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Molecular Energy Prediction Task

○ To estimate physical / chemical properties of a molecule

○ To predict chemical reactions on complex systems

Estimating the total energy of a novel molecule!

Total EnergyModel

High computational cost!

SchNet (Schütt et al., 2018)

DimeNet (Gasteiger et al., 2020)

MXMNet (Zhang et al., 2020)

ForceNet (Hu et al., 2021)

TorchMDNet (Thölke and De Fabritiis, 2022)
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Indeed, existing models precisely estimates the energy!

Motivation

Is small energy error enough for a physically reliable model?

Model ForceNet SchNet DimeNet TorchMDNet MXMNet

Energy MAE 

(meV)
18.6 14.0 7.3 6.2 5.9

● Thermal fluctuation in room temperature(kbT) ~ 25 meV
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Motivation

stable state energy  < unstable state energy

● Let’s assess the reliability by structure optimization:

○ A stable molecule has lower energy than unstable ones.

○ If we slightly perturb atoms in a molecule, the energy will get higher.

○ Once we optimize it again, the structure should be recovered if the perturbation is small enough.
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Motivation

● Surprisingly, previous models fail to recover the stable structure!

SchNet ForceNet DimeNet MXMNet TorchMDNetGround Truth

Conducted on QM9 dataset.
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Motivation

● Surprisingly, previous models fail to recover the stable structure!

○ Indicating they have been over-optimized only to energy estimation.

SchNet ForceNet DimeNet MXMNet TorchMDNetGround Truth

Conducted on QM9 dataset.
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● Limited amount of data!
○ Due to data sparsity, models have trouble learning a reliable potential energy surface (PES).
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Core Issue to the Problem

Utilize

● Limited amount of data!
○ Due to data sparsity, models have trouble learning a reliable potential energy surface (PES).

○ Optimally utilizing physical constraints is essential for training.
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● Parametrized energy calculation
○ We consider self-energy and bond energy:

○ Parametrized by β, which depends on the species of pair of atoms

Our Approach 1: Physics-model Constraints

Model

Electrostatic: Van der Waals:
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Our Approach 2: Physics-inspired Constraints

Two constraints when given a stable molecular structure:
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Our Approach 2: Physics-inspired Constraints

● Zero-force condition
○ Net force of the stable structure must be zero.

● Inequality bound condition
○ Locally, a perturbed state energy must be greater than the stable state.

Two constraints when given a stable molecular structure:
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● Masked Atomic Modeling
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Concurrently developed in G. Zhou et al., ICLR 2023 (Uni-Mol: A Universal 3D Molecular Representation Learning Framework).
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● Masked Atomic Modeling
○ Zero-out 30% of the entire atomic embeddings in a given molecule.

○ The model must learn fundamental bonding principles to recover them.

Our Approach 3: Masked Atomic Modeling

Model

[mask1] [mask2]

Concurrently developed in G. Zhou et al., ICLR 2023 (Uni-Mol: A Universal 3D Molecular Representation Learning Framework).

C H C N…[mask1]

C

[mask2]
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Experimental Results
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New metrics: ΔE and ΔP

Ground truth
Optimized structure = Stable structure

Ideal case: ΔE = 0 and ΔP = 0

Problematic case: ΔE ≠ 0 and ΔP ≠ 0

Optimized structure ≠ Stable structure

Result
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ΔP : Structural distortion 

ΔE : Energy difference
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Comparison with Other Models: Analysis

We achieve comparable 
energy estimation to the 
baselines.

Force error and ΔP get 
considerably better
than baselines with our 
full model!

Baseline models fail to learn the 
actual energy surface, indicated by 
high force and position error.

It is same for our model when it is trained 
only on the energy loss.→ It is indeed 
important to consider other physical 
constraints!

Similarly, our model 
outperforms baselines 
on OC20 dataset as well.

Energy
estimation error

Net force
(ideally 0) Atom position 

distortion
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Qualitative Results: Structure Optimization

Conducted on QM9 dataset.
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Ablation Study: Effect of MAM

Probability with dragging the atom of interest
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● A more challenging task to see generalization ability:
○ Only successful when using the inequality bound condition

Results: Molecule Fragment Assembly

With inequality 
bound condition

Without inequality 
bound condition

(a) step = 0 step = 100 step = 200 step = 500 GT

step = 100 step = 200 step = 500 step = 100 step = 200 step = 500

(b)

(c) (d)
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Conclusion

● We facilitate a more physically reliable model under limited data, by utilizing 

physical constraints and self-supervised learning method. 
○ The inequality bound condition is crucial for the model to understand the physical properties 

near the ground state. 

○ Zero-force condition is fruitful for optimized structure only datasets (ex: QM9).  

○ Masked atomic modeling helps the model to understand basic bonding nature in a molecule. 

● Our model was able to generalize beyond stable structures, 

including reaction barrier prediction and molecule assembly task.
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