}_{\text{mol}}^* \leq \hat{E}_{\text{mol}} \\ 0 & \text{otherwise.} \end{cases}$$

- Inequality bound condition
 - Locally, a perturbed state energy must be greater than the stable state.

$$\mathcal{L}_{\text{bound}} = \begin{cases} \hat{E}_{\text{mol}} - \hat{E}_{\text{mol}}^* & \text{if } \hat{E}_{\text{mol}}^* \leq \hat{E}_{\text{mol}} \\ 0 & \text{otherwise.} \end{cases}$$

- Inequality bound condition
 - Locally, a perturbed state energy must be greater than the stable state.

$$\mathcal{L}_{\text{bound}} = \begin{cases} \hat{E}_{\text{mol}} - \hat{E}_{\text{mol}}^* & \text{if } \hat{E}_{\text{mol}}^* \leq \hat{E}_{\text{mol}} \\ 0 & \text{otherwise.} \end{cases}$$

- Inequality bound condition
 - Locally, a perturbed state energy must be greater than the stable state.

$$\mathcal{L}_{\text{bound}} = \begin{cases} \hat{E}_{\text{mol}} - \hat{E}_{\text{mol}}^* & \text{if } \hat{E}_{\text{mol}}^* \leq \hat{E}_{\text{mol}} \\ 0 & \text{otherwise.} \end{cases}$$

- Zero-force condition
 - Net force of the stable structure must be zero.

Masked Atomic Modeling

- Masked Atomic Modeling
 - Zero-out 30% of the entire atomic embeddings in a given molecule.

- Masked Atomic Modeling
 - Zero-out 30% of the entire atomic embeddings in a given molecule.

- Masked Atomic Modeling
 - Zero-out 30% of the entire atomic embeddings in a given molecule.

Masked Atomic Modeling

- Zero-out 30% of the entire atomic embeddings in a given molecule.
- The model must learn fundamental bonding principles to recover them.

Experimental Results

New metrics: ΔE and ΔP

 ΔP : Structural distortion

ΔE : Energy difference

New metrics: ΔE and ΔP

New metrics: ΔE and ΔP

Optimized structure ≠ Stable structure •

Dataset (Task)		QM9		OC20 (IS2RE)
Model	$MAE_{E}(\downarrow)$	$MAE_{F}(\downarrow)$	$\Delta P(\downarrow)$	$MAE_{E}(\downarrow)$	$\Delta P(\downarrow)$
SchNet [Schütt et al., 2018]	14.00	2.64	0.47	1.059	0.60
CGCNN [Xie and Grossman, 2018]	-	-	-	0.988	0.58
MXMNet [Zhang et al., 2020b]	5.90	1.83	1.57	_	_
DimeNet [Gasteiger et al., 2020]	8.02	1.79	0.58	1.012	0.55
ForceNet [Hu et al., 2021]	18.62	0.41	0.21	_	_
TorchMDNet (ET) [Thölke and De Fabritiis, 2022]	6.15	1.15	0.32	-	_
Ours (\mathcal{L}_{energy} only)	8.35	1.28	1.23	–	-
Ours (full model)	15.16±0.539	0.0057±0.001	0.0251 ± 0.01 3.2 × 10 ⁻⁷	0.887 ±0.024 2.6 × 10 ⁻⁴	0.10 ± 0.01 7.0 × 10 ⁻⁸
<i>p</i> -value	-	0	0.2×10	2.0 ~ 10	1.0×10

	Energy				
Dataset (Task)	estimation erro	r QM9		OC20 (IS2RE)
Model	$MAE_{E}(\downarrow)$	MAE_{F} (\downarrow)	$\Delta P(\downarrow)$	$MAE_{E}(\downarrow)$	$\Delta P(\downarrow)$
SchNet [Schütt et al., 2018]	14.00	2.64	0.47	1.059	0.60
CGCNN [Xie and Grossman, 2018]	-	-	-	0.988	0.58
MXMNet [Zhang et al., 2020b]	5.90	1.83	1.57	_	_
DimeNet [Gasteiger et al., 2020]	8.02	1.79	0.58	1.012	0.55
ForceNet [Hu et al., 2021]	18.62	0.41	0.21	_	_
TorchMDNet (ET) [Thölke and De Fabritiis, 2022]	6.15	1.15	0.32	-	-
Ours (\mathcal{L}_{energy} only)	8.35	1.28	1.23	–	-
Ours (full model)	15.16±0.539	0.0057 ±0.001	0.0251±0.01	0.887 ±0.024	0.10 ±0.01
<i>p</i> -value	-	0	3.2×10^{-7}	2.6×10^{-4}	7.0×10^{-8}

	Fneray	Net force			
Dataset (Task)	estimation error	QM9		OC20 (IS2RE)
Model	$MAE_{E}(\downarrow)$	$MAE_\mathrm{F} \ (\downarrow)$	$\Delta P(\downarrow)$	$MAE_{E}(\downarrow)$	$\Delta P(\downarrow)$
SchNet [Schütt et al., 2018]	14.00	2.64	0.47	1.059	0.60
CGCNN [Xie and Grossman, 2018]	_	_	_	0.988	0.58
MXMNet [Zhang et al., 2020b]	5.90	1.83	1.57	_	_
DimeNet [Gasteiger et al., 2020]	8.02	1.79	0.58	1.012	0.55
ForceNet [Hu et al., 2021]	18.62	0.41	0.21	_	_
TorchMDNet (ET) [Thölke and De Fabritiis, 2022]	6.15	1.15	0.32	-	-
Ours (\mathcal{L}_{energy} only)	8.35	1.28	1.23	–	_
Ours (full model) <i>p</i> -value	15.16±0.539 -	0.0057±0.001 0	$\begin{array}{c} \textbf{0.0251} {\pm 0.01} \\ 3.2 \times 10^{-7} \end{array}$	$\begin{vmatrix} 0.887 \pm 0.024 \\ 2.6 \times 10^{-4} \end{vmatrix}$	0.10 ± 0.01 7.0×10^{-8}

	_	Net force			
Dataset (Task)	Energy estimation error	—(ideally 0)— QM9	Atom position distortion	OC20 (IS2RE)
Model	$MAE_{E}(\downarrow)$	$MAE_{F}(\downarrow)$	$\Delta P(\downarrow)$	$ $ MAE _E (\downarrow)	$\Delta P(\downarrow)$
SchNet [Schütt et al., 2018]	14.00	2.64	0.47	1.059	0.60
CGCNN [Xie and Grossman, 2018]	-	_	_	0.988	0.58
MXMNet [Zhang et al., 2020b]	5.90	1.83	1.57	_	_
DimeNet [Gasteiger et al., 2020]	8.02	1.79	0.58	1.012	0.55
ForceNet [Hu et al., 2021]	18.62	0.41	0.21	_	_
TorchMDNet (ET) [Thölke and De Fabritiis, 2022]	6.15	1.15	0.32	_	_
Ours (\mathcal{L}_{energy} only)	8.35	1.28	1.23	-	_
Ours (full model) <i>p</i> -value	15.16±0.539	0.0057±0.001	$\begin{array}{c} \textbf{0.0251} {\pm 0.01} \\ 3.2 \times 10^{-7} \end{array}$	$\begin{array}{ } \textbf{0.887} \pm 0.024 \\ 2.6 \times 10^{-4} \end{array}$	0.10 ± 0.01 7.0×10^{-8}

	Enorgy	Net force	Atom position		
Dataset (Task)	estimation error	QM9	distortion	OC20 ((IS2RE)
Model	$MAE_{E}(\downarrow)$	$MAE_{\rm F}~(\downarrow)$	$\Delta P(\downarrow)$	$MAE_{E}(\downarrow)$	$\Delta P(\downarrow)$
SchNet [Schütt et al., 2018]	14.00	2.64	0.47	1.059	0.60
CGCNN [Xie and Grossman, 2018]	-	_	_	0.988	0.58
MXMNet [Zhang et al., 2020b]	5.90	1.83	1.57	_	_
DimeNet [Gasteiger et al., 2020]	8.02	1.79	0.58	1.012	0.55
ForceNet [Hu et al., 2021]	18.62	0.41	0.21	_	_
TorchMDNet (ET) [Thölke and De Fabritiis, 2022]	6.15	1.15	0.32	_	-
Ours (\mathcal{L}_{energy} only)	8.35	1.28	1.23	_	_
Ours (full model)	15.16±0.539	0.0057 ±0.001	0.0251±0.01	0.887 ±0.024	0.10 ±0.01
<i>p</i> -value	-	0	3.2×10^{-7}	2.6×10^{-4}	$7.0 imes 10^{-8}$

We achieve comparable energy estimation to the baselines.

	Enorgy	Net force	Atom position		
Dataset (Task)	estimation error	QM9	distortion	OC20 (IS2RE)
Model	$MAE_{E}(\downarrow)$	$MAE_{F}(\downarrow)$	$\Delta P(\downarrow)$	$MAE_{E}(\downarrow)$	$\Delta P(\downarrow)$
SchNet [Schütt et al., 2018]	14.00	2.64	0.47	1.059	0.60
CGCNN [Xie and Grossman, 2018]	_	—	_	0.988	0.58
MXMNet [Zhang et al., 2020b]	5.90	1.83	1.57	_	_
DimeNet [Gasteiger et al., 2020]	8.02	1.79	0.58	1.012	0.55
ForceNet [Hu et al., 2021]	18.62	0.41	0.21	_	_
TorchMDNet (ET) [Thölke and De Fabritiis, 2022]	6.15	1.15	0.32	-	-
Ours (\mathcal{L}_{energy} only)	8.35	1.28	1.23	_	_
Ours (full model)	15.16±0.539	0.0057 ±0.001	0.0251 ±0.01	0.887 ±0.024	0.10 ±0.01
<i>p</i> -value	-	0	3.2×10^{-7}	2.6×10^{-4}	$7.0 imes 10^{-8}$

We achieve comparable
energy estimation to the
baselines.Force error and ΔP get
considerably better
than baselines with our
full model!

Baseline models fail to learn the actual energy surface, indicated by high force and position error.

	Epergy	Net force	Atom position		
Dataset (Task)	estimation error	QM9	distortion	OC20 (IS2RE)
Model	$MAE_{E}(\downarrow)$	$MAE_{F}(\downarrow)$	$\Delta P(\downarrow)$	$MAE_{E}(\downarrow)$	$\Delta P(\downarrow)$
SchNet [Schütt et al., 2018]	14.00	2.64	0.47	1.059	0.60
CGCNN [Xie and Grossman, 2018]	-	—	_	0.988	0.58
MXMNet [Zhang et al., 2020b]	5.90	1.83	1.57	_	_
DimeNet [Gasteiger et al., 2020]	8.02	1.79	0.58	1.012	0.55
ForceNet [Hu et al., 2021]	18.62	0.41	0.21	_	_
TorchMDNet (ET) [Thölke and De Fabritiis, 2022]	6.15	1.15	0.32	-	-
Ours (\mathcal{L}_{energy} only)	8.35	1.28	1.23	-	-
Ours (full model)	15.16±0.539	0.0057 ±0.001	0.0251 ±0.01	0.887 ±0.024	0.10 ±0.01
<i>p</i> -value	-	0	3.2×10^{-7}	2.6×10^{-4}	$7.0 imes 10^{-8}$

We achieve comparable
energy estimation to the
baselines.Force error and ΔP get
considerably better
than baselines with our
full model!

Baseline models fail to lea actual energy surface, ind high force and position er	It is same only on th important constraint (ideally 0)	for our mo e energy lo to conside s!	odel when $rac{l}{l}$ oss. \rightarrow It is er other ph	it is trained indeed ysical	
Dataset (Task)	estimation error	QM9	distortion	OC20 (IS2RE)
Model	$MAE_{E}(\downarrow)$	$MAE_{F}(\downarrow)$	$\Delta P(\downarrow)$	$MAE_{E}(\downarrow)$	$\Delta P(\downarrow)$
SchNet [Schütt et al., 2018]	14.00	2.64	0.47	1.059	0.60
CGCNN [Xie and Grossman, 2018]	-	_	_	0.988	0.58
MXMNet [Zhang et al., 2020b]	5.90	1.83	1.57	_	_
DimeNet [Gasteiger et al., 2020]	8.02	1.79	0.58	1.012	0.55
ForceNet [Hu et al., 2021]	18.62	0.41	0.21	_	_
TorchMDNet (ET) [Thölke and De Fabritiis, 2022]	6.15	1.15	0.32	-	-
Ours (\mathcal{L}_{energy} only)	8.35	1.28	1.23	–	_
Ours (full model)	15.16±0.539	0.0057 ±0.001	0.0251 ±0.01	0.887 ±0.024	0.10 ±0.01
<i>p</i> -value	-	0	3.2×10^{-7}	2.6×10^{-4}	$7.0 imes 10^{-8}$

We achieve comparable Force error and ΔP get energy estimation to the considerably better than baselines with our baselines. full model!

Baseline models fail to le actual energy surface, in high force and position e	It is same only on th important CNet force	same for our model when it is train i on the energy loss. \rightarrow it is indeed ortant to consider other physical force ally 0) Atom position				
Dataset (Task)	estimation error	QM9	distortion	OC20 (IS2RE)	
Model	$MAE_{E}(\downarrow)$	$MAE_{F}(\downarrow)$	$\Delta P(\downarrow)$	$MAE_{E}(\downarrow)$	$\Delta P(\downarrow)$	
SchNet [Schütt et al., 2018]	14.00	2.64	0.47	1.059	0.60	
CGCNN [Xie and Grossman, 2018]	_	_	_	0.988	0.58	
MXMNet [Zhang et al., 2020b]	5.90	1.83	1.57	_	_	
DimeNet [Gasteiger et al., 2020]	8.02	1.79	0.58	1.012	0.55	
ForceNet [Hu et al., 2021]	18.62	0.41	0.21	_	_	
TorchMDNet (ET) [Thölke and De Fabritiis, 2022]	6.15	1.15	0.32	-	-	
Ours (\mathcal{L}_{energy} only)	8.35	1.28	1.23	–	_	
Ours (full model)	15.16±0.539	0.0057 ±0.001	0.0251 ±0.01	0.887 ±0.024	0.10 ±0.01	
<i>p</i> -value	_	0	3.2×10^{-7}	2.6×10^{-4}	7.0×10^{-8}	

We achieve comparable
energy estimation to the
baselines.Force error and ΔP get
considerably better
than baselines with our
full model!

Similarly, our model outperforms baselines on OC20 dataset as well.

Reduced $\triangle P$ and $\triangle E$ more than 10x compared to other baselines.

Reduced $\triangle P$ and $\triangle E$ more than 10x compared to other baselines.

Conducted on QM9 dataset.

Reduced $\triangle P$ and $\triangle E$ more than 10x compared to other baselines.

Ablation Study: Effect of MAM

Probability with dragging the atom of interest

Ablation Study: Effect of MAM

Probability with dragging the atom of interest

Can our model generalize beyond stable molecules?

Can our model generalize beyond stable molecules?

• Predict total energy along a reaction trajectory!

Conducted on Transition-1x dataset.

Can our model generalize beyond stable molecules?

• Predict total energy along a reaction trajectory!

Conducted on Transition-1x dataset.

Can our model generalize beyond stable molecules?

• Predict total energy along a reaction trajectory!

Can our model generalize beyond stable molecules?

• Predict total energy along a reaction trajectory!

Results: Molecule Fragment Assembly

- A more challenging task to see generalization ability:
 - Split the molecule into functional groups, recover the initial state.

- A more challenging task to see generalization ability:
 - Split the molecule into functional groups, recover the initial state.

Structure optimization

- A more challenging task to see generalization ability:
 - Split the molecule into functional groups, recover the initial state.

Structure optimization

- A more challenging task to see generalization ability:
 - Split the molecule into functional groups, recover the initial state.

• A more challenging task to see generalization ability:

- A more challenging task to see generalization ability:
 - Only successful when using the inequality bound condition

77

- A more challenging task to see generalization ability:
 - Only successful when using the inequality bound condition

78

Conclusion

• We facilitate a more physically reliable model under limited data, by utilizing physical constraints and self-supervised learning method.

Conclusion

- We facilitate a more physically reliable model under limited data, by utilizing physical constraints and self-supervised learning method.
 - The inequality bound condition is crucial for the model to understand the physical properties near the ground state.
 - Zero-force condition is fruitful for optimized structure only datasets (ex: QM9).
 - Masked atomic modeling helps the model to understand basic bonding nature in a molecule.

Conclusion

- We facilitate a more physically reliable model under limited data, by utilizing physical constraints and self-supervised learning method.
 - The inequality bound condition is crucial for the model to understand the physical properties near the ground state.
 - Zero-force condition is fruitful for optimized structure only datasets (ex: QM9).
 - Masked atomic modeling helps the model to understand basic bonding nature in a molecule.
- Our model was able to generalize beyond stable structures, including reaction barrier prediction and molecule assembly task.

Any question?

Questions to: {jaguar6182, joonseok}@snu.ac.kr