Probabilistic Flow Circuits:
 Towards Unified Deep Models for Tractable Probabilistic Inference

Sahil Sidheekh

Kristian Kersting

Sriraam Natarajan
\square

Motivation

Building Expressive and Tractable Generative Models

Motivation

Building Expressive and Tractable Generative Models

[^0]
Motivation

Building Expressive and Tractable Generative Models

> Characterizes the complexity of functions that can be represented. Expressivity \quad A more expressive model can better approximate complex distributions in high-dimensional spaces

Tractability

Ability to answer probabilistic inference queries about the learned distribution in polynomial time. Can reason probabilistically about the learned distribution.

Motivation

Building Expressive and Tractable Generative Models

Using Normalizing Flows

Expressivity
Characterizes the complexity of functions that can be represented.
A more expressive model can better approximate complex distributions in high-dimensional spaces

Using Probabilistic Circuits

Tractability
Ability to answer probabilistic inference queries about the learned distribution in polynomial time. Can reason probabilistically about the learned distribution.

Probabilistic Circuits

Hierarchical Mixtures of Simple Factorized Distributions

Computational graphs that recursively define distributions via 3 types of nodes

Probabilistic Circuits

Hierarchical Mixtures of Simple Factorized Distributions

Computational graphs that recursively define distributions via 3 types of nodes

```
        \Omega
    p(X)=Normal(X)
    Leaf nodes
    Simple univariate
        distributions
```


Probabilistic Circuits

Hierarchical Mixtures of Simple Factorized Distributions

Computational graphs that recursively define distributions via 3 types of nodes

Probabilistic Circuits

Hierarchical Mixtures of Simple Factorized Distributions

Computational graphs that recursively define distributions via 3 types of nodes
Leaf nodes

Simple univariate
distributions

Represents mixtures \quad Represents factorizations

Probabilistic Circuits

Hierarchical Mixtures of Simple Factorized Distributions

Computational graphs that recursively define distributions via 3 types of nodes

Stacked as a circuit

Probabilistic Circuits

Hierarchical Mixtures of Simple Factorized Distributions

Tractability for probabilistic inference is achieved via structural properties

Probabilistic Circuits

Hierarchical Mixtures of Simple Factorized Distributions

Tractability for probabilistic inference is achieved via structural properties

Inference Queries

Evidential Inference:

$$
p\left(X_{1}, X_{2}, X_{3}, X_{4}\right)
$$

Probabilistic Circuits

Hierarchical Mixtures of Simple Factorized Distributions

Tractability for probabilistic inference is achieved via structural properties

Inference Queries

Evidential Inference:	$p\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$
Marginal Inference:	$p\left(X_{1}\right)$

Probabilistic Circuits

Hierarchical Mixtures of Simple Factorized Distributions

Tractability for probabilistic inference is achieved via structural properties

Inference Queries

Evidential Inference:	$p\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$
Marginal Inference:	$p\left(X_{1}\right)$

Conditional Inference:
$p\left(X_{1} \mid X_{2}, X_{3}, X_{4}\right)$

Probabilistic Circuits

Hierarchical Mixtures of Simple Factorized Distributions

Tractability for probabilistic inference is achieved via structural properties

Inference Queries

Evidential Inference:	$p\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$
Marginal Inference:	$p\left(X_{1}\right)$

Conditional Inference: $\quad p\left(X_{1} \mid X_{2}, X_{3}, X_{4}\right)$

MAP Inference:
$\operatorname{argmax}_{X_{1}} p\left(X_{1} \mid X_{2}, X_{3}, X_{4}\right)$

Probabilistic Circuits

Hierarchical Mixtures of Simple Factorized Distributions
Tractability for probabilistic inference is achieved via structural properties

Probabilistic Circuits

Hierarchical Mixtures of Simple Factorized Distributions
Tractability for probabilistic inference is achieved via structural properties

Probabilistic Circuits

Hierarchical Mixtures of Simple Factorized Distributions
Tractability for probabilistic inference is achieved via structural properties

Probabilistic Circuits

Hierarchical Mixtures of Simple Factorized Distributions
Tractability for probabilistic inference is achieved via structural properties

Probabilistic Circuits

Hierarchical Mixtures of Simple Factorized Distributions
Tractability for probabilistic inference is achieved via structural properties

Probabilistic Circuits

Hierarchical Mixtures of Simple Factorized Distributions
Tractability for probabilistic inference is achieved via structural properties

Probabilistic Circuits

Hierarchical Mixtures of Simple Factorized Distributions
Tractability for probabilistic inference is achieved via structural properties

Probabilistic Circuits

Hierarchical Mixtures of Simple Factorized Distributions
Tractability for probabilistic inference is achieved via structural properties

Normalizing Flows

Model data distributions using Invertible transformations and the change of variables formula

Normalizing Flows

Model data distributions using Invertible transformations and the change of variables formula
Change of Variables: Z and X be random variables which are related by a mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $X=f(Z)$ and $Z=f^{-1}(X)$. Then

$$
p_{X}(\mathrm{x})=p_{Z}\left(f^{-1}(\mathrm{x})\right)\left|\operatorname{det}\left(\frac{\partial f^{-1}(\mathrm{x})}{\partial \mathrm{x}}\right)\right|
$$

Normalizing Flows

Model data distributions using Invertible transformations and the change of variables formula
Change of Variables: Z and X be random variables which are related by a mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $X=f(Z)$ and $Z=f^{-1}(X)$. Then

$$
p_{X}(\mathrm{x})=p_{Z}\left(f^{-1}(\mathrm{x})\right)\left|\operatorname{det}\left(\frac{\partial f^{-1}(\mathrm{x})}{\partial \mathrm{x}}\right)\right|
$$

Density evaluation

$$
f^{-1}=f_{k}^{-1} \odot \cdots \odot f_{2}^{-1} \odot f_{1}^{-1}
$$

Normalizing Flows

Model data distributions using Invertible transformations and the change of variables formula
Change of Variables: Z and X be random variables which are related by a mapping
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $X=f(Z)$ and $Z=f^{-1}(X)$. Then

$$
p_{X}(\mathrm{x})=p_{Z}\left(f^{-1}(\mathrm{x})\right)\left|\operatorname{det}\left(\frac{\partial f^{-1}(\mathrm{x})}{\partial \mathrm{x}}\right)\right|
$$

Density evaluation $\quad f^{-1}=f_{k}^{-1} \odot \cdots \odot f_{2}^{-1} \odot f_{1}^{-1}$

Parameterize efficient invertible transformations using neural networks

Integrating Flows with Probabilistic Circuits

Use the change of variables within PCs

Introduce new transform nodes in PCs

$T(N(\boldsymbol{x}))=N(f(\boldsymbol{x}))\left|\operatorname{det} J_{f}\right|$

Transform nodes
Represents normalizing flows
Adds expressivity

Sum-Product Transform Network
(Pevny et. Al 2020)

Integrating Flows with Probabilistic Circuits

Use the change of variables within PCs

Introduce new transform nodes in PCs

$T(N(\boldsymbol{x}))=N(f(\boldsymbol{x}))\left|\operatorname{det} J_{f}\right|$

Transform nodes
Represents normalizing flows
Adds expressivity

Sum-Product Transform Network
(Pevny et. Al 2020)

Probabilistic Circuit

Integrating Flows with Probabilistic Circuits

Use the change of variables within PCs

Introduce new transform nodes in PCs

$T(N(\boldsymbol{x}))=N(f(\boldsymbol{x}))\left|\operatorname{det} J_{f}\right|$

Transform nodes
Represents normalizing flows
Adds expressivity

Sum-Product Transform Network
(Pevny et. Al 2020)

Place transform nodes arbitrarily in a PC

Probabilistic Circuit

Integrating Flows with Probabilistic Circuits

Use the change of variables within PCs

Introduce new transform nodes in PCs

$T(N(\boldsymbol{x}))=N(f(\boldsymbol{x}))\left|\operatorname{det} J_{f}\right|$

Transform nodes
Represents normalizing flows
Adds expressivity

Sum-Product Transform Network
(Pevny et. Al 2020)

Place transform nodes arbitrarily in a PC

Probabilistic Circuit

Integrating Flows with Probabilistic Circuits - Our Work

Understanding the Pathologies of Sum-Product Transform Networks

Placing transform nodes arbitrarily in a PC can violate its decomposability property Inference becomes Intractable for Marginal, Conditional, and MAP

Integrating Flows with Probabilistic Circuits - Our Work

Understanding the Pathologies of Sum-Product Transform Networks

Placing transform nodes arbitrarily in a PC can violate its decomposability property Inference becomes Intractable for Marginal, Conditional, and MAP

Integrating Flows with Probabilistic Circuits - Our Work

Understanding the Pathologies of Sum-Product Transform Networks

Placing transform nodes arbitrarily in a PC can violate its decomposability property Inference becomes Intractable for Marginal, Conditional, and MAP

Probabilistic Circuits Smoothness and Decomposability allowed pushing down integrals to enable tractability

Smooth Sum Node
$\int p(\boldsymbol{x}) d \boldsymbol{x}=\int w_{1} p_{1}(\boldsymbol{x})+w_{2} p_{2}(\boldsymbol{x}) d \boldsymbol{x}$

Integrating Flows with Probabilistic Circuits - Our Work

Understanding the Pathologies of Sum-Product Transform Networks

Placing transform nodes arbitrarily in a PC can violate its decomposability property Inference becomes Intractable for Marginal, Conditional, and MAP

Smooth Sum Node

$$
\begin{aligned}
\int p(\boldsymbol{x}) d \boldsymbol{x} & =\int w_{1} p_{1}(\boldsymbol{x})+w_{2} p_{2}(\boldsymbol{x}) d \boldsymbol{x} \\
& =w_{1} \int p_{1}(\boldsymbol{x}) d \boldsymbol{x}+w_{2} \int p_{2}(\boldsymbol{x}) d \boldsymbol{x}
\end{aligned}
$$

Integrating Flows with Probabilistic Circuits - Our Work

Understanding the Pathologies of Sum-Product Transform Networks

Placing transform nodes arbitrarily in a PC can violate its decomposability property
Inference becomes Intractable for Marginal, Conditional, and MAP

Smooth Sum Node
$\int p(\boldsymbol{x}) d \boldsymbol{x}=\int w_{1} p_{1}(\boldsymbol{x})+w_{2} p_{2}(\boldsymbol{x}) d \boldsymbol{x}$
$=w_{1} \int p_{1}(\boldsymbol{x}) d \boldsymbol{x}+w_{2} \int p_{2}(\boldsymbol{x}) d \boldsymbol{x}$

Decomposable Product Node

$$
\int p\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) d \boldsymbol{x}_{1} d \boldsymbol{x}_{2}=\int p_{1}\left(\boldsymbol{x}_{1}\right) p_{2}\left(\boldsymbol{x}_{2}\right) d \boldsymbol{x}_{\mathbf{1}} d \boldsymbol{x}_{\mathbf{2}}
$$

Integrating Flows with Probabilistic Circuits - Our Work

Understanding the Pathologies of Sum-Product Transform Networks

Placing transform nodes arbitrarily in a PC can violate its decomposability property
Inference becomes Intractable for Marginal, Conditional, and MAP

Probabilistic Circuits Smoothness and Decomposability allowed pushing down integrals to enable tractability

Smooth Sum Node
$\int p(\boldsymbol{x}) d \boldsymbol{x}=\int w_{1} p_{1}(\boldsymbol{x})+w_{2} p_{2}(\boldsymbol{x}) d \boldsymbol{x}$
$=w_{1} \int p_{1}(\boldsymbol{x}) d \boldsymbol{x}+w_{2} \int p_{2}(\boldsymbol{x}) d \boldsymbol{x}$

$\int p_{1}(x) \int p_{2}(x)$

Decomposable Product Node

$$
\begin{aligned}
\int p\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) d \boldsymbol{x}_{1} d \boldsymbol{x}_{2} & =\int p_{1}\left(\boldsymbol{x}_{1}\right) p_{2}\left(\boldsymbol{x}_{2}\right) d \boldsymbol{x}_{1} d \boldsymbol{x}_{2} \\
& =\left(\int p_{1}\left(\boldsymbol{x}_{1}\right) d \boldsymbol{x}_{1}\right) \cdot\left(\int p_{2}\left(\boldsymbol{x}_{2}\right) d \boldsymbol{x}_{2}\right)
\end{aligned}
$$

Integrating Flows with Probabilistic Circuits - Our Work

Understanding the Pathologies of Sum-Product Transform Networks

Integrating Flows with Probabilistic Circuits - Our Work

Understanding the Pathologies of Sum-Product Transform Networks

```
Sum Product Transform Networks Can you still push down integrals over transform nodes ?
```

Integrals on Transform Nodes over Sum Node

$$
\begin{aligned}
& \int p(\boldsymbol{x}) d \boldsymbol{x} \\
& =\int T(+(\boldsymbol{x})) d \boldsymbol{x}=\int+(f(\boldsymbol{x}))\left|\operatorname{det} J_{f}\right| d \boldsymbol{x} \\
& =\int\left[w_{1} p_{1}(f(\boldsymbol{x}))+w_{2} p_{2}(f(\boldsymbol{x}))\right]\left|\operatorname{det} J_{f}\right| d \boldsymbol{x}
\end{aligned}
$$

Integrating Flows with Probabilistic Circuits - Our Work

Understanding the Pathologies of Sum-Product Transform Networks

```
Sum Product Transform Networks
```

Can you still push down integrals over transform nodes?

Integrals on Transform Nodes over Sum Node

$$
\int p(\boldsymbol{x}) d \boldsymbol{x}
$$

$$
=\int T(+(\boldsymbol{x})) d \boldsymbol{x}=\int+(f(\boldsymbol{x}))\left|\operatorname{det} J_{f}\right| d \boldsymbol{x}
$$

$$
=\int\left[w_{1} p_{1}(f(\boldsymbol{x}))+w_{2} p_{2}(f(\boldsymbol{x}))\right]\left|\operatorname{det} J_{f}\right| d \boldsymbol{x}
$$

$$
=w_{1} \int p_{1}(f(\boldsymbol{x}))\left|\operatorname{det} J_{f}\right| d \boldsymbol{x}+w_{2} \int p_{2}(f(\boldsymbol{x}))\left|\operatorname{det} J_{f}\right| d \boldsymbol{x}
$$

Integrating Flows with Probabilistic Circuits - Our Work

Pathologies of Sum-Product Transform Networks

Integrals on Transform Nodes over Product Node

$$
\begin{aligned}
& \int p\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) d \boldsymbol{x} \quad\left(d \boldsymbol{x}=d \boldsymbol{x}_{\mathbf{1}} d \boldsymbol{x}_{2}\right) \\
& =\int T\left(\times\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)\right) d \boldsymbol{x} \\
& =\int \times\left(f\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)\right)\left|\operatorname{det} J_{f}\right| d \boldsymbol{x} \\
& =\int p_{1}\left(f\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)\right) p_{2}\left(f\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)\right)\left|\operatorname{det} J_{f}\right| d \boldsymbol{x}
\end{aligned}
$$

Integrating Flows with Probabilistic Circuits - Our Work

Pathologies of Sum-Product Transform Networks

Integrals on Transform Nodes over Product Node

$$
\begin{aligned}
& \int p\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) d \boldsymbol{x} \quad\left(d \boldsymbol{x}=d \boldsymbol{x}_{1} d \boldsymbol{x}_{2}\right) \\
&=\int T\left(\times\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)\right) d \boldsymbol{x} \\
&=\int \times\left(f\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)\right)\left|\operatorname{det} J_{f}\right| d \boldsymbol{x} \\
&=\int p_{1}\left(f\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)\right) p_{2}\left(f\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)\right)\left|\operatorname{det} J_{f}\right| d \boldsymbol{x} \\
& \neq \int p_{1}\left(f\left(\boldsymbol{x}_{1}\right)\right) p_{2}\left(f\left(\boldsymbol{x}_{2}\right)\right)\left|\operatorname{det} J_{f}\right| d \boldsymbol{x}
\end{aligned}
$$

Integrating Flows with Probabilistic Circuits - Our Work

Pathologies of Sum-Product Transform Networks

Integrals on Transform Nodes over Product Node

$$
\begin{aligned}
& \int \begin{aligned}
& p\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) d \boldsymbol{x}\left(d \boldsymbol{x}=d \boldsymbol{x}_{1} d \boldsymbol{x}_{2}\right) \\
&=\int T\left(\times\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)\right) d \boldsymbol{x} \\
&=\int \times\left(f\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)\right)\left|\operatorname{det} J_{f}\right| d \boldsymbol{x} \\
& \quad=\int p_{1}\left(f\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)\right) p_{2}\left(f\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)\right)\left|\operatorname{det} J_{f}\right| d \boldsymbol{x} \\
& \quad \neq \int p_{1}\left(f\left(\boldsymbol{x}_{1}\right)\right) p_{2}\left(f\left(\boldsymbol{x}_{2}\right)\right)\left|\operatorname{det} J_{f}\right| d \boldsymbol{x}
\end{aligned}
\end{aligned}
$$

Transform nodes causes scopes of children of product nodes to overlap

Integrating Flows with Probabilistic Circuits - Our Work

Defining Structural Properties for Transform Nodes

Integrating Flows with Probabilistic Circuits - Our Work

Defining Structural Properties for Transform Nodes

When defined over a product node, f needs to transform the variables involved in the scope of its children independently

τ-Decomposable
$\boldsymbol{z}=\left[z_{1}, z_{2}\right]=\left[f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right)\right]$

Integrating Flows with Probabilistic Circuits - Our Work

Defining Structural Properties for Transform Nodes

```
\tau -Decomposability
```

When defined over a product node, f needs to transform the variables involved in the scope of its children independently

Not τ-Decomposable

$$
z=f(x)
$$

τ-Decomposable

$$
\mathbf{z}=\left[z_{1}, z_{2}\right]=\left[f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right)\right]
$$

Integrals on $\boldsymbol{\tau}$-Decomposable Transform Nodes over Product Node

$$
\begin{aligned}
\int p\left(\boldsymbol{x}_{1},\right. & \left.\boldsymbol{x}_{2}\right) d \boldsymbol{x} \quad\left(d \boldsymbol{x}=d \boldsymbol{x}_{1} d \boldsymbol{x}_{\mathbf{2}}\right) \\
& =\int T\left(\times\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)\right) d \boldsymbol{x} \\
& =\int \times\left(\boldsymbol{f}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)\right)\left|\operatorname{det} J_{f}\right| d \boldsymbol{x} \\
& =\int p_{1}\left(f\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)\right) p_{2}\left(f\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)\right)\left|\operatorname{det} J_{f}\right| d \boldsymbol{x}
\end{aligned}
$$

Integrating Flows with Probabilistic Circuits - Our Work

Defining Structural Properties for Transform Nodes

```
\tau -Decomposability
```

When defined over a product node, f needs to transform the variables involved in the scope of its children independently

Integrals on $\boldsymbol{\tau}$-Decomposable Transform Nodes over Product Node

$$
\begin{aligned}
& \int p\left(\boldsymbol{x}_{1},\right.\left.\boldsymbol{x}_{2}\right) d \boldsymbol{x} \quad\left(d \boldsymbol{x}=d \boldsymbol{x}_{1} d \boldsymbol{x}_{2}\right) \\
&=\int T\left(\times\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)\right) d \boldsymbol{x} \\
&=\int \times\left(\boldsymbol{f}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)\right)\left|\operatorname{det} J_{f}\right| d \boldsymbol{x} \\
&=\int p_{1}\left(f\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)\right) p_{2}\left(f\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)\right)\left|\operatorname{det} J_{f}\right| d \boldsymbol{x} \\
& \quad=\int p_{1}\left(f_{1}\left(\boldsymbol{x}_{\mathbf{1}}\right)\right) p_{2}\left(f_{2}\left(\boldsymbol{x}_{2}\right)\right)\left|\operatorname{det} J_{f}\right| d \boldsymbol{x}=\left(\int p_{1}\left(f_{1}\left(\boldsymbol{x}_{\mathbf{1}}\right)\right)\left|\operatorname{det} J_{f_{1}}\right| d \boldsymbol{x}_{\mathbf{1}}\right)\left(\int p_{2}\left(f_{2}\left(\boldsymbol{x}_{2}\right)\right)\left|\operatorname{det} J_{f_{2}}\right| d \boldsymbol{x}_{2}\right)
\end{aligned}
$$

Integrating Flows with Probabilistic Circuits - Our Work

Defining Structural Properties for Transform Nodes

τ-Decomposability is a necessary condition for tractability

A sum-product-transform network is decomposable only if all of its transform nodes are τ-decomposable

Integrating Flows with Probabilistic Circuits - Our Work

Defining Structural Properties for Transform Nodes

τ-Decomposability is a necessary condition for tractability
A sum-product-transform network is decomposable only if all of its transform nodes are τ-decomposable

Implications of τ-decomposability

Integrating Flows with Probabilistic Circuits - Our Work

Defining Structural Properties for Transform Nodes

τ-Decomposability is a necessary condition for tractability
A sum-product-transform network is decomposable only if all of its transform nodes are τ-decomposable

Implications of τ-decomposability

Integrating Flows with Probabilistic Circuits - Our Work

Defining Structural Properties for Transform Nodes

Integrating Flows with Probabilistic Circuits - Our Work

Defining Structural Properties for Transform Nodes

Probabilistic Flows Circuits

Has added Expressivity Can model arbitrarily complex distributions at the leaves

Retains Tractability As it encodes the same factorizations of the PC

Probabilistic Flows Circuits

Has added Expressivity Can model arbitrarily complex distributions at the leaves

Retains Tractability As it encodes the same factorizations of the PC

What transformations to use ?

Probabilistic Flows Circuits

Has added Expressivity Can model arbitrarily complex distributions at the leaves

Retains Tractability As it encodes the same factorizations of the PC

What transformations to use ?

Affine (Pevny et. Al) ?

Affine-transformed Gaussian leaf is still a
Gaussian!

Probabilistic Flows Circuits

Has added Expressivity Can model arbitrarily complex distributions at the leaves

Retains Tractability As it encodes the same factorizations of the PC

> What transformations to use ?

Affine (Pevny et. Al) ?

Affine-transformed Gaussian leaf is still a Gaussian!

What other properties do we need to consider when designing PFCs?

Probabilistic Flows Circuits

Has added Expressivity Can model arbitrarily complex distributions at the leaves

Retains Tractability As it encodes the same factorizations of the PC

What other properties do we need to consider when designing PFCs?

MAP requires the ability to compute the modes of leaf distributions

Probabilistic Flows Circuits

Designing expressive transformations using linear rational splines

Spline-based flows are among SOTA

Splines - piecewise functions
Divide the data space into K bins and fit a polynomial function f_{k} within each

Probabilistic Flows Circuits

Designing expressive transformations using linear rational splines

Probabilistic Flows Circuits

Designing expressive transformations using linear rational splines

Probabilistic Flows Circuits

Designing expressive transformations using linear rational splines

Probabilistic Flows Circuits

Designing expressive transformations using linear rational splines

Probabilistic Flows Circuits

Designing expressive transformations using linear rational splines

Probabilistic Flows Circuits

Designing expressive transformations using linear rational splines

Spline-based flows are among SOTA

Splines - piecewise functions

Linear Rational Splines (LRS)

Divide the data space into K bins and fit a polynomial function f_{k} within each
\square
Use monotone linear rational functions of the form $f(x)=\frac{a x+b}{c x+d}$

Probabilistic Flows Circuits

Designing expressive transformations using linear rational splines

Probabilistic Flows Circuits

Experimental Results

Has added expressivity and learning efficiency over a PC - Better models the data

Probabilistic Flows Circuits

Experimental Results

Has added expressivity and learning efficiency over a PC - Better models the data

Probabilistic Flows Circuits

Experimental Results

Retains Tractability - which can be exploited for downstream tasks

Image Inpainting

Can fill in missing data by
sampling from conditional distributions

References

[1.] Choi, Y., Antonio Vergari, and Guy Van den Broeck. "Probabilistic circuits: A unifying framework for tractable probabilistic models." 2020.
[2.] Pevný, Tomáš, et al. "Sum-product-transform networks: Exploiting symmetries using invertible transformations." PGM 2020.
[3.] Peharz, Robert, et al. "Einsum networks: Fast and scalable learning of tractable probabilistic circuits." ICML 2020.
[4.] Dolatabadi, Hadi Mohaghegh, Sarah Erfani, and Christopher Leckie. "Invertible generative modeling using linear rational splines." AISTATS 2020.
[5.] Papamakarios, George, et al. "Normalizing flows for probabilistic modeling and inference." JMLR 2021.

Thank You! Questions?

https://starling.utdallas.edu

[^0]: Characterizes the complexity of functions that can be represented.
 Expressivity A more expressive model can better approximate complex distributions in high-dimensional spaces

