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Motivation
Building Expressive and Tractable Generative Models
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𝑃"∗ 𝑋 ~ 𝑃(𝑋)

Datapoints

Expressivity
Characterizes the complexity of functions that can be represented. 

A more expressive model can better approximate complex distributions in high-dimensional spaces

Tractability
Ability to answer probabilistic inference queries about the learned distribution in polynomial time.

Can reason probabilistically about the learned distribution. 

Using Normalizing Flows

Using Probabilistic Circuits
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Probabilistic Circuits
Hierarchical Mixtures of Simple Factorized Distributions

Computational graphs that recursively define distributions via 3 types of nodes
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Stacked as a circuit

Probabilistic Circuits
Hierarchical Mixtures of Simple Factorized Distributions

Computational graphs that recursively define distributions via 3 types of nodes

𝑝 𝑋 = 𝑁𝑜𝑟𝑚𝑎𝑙(𝑋)

Leaf nodes Sum nodes Product nodes

Simple univariate 
distributions

Represents mixtures

Adds expressivity

Represents factorizations

Enables tractability
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Probabilistic Circuits
Hierarchical Mixtures of Simple Factorized Distributions

Tractability for probabilistic inference is achieved via structural properties 

Inference Queries
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Hierarchical Mixtures of Simple Factorized Distributions
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Probabilistic Circuits
Hierarchical Mixtures of Simple Factorized Distributions

Tractability for probabilistic inference is achieved via structural properties 

Smoothness Children of sum nodes have same scope

Decomposability  Children of product nodes have disjoint scope 

Conditional Inference

Inference Queries Structural Properties
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Probabilistic Circuits
Hierarchical Mixtures of Simple Factorized Distributions

Tractability for probabilistic inference is achieved via structural properties 

Decomposability  Children of product nodes have disjoint scope 

Determinism         Children of sum nodes have disjoint support 

MAP Inference

Inference Queries Structural Properties
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Normalizing Flows
Model data distributions using Invertible transformations and the change of variables formula
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Parameterize efficient invertible transformations using neural networks

Normalizing Flows
Model data distributions using Invertible transformations and the change of variables formula

Supports exact density evaluation More expressive than Probabilistic Circuits
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Sum-Product Transform Network
(Pevny et. Al 2020)

Integrating Flows with Probabilistic Circuits
Use the change of variables within PCs 

Introduce new transform nodes in PCs

Transform nodes

Represents normalizing flows

Adds expressivity

T

+ x

T

+ x𝑁 = { , , }

28



Sum-Product Transform Network
(Pevny et. Al 2020)

Integrating Flows with Probabilistic Circuits
Use the change of variables within PCs 

Introduce new transform nodes in PCs

Transform nodes

Represents normalizing flows

Adds expressivity

T

+ x

T

+ x𝑁 = { , , }

Probabilistic Circuit

29



T

T T

TT T

T T

Sum-Product Transform Network
(Pevny et. Al 2020)

Integrating Flows with Probabilistic Circuits
Use the change of variables within PCs 

Introduce new transform nodes in PCs

Transform nodes

Represents normalizing flows

Adds expressivity

T

+ x

T

+ x𝑁 = { , , }

Probabilistic Circuit

Place transform nodes arbitrarily in a PC

30



T

T T

TT T

T T

Sum-Product Transform Network
(Pevny et. Al 2020)

Integrating Flows with Probabilistic Circuits
Use the change of variables within PCs 

Introduce new transform nodes in PCs

Transform nodes

Represents normalizing flows

Adds expressivity

T

+ x

T

+ x𝑁 = { , , }

Probabilistic Circuit

Place transform nodes arbitrarily in a PC Use invertible affine transformations

31



Integrating Flows with Probabilistic Circuits – Our Work 
Understanding the Pathologies of Sum-Product Transform Networks

Placing transform nodes arbitrarily in a PC can violate its decomposability property
Inference becomes Intractable for Marginal, Conditional, and MAP
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Placing transform nodes arbitrarily in a PC can violate its decomposability property
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, 𝑝 𝒙 𝑑𝒙
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Smooth Sum Node
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Integrating Flows with Probabilistic Circuits – Our Work 
Understanding the Pathologies of Sum-Product Transform Networks

Sum Product Transform Networks Can you still push down integrals over transform nodes ?

Integrals on Transform Nodes over Sum Node

8 𝑝 𝒙 𝑑𝒙

= ∫ 𝑇 + 𝒙 𝑑𝒙 = ∫ + 𝑓(𝒙 )|det 𝐽)| 𝑑𝒙

= 8 [𝑤$𝑝$ 𝑓 𝒙 + 𝑤%𝑝% 𝑓 𝒙 ] |det 𝐽)| 𝑑𝒙

,

𝑤$

𝒑𝟏(𝒙)

+
𝑤%

𝒑𝟐(𝒙)

T
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Integrating Flows with Probabilistic Circuits – Our Work 
Understanding the Pathologies of Sum-Product Transform Networks

Integrals on Transform Nodes over Sum Node

8 𝑝 𝒙 𝑑𝒙

= ∫ 𝑇 + 𝒙 𝑑𝒙 = ∫ + 𝑓(𝒙 )|det 𝐽)| 𝑑𝒙

= 8 [𝑤$𝑝$ 𝑓 𝒙 + 𝑤%𝑝% 𝑓 𝒙 ] |det 𝐽)| 𝑑𝒙
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,

𝑤$
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+
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+
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𝒑𝟐(𝒙)

T T, ,

Sum Product Transform Networks Can you still push down integrals over transform nodes ?

40



Integrating Flows with Probabilistic Circuits – Our Work 
Pathologies of Sum-Product Transform Networks

Integrals on Transform Nodes over Product Node

8 𝑝 𝒙𝟏, 𝒙𝟐 𝑑𝒙 𝑑𝒙 = 𝑑𝒙𝟏𝑑𝒙𝟐

= 8 𝑇(× 𝒙𝟏, 𝒙𝟐 ) 𝑑𝒙

= 8 × 𝑓(𝒙𝟏, 𝒙𝟐 )|det 𝐽)| 𝑑𝒙

= 8 𝑝$ 𝑓 𝒙𝟏, 𝒙𝟐 𝑝%(𝑓(𝒙𝟏, 𝒙𝟐))|det 𝐽)| 𝑑𝒙
𝒑𝟏(𝒙𝟏)

x

𝒑𝟐(𝒙𝟐)

T,
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Integrating Flows with Probabilistic Circuits – Our Work 
Pathologies of Sum-Product Transform Networks

Integrals on Transform Nodes over Product Node

8 𝑝 𝒙𝟏, 𝒙𝟐 𝑑𝒙 𝑑𝒙 = 𝑑𝒙𝟏𝑑𝒙𝟐

= 8 𝑇(× 𝒙𝟏, 𝒙𝟐 ) 𝑑𝒙

= 8 × 𝑓(𝒙𝟏, 𝒙𝟐 )|det 𝐽)| 𝑑𝒙

= 8 𝑝$ 𝑓 𝒙𝟏, 𝒙𝟐 𝑝%(𝑓(𝒙𝟏, 𝒙𝟐))|det 𝐽)| 𝑑𝒙

≠ 8 𝑝$ 𝑓 𝒙𝟏 𝑝%(𝑓(𝒙𝟐))|det 𝐽)| 𝑑𝒙

𝒑𝟏(𝒙𝟏)

x

𝒑𝟐(𝒙𝟐)

T,

𝒑𝟏(𝒙𝟏)

x

𝒑𝟐(𝒙𝟐)

T T, ,
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Integrating Flows with Probabilistic Circuits – Our Work 
Pathologies of Sum-Product Transform Networks

Transform nodes causes scopes of children of product nodes to overlap 

Integrals on Transform Nodes over Product Node

8 𝑝 𝒙𝟏, 𝒙𝟐 𝑑𝒙 𝑑𝒙 = 𝑑𝒙𝟏𝑑𝒙𝟐

= 8 𝑇(× 𝒙𝟏, 𝒙𝟐 ) 𝑑𝒙

= 8 × 𝑓(𝒙𝟏, 𝒙𝟐 )|det 𝐽)| 𝑑𝒙

= 8 𝑝$ 𝑓 𝒙𝟏, 𝒙𝟐 𝑝%(𝑓(𝒙𝟏, 𝒙𝟐))|det 𝐽)| 𝑑𝒙

≠ 8 𝑝$ 𝑓 𝒙𝟏 𝑝%(𝑓(𝒙𝟐))|det 𝐽)| 𝑑𝒙

𝒑𝟏(𝒙𝟏)

x

𝒑𝟐(𝒙𝟐)

T,

𝒑𝟏(𝒙𝟏)

x

𝒑𝟐(𝒙𝟐)

T T, ,

Cannot push down integrals on transform nodes over products Intractable for marginal, conditional and MAP
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Integrating Flows with Probabilistic Circuits – Our Work 
Defining Structural Properties for Transform Nodes

𝝉 −Decomposability When defined over a product node, 𝑓 needs to transform the variables involved in the 
scope of its children independently
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Integrating Flows with Probabilistic Circuits – Our Work 
Defining Structural Properties for Transform Nodes

𝑥$

𝑥%

𝑧$

𝑧%
Not 𝜏-Decomposable

𝒛 = 𝑓(𝒙)
𝜏-Decomposable

𝒛 = 𝑧$, 𝑧% = [𝑓$ 𝑥$ , 𝑓% 𝑥% ]

𝑥$

𝑥%

𝑧$

𝑧%

𝝉 −Decomposability When defined over a product node, 𝑓 needs to transform the variables involved in the 
scope of its children independently
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Integrating Flows with Probabilistic Circuits – Our Work 
Defining Structural Properties for Transform Nodes

Integrals on 𝝉-Decomposable Transform Nodes over Product Node

8 𝑝 𝒙𝟏, 𝒙𝟐 𝑑𝒙 𝑑𝒙 = 𝑑𝒙𝟏𝑑𝒙𝟐

= 8 𝑇(× 𝒙𝟏, 𝒙𝟐 ) 𝑑𝒙

= 8 × 𝒇(𝒙𝟏, 𝒙𝟐 )|det 𝐽)| 𝑑𝒙

= 8 𝑝$ 𝑓 𝒙𝟏, 𝒙𝟐 𝑝%(𝑓(𝒙𝟏, 𝒙𝟐))|det 𝐽)| 𝑑𝒙
𝒑𝟏(𝒙𝟏)

x

𝒑𝟐(𝒙𝟐)

𝑇,

𝑥$

𝑥%

𝑧$

𝑧%
Not 𝜏-Decomposable

𝒛 = 𝑓(𝒙)
𝜏-Decomposable

𝒛 = 𝑧$, 𝑧% = [𝑓$ 𝑥$ , 𝑓% 𝑥% ]

𝑥$

𝑥%

𝑧$

𝑧%

𝝉 −Decomposability When defined over a product node, 𝑓 needs to transform the variables involved in the 
scope of its children independently
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Reduces to having normalizing flows at the leaves!
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factorizations of the PC
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Probabilistic Flows Circuits

Has added Expressivity
Can model arbitrarily complex 

distributions at the leaves

Retains Tractability
As it encodes the same 
factorizations of the PC

What transformations to use ? 

Affine (Pevny et. Al) ? Affine-transformed Gaussian leaf is still a 
Gaussian!

What other properties do we need to consider when designing PFCs? 

MAP requires the ability to compute the modes of leaf distributions

PFC
Multimodal Leaf

Difficult to compute mode

PC
Unimodal Leaf

Easy to compute mode
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Splines - piecewise functions

Spline-based flows are among SOTA

Divide the data space into 𝐾 bins and fit a polynomial function 𝑓, within each
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Linear Rational Splines (LRS)

Evidential

A PFC with LRS transformations is provably tractable for

Designing expressive transformations using linear rational splines

Splines - piecewise functions

smooth

Marginal Conditional MAP

smooth

decomposable

Student’s t 
base

decomposable

smooth decomposable

deterministic

Spline-based flows are among SOTA

Divide the data space into 𝐾 bins and fit a polynomial function 𝑓, within each

Use monotone linear rational functions of the form 𝑓 𝑥 = -./0
1./2

64



Probabilistic Flows Circuits

Linear Rational Splines (LRS)

Evidential

Other flow transformations that (provably) achieves the same ?  

A PFC with LRS transformations is provably tractable for

Designing expressive transformations using linear rational splines

Splines - piecewise functions

smooth

Marginal Conditional MAP

smooth

decomposable

Student’s t 
base

decomposable

smooth decomposable

deterministic

Spline-based flows are among SOTA

Divide the data space into 𝐾 bins and fit a polynomial function 𝑓, within each

Use monotone linear rational functions of the form 𝑓 𝑥 = -./0
1./2
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Probabilistic Flows Circuits
Experimental Results

Retains Tractability – which can be exploited for downstream tasks

Image Inpainting

Can fill in missing data by 
sampling from conditional 

distributions 

Can perform controlled 
generation
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Thank You! Questions?
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