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Probabilistic Circuits

Hierarchical Mixtures of Simple Factorized Distributions

ﬂmputatlonal graphs that recursively define distributions via 3 types of nodex Stacked as a circuit
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Slmple univariate Represents mixtures Represents factorizations ”
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Hierarchical Mixtures of Simple Factorized Distributions

Tractability for probabilistic inference is achieved via structural properties

Inference Queries
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Hierarchical Mixtures of Simple Factorized Distributions
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Normalizing Flows

Model data distributions using Invertible transformations and the change of variables formula

Change of Variables: Z and X be random variables which are related by a mapping
f:R™ — R" such that X = f(Z) and Z = f~1(X). Then

of1
der (11 '

px(x) = p2(f 7 (x)) =

Density evaluation =000

fi fz’ fk_1>
»
(i {1 (o

f=fiOfOfi sampling

Data space - X
uelssneo - 7

[ Parameterize efficient invertible transformations using neural networks }

E Supports exact density evaluation ] [ More expressive than Probabilistic Circuits }
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Integrating Flows with Probabilistic Circuits

Use the change of variables within PCs

Introduce new transform nodes in PCs

N(z)) = N(f())| det Jy|

OO0

Transform nodes

Represents normalizing flows

\ Adds expressivity /

Sum-Product Transform Network
(Pevny et. Al 2020)

Probabilistic Circuit

L Place transform nodes arbitrarily in a PC J E Use invertible affine transformations ]
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Understanding the Pathologies of Sum-Product Transform Networks

Placing transform nodes arbitrarily in a PC can violate its decomposability property
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Understanding the Pathologies of Sum-Product Transform Networks

Placing transform nodes arbitrarily in a PC can violate its decomposability property
Inference becomes Intractable for Marginal, Conditional, and MAP

E Probabilistic Circuits Smoothness and Decomposability allowed pushing down integrals to enable tractability }

Smooth Sum Node Decomposable Product Node
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Integrating Flows with Probabilistic Circuits — Our Work

Understanding the Pathologies of Sum-Product Transform Networks

Placing transform nodes arbitrarily in a PC can violate its decomposability property
Inference becomes Intractable for Marginal, Conditional, and MAP
E Probabilistic Circuits Smoothness and Decomposability allowed pushing down integrals to enable tractability }

Smooth Sum Node

/ J p(x)dx = j wy p1(x) + wyp,(x) dx

=w; [ p()dx + w, [ py(x)dx

\\ p1(x) pP2(x) | p1(x) J p2(x)

~

/

Decomposable Product Node

/J p(x1,x2) dx1dx; =j p1(x1)p, (x2)dx,dx, \

= (f P1(x1)dx1)-(f p2(x2) dx;)

\\ P1(x1) p2(xz) fp1(x1) fpz(xz)/
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Understanding the Pathologies of Sum-Product Transform Networks

[ Sum Product Transform Networks Can you still push down integrals over transform nodes ?

Integrals on Transform Nodes over Sum Node

/j p(x) dx f 6

= [ T(+()dx = [ + (f(x))|det]s| dx 0

wq Wy
= j [Wlpl(f(x)) + szz(f(x))] |det]f| dx @ e

p1(x) P2(x)
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Pathologies of Sum-Product Transform Networks

Integrals on Transform Nodes over Product Node
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Integrating Flows with Probabilistic Circuits — Our Work

Pathologies of Sum-Product Transform Networks

Integrals on Transform Nodes over Product Node

<

/ j p(xq1,x7) dx (dx = dxq1dx;y)

=j T(x(x1,%2)) dx j
Wy

- j X(f (21, x2))|det ]| dx

- j b1 (FGen xe0))pa(FGxn et ] dx (YD) U

p1(xq) P2(x2)

+ j p1(f (e0))p2 (F () det S| dx

\
()
0
) W

P1(x1) P2(x2)

/
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Pathologies of Sum-Product Transform Networks

Integrals on Transform Nodes over Product Node

/ f p(xq1,x7) dx (dx = dxq1dx;y)

=f T(X(xq1,%x7)) dx j °
= [ <G x)det| dx 2N O) &
=j p1(f (X1, %2) P2 (f (x4, x2))|det | dx @ @ @ @

p1(x1) P2(x2) p1(x1) DP2(x2)

\ + j p1(f (e)pa(f (o))l det ]| dx /

P
Transform nodes causes scopes of children of product nodes to overlap }
-

Cannot push down integrals on transform nodes over products j E Intractable for marginal, conditional and MAP ]
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Integrating Flows with Probabilistic Circuits — Our Work

Defining Structural Properties for Transform Nodes

When defined over a product node, f needs to transform the variables involved in the
scope of its children independently

x1jgiz1 A |
Xy Zy % 2
Not T-Decomposable T7-Decomposable

z = f(x) z = [z1,2,] = [f1(x1), f2(x2)]

[ T —Decomposability

Integrals on T-Decomposable Transform Nodes over Product Node

/ j p(xq1,x2) dx (dx = dxydxy) j \
=] T(X(xq,x2)) dx °

=j X(f(xq,x2))|det J¢| dx

=j p1(f (1, x2) P2 (f (%1, x2)) |det Jf| dx @ @

p1(xy) P2(x2)
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Defining Structural Properties for Transform Nodes

scope of its children independently

x1jgzz1 A |
Xy Zy % 2
Not T-Decomposable T7-Decomposable

z = f(x) z = [z1,2,] = [f1(x1), f2(x2)]

[ T —Decomposability When defined over a product node, f needs to transform the variables involved in the}

Integrals on T-Decomposable Transform Nodes over Product Node

/ (x1,x9) dx (dx = dxq1dx;) \
j . :f T(x(x1,%7)) dx o ¢ O

- j X(f (1, x2))|det | dx > @ &
=j p1(f (X1, %2) P2 (f (x4, x2))|det J¢| dx @ @ @ 0

p1(x1) P2(x2) p1(x1) DP2(x2)

\ = f P1(f1(x1))192(f2(x2))|det]f|dx =(J pl(fl(xl))|det]f1|dx1)(f Pz(fz(xz))|det]f2|dxz) /
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Defining Structural Properties for Transform Nodes

[ T —Decomposability is a necessary condition for tractability
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Defining Structural Properties for Transform Nodes
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Defining Structural Properties for Transform Nodes
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Integrating Flows with Probabilistic Circuits — Our Work

Defining Structural Properties for Transform Nodes

4 )
T —Decomposability is a necessary condition for tractability

A sum-product-transform network is decomposable only if all of its transform nodes are T —decomposable

Implications of T —decomposability J E Reduces to having normalizing flows at the leaves!
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Probabilistic Flows Circuits

Has added Expressivity Retains Tractability
Can model arbitrarily complex As it encodes the same
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Probabilistic Flows Circuits

Has added Expressivity Retains Tractability
Can model arbitrarily complex As it encodes the same

{,‘ distributions at the leaves factorizations of the PC
e{&&) 'z
Ll L2

“ What transformations to use ?
L. £
T Yy Yy x

| |
. Affine-transformed Gaussian leaf is still a
1 2 normalizing flow i ?
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Probabilistic Flows Circuits

060

1
LCE Yy Yy

eie

Real Data

B

1
L, Y

Yy

L2

normalizing flow

OO0

A ab L

Retains Tractability
As it encodes the same
factorizations of the PC

Has added Expressivity
Can model arbitrarily complex
distributions at the leaves

What transformations to use ?

-

-

: ?
Affine (Pevny et. Al) - } [ Gaussian!

N
Affine-transformed Gaussian leaf is still a

/

A\

What other properties do we need to consider when designing PFCs?

J/
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Probabilistic Flows Circuits

agc

1
L, y

o

Y

Real Data

B

1
L-’IJ Yy Yy

L2

| |
normalizing flow

OO0

A L D

Retains Tractability
As it encodes the same
factorizations of the PC

Has added Expressivity
Can model arbitrarily complex
distributions at the leaves

What transformations to use ?

-

: ?
Affine (Pevny et. Al) - } [ Gaussian!

.

N
Affine-transformed Gaussian leaf is still a

/

What other properties do we need to consider when designing PFCs?

A\

[ MAP requires the ability to compute the modes of leaf distributions

~

J

v v
PC PFC
Unimodal Leaf Multimodal Leaf

Easy to compute mode Difficult to compute mode
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E Spline-based flows are among SOTA

E Splines - piecewise functions } E Divide the data space into K bins and fit a polynomial function f}, within each
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Probabilistic Flows Circuits

Designing expressive transformations using linear rational splines

:

Spline-based flows are among SOTA

E Splines - piecewise functions }

Divide the data space into K bins and fit a polynomial function f}, within each

Linear Rational Splines (LRS)

ax+b
cx+d

Use monotone linear rational functions of the form f(x) =

[ A PFC with LRS transformations is provably tractable for }
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Designing expressive transformations using linear rational splines

E Spline-based flows are among SOTA
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E Splines - piecewise functions } Divide the data space into K bins and fit a polynomial function f}, within each
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Probabilistic Flows Circuits

Designing expressive transformations using linear rational splines

E Spline-based flows are among SOTA
)
E Splines - piecewise functions } Divide the data space into K bins and fit a polynomial function f}, within each
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4
. . . b
Linear Rational Splines (LRS) Use monotone linear rational functions of the form f(x) = :;:d
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Probabilistic Flows Circuits

Designing expressive transformations using linear rational splines

E Spline-based flows are among SOTA
)
E Splines - piecewise functions } Divide the data space into K bins and fit a polynomial function f}, within each
.
4
. . . b
Linear Rational Splines (LRS) Use monotone linear rational functions of the form f(x) = :;:d
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B
=)
smooth —> smooth > smooth

—> decomposable — decomposable

63
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Designing expressive transformations using linear rational splines

N
E Spline-based flows are among SOTA
J
)
E Splines - piecewise functions } Divide the data space into K bins and fit a polynomial function f}, within each
k J
( 7
Linear Rational Splines (LRS) Use monotone linear rational functions of the form f(x) = ?;:5
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Probabilistic Flows Circuits

Designing expressive transformations using linear rational splines

N
E Spline-based flows are among SOTA
J
)
E Splines - piecewise functions } Divide the data space into K bins and fit a polynomial function f}, within each
k J
( 7
: . . b
Linear Rational Splines (LRS) Use monotone linear rational functions of the form f(x) = :;:d
& J
[ A PFC with LRS transformations is provably tractable for }
|
v v v v
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Other flow transformations that (provably) achieves the same ?

Student’s t
base
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Has added expressivity and learning efficiency over a PC - Better models the data
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Has added expressivity and learning efficiency over a PC - Better models the data
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[ Retains Tractability — which can be exploited for downstream tasks ]

/ Image Inpainting \

Can fill in missing data by
sampling from conditional
distributions
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