

39th Conference on Uncertainty in Artificial Intelligence Pittsburgh, PA, USA 31st July – 4th August, 2023 **Uai2023**

Probabilistic Flow Circuits:

Towards Unified Deep Models for Tractable Probabilistic Inference

Sahil Sidheekh

Kristian Kersting

Sriraam Natarajan

Building Expressive and Tractable Generative Models

Expressivity

Building Expressive and Tractable Generative Models

Characterizes the complexity of functions that can be represented.

A more expressive model can better approximate complex distributions in high-dimensional spaces

Expressivity

Tractability

Building Expressive and Tractable Generative Models

Characterizes the complexity of functions that can be represented.

A more expressive model can better approximate complex distributions in high-dimensional spaces

Ability to answer probabilistic **inference** queries about the learned distribution in **polynomial** time.

Can **reason** probabilistically about the learned distribution.

Building Expressive and Tractable Generative Models

Can **reason** probabilistically about the learned distribution.

Hierarchical Mixtures of Simple Factorized Distributions

Computational graphs that recursively define distributions via 3 types of nodes

Hierarchical Mixtures of Simple Factorized Distributions

Hierarchical Mixtures of Simple Factorized Distributions

	Infer	rence Queries	
	Evidential Inference:	$p(X_1, X_2, X_3, X_4)$	
$ \begin{array}{c} X_1 \\ () $			
$\overline{X_2}$ X_2 X_2 X_2			
Λ_3 Λ_4 Λ_3 Λ_4			

Hierarchical Mixtures of Simple Factorized Distributions

Hierarchical Mixtures of Simple Factorized Distributions

Inference Qu	eries	
Evidential Inference:	$p(X_1, X_2, X_3, X_4)$	
Marginal Inference:	$p(X_1)$	
Conditional Inference:	$p(X_1 X_2, X_3, X_4)$	

Hierarchical Mixtures of Simple Factorized Distributions

Infer	ence Queries	
Evidential Inference:	$p(X_1, X_2, X_3, X_4)$	
Marginal Inference:	$p(X_1)$	
Conditional Inference:	$p(X_1 X_2, X_3, X_4)$	
MAP Inference:	$\operatorname{argmax}_{X_1} p(X_1 X_2, X_3, X_4)$	

Hierarchical Mixtures of Simple Factorized Distributions

Hierarchical Mixtures of Simple Factorized Distributions

Inference Queries		Structural Properties	
Evidential Inference	Smoothness	Children of sum nodes have same scope	
Marginal Inference			
Conditional Inference			
MAP Inference			

Hierarchical Mixtures of Simple Factorized Distributions

Inference Queries			Structural Properties	
Evidential Inference		Smoothness	Children of sum nodes have same scope	
Marginal Inference		Decomposability	Children of product nodes have disjoint scope	
Conditional Inference				
MAP Inference				

Hierarchical Mixtures of Simple Factorized Distributions

In	ference Queries			Structural Properties	
Evi	idential Inference		Smoothness	Children of sum nodes have same scope	
М	arginal Inference		Decomposability	Children of product nodes have disjoint scope	
Cor	nditional Inference		Determinism	Children of sum nodes have disjoint support	
	MAP Inference			•••	

Hierarchical Mixtures of Simple Factorized Distributions

Model data distributions using Invertible transformations and the change of variables formula

Model data distributions using Invertible transformations and the change of variables formula

Change of Variables: Z and X be random variables which are related by a mapping

 $f: \mathbb{R}^n o \mathbb{R}^n$ such that X = f(Z) and $Z = f^{-1}(X)$. Then

$$p_X(\mathrm{x}) = p_Z(f^{-1}(\mathrm{x})) \left| \det \left(rac{\partial f^{-1}(\mathrm{x})}{\partial \mathrm{x}}
ight)
ight|$$

Model data distributions using Invertible transformations and the change of variables formula

Change of Variables: Z and X be random variables which are related by a mapping

 $f: \mathbb{R}^n \to \mathbb{R}^n$ such that X = f(Z) and $Z = f^{-1}(X)$. Then

$$p_X(\mathrm{x}) = p_Z(f^{-1}(\mathrm{x})) \left| \det \left(rac{\partial f^{-1}(\mathrm{x})}{\partial \mathrm{x}}
ight)
ight|$$

Model data distributions using Invertible transformations and the change of variables formula

Change of Variables: Z and X be random variables which are related by a mapping

 $f: \mathbb{R}^n \to \mathbb{R}^n$ such that X = f(Z) and $Z = f^{-1}(X)$. Then

$$p_X(\mathrm{x}) = p_Z(f^{-1}(\mathrm{x})) \left| \det \left(rac{\partial f^{-1}(\mathrm{x})}{\partial \mathrm{x}}
ight)
ight|$$

Parameterize efficient invertible transformations using neural networks

Supports exact density evaluation

More expressive than Probabilistic Circuits

Use the change of variables within PCs

Sum-Product Transform Network (Pevny et. Al 2020)

Use the change of variables within PCs

Use the change of variables within PCs

Use the change of variables within PCs

Understanding the Pathologies of Sum-Product Transform Networks

Placing transform nodes arbitrarily in a PC can violate its decomposability property Inference becomes Intractable for Marginal, Conditional, and MAP

Understanding the Pathologies of Sum-Product Transform Networks

Placing transform nodes arbitrarily in a PC can violate its decomposability property Inference becomes Intractable for Marginal, Conditional, and MAP

Understanding the Pathologies of Sum-Product Transform Networks

Placing transform nodes arbitrarily in a PC can violate its decomposability property Inference becomes Intractable for Marginal, Conditional, and MAP

Understanding the Pathologies of Sum-Product Transform Networks

Placing transform nodes arbitrarily in a PC can violate its decomposability property Inference becomes Intractable for Marginal, Conditional, and MAP

Understanding the Pathologies of Sum-Product Transform Networks

Placing transform nodes arbitrarily in a PC can violate its decomposability property Inference becomes Intractable for Marginal, Conditional, and MAP

Probabilistic Circuits Smoothness and Decomposability allowed **pushing down** integrals to enable tractability

Decomposable Product Node $\int p(x_1, x_2) dx_1 dx_2 = \int p_1(x_1) p_2(x_2) dx_1 dx_2$ $\int \mathbf{x}$ $p_1(x_1) \mathbf{x}$ $p_2(x_2)$

Understanding the Pathologies of Sum-Product Transform Networks

Placing transform nodes arbitrarily in a PC can violate its decomposability property Inference becomes Intractable for Marginal, Conditional, and MAP

Decomposable Product Node $\int p(x_1, x_2) dx_1 dx_2 = \int p_1(x_1) p_2(x_2) dx_1 dx_2$ $= (\int p_1(x_1) dx_1) . (\int p_2(x_2) dx_2)$ $\int p_1(x_1) \int p_2(x_2)$ $p_1(x_1) \quad p_2(x_2)$

Understanding the Pathologies of Sum-Product Transform Networks

Sum Product Transform Networks

Can you still push down integrals over transform nodes ?

Understanding the Pathologies of Sum-Product Transform Networks

Understanding the Pathologies of Sum-Product Transform Networks

Pathologies of Sum-Product Transform Networks

Integrals on Transform Nodes over Product Node

Pathologies of Sum-Product Transform Networks

Pathologies of Sum-Product Transform Networks

Transform nodes causes scopes of children of product nodes to overlap

Cannot push down integrals on transform nodes over products

Intractable for marginal, conditional and MAP

Defining Structural Properties for Transform Nodes

τ – Decomposability When defined over a product node, f needs to transform the variables involved in th scope of its children independently	au – Decomposability	When defined over a product node, <i>f</i> needs to transform the variables involved in the scope of its children independently
--	----------------------	--

Defining Structural Properties for Transform Nodes

 τ –Decomposability

When defined over a product node, *f* needs to transform the variables involved in the scope of its children **independently**

Not τ -Decomposable τ -Decomposable z = f(x) $z = [z_1, z_2] = [f_1(x_1), f_2(x_2)]$

Defining Structural Properties for Transform Nodes

Defining Structural Properties for Transform Nodes

Defining Structural Properties for Transform Nodes

au –Decomposability is a necessary condition for tractability

A sum-product-transform network is decomposable only if all of its transform nodes are τ –decomposable

Defining Structural Properties for Transform Nodes

au –Decomposability is a necessary condition for tractability

A sum-product-transform network is decomposable only if all of its transform nodes are τ –decomposable

Implications of τ –decomposability

Defining Structural Properties for Transform Nodes

au –Decomposability is a necessary condition for tractability

A sum-product-transform network is decomposable only if all of its transform nodes are τ –decomposable

Implications of τ –decomposability

Defining Structural Properties for Transform Nodes

au –Decomposability is a necessary condition for tractability

A sum-product-transform network is decomposable only if all of its transform nodes are τ –decomposable

Implications of τ –decomposability

Defining Structural Properties for Transform Nodes

au – Decomposability is a necessary condition for tractability

A sum-product-transform network is decomposable only if all of its transform nodes are τ –decomposable

Has added Expressivity Can model arbitrarily complex distributions at the leaves **Retains Tractability** As it encodes the same factorizations of the PC

Has added Expressivity Can model arbitrarily complex distributions at the leaves **Retains Tractability** As it encodes the same factorizations of the PC

What transformations to use ?

Has added Expressivity Can model arbitrarily complex distributions at the leaves **Retains Tractability** As it encodes the same factorizations of the PC

What transformations to use ?

Affine (Pevny et. Al) ?

Affine-transformed Gaussian leaf is still a Gaussian!

Has added Expressivity Can model arbitrarily complex distributions at the leaves **Retains Tractability** As it encodes the same factorizations of the PC

What transformations to use ?

Affine (Pevny et. Al) ?

Affine-transformed Gaussian leaf is still a Gaussian!

What other properties do we need to consider when designing PFCs?

Has added Expressivity Can model arbitrarily complex distributions at the leaves **Retains Tractability** As it encodes the same factorizations of the PC

What transformations to use ?

Affine (Pevny et. Al) ?

Affine-transformed Gaussian leaf is still a Gaussian!

What other properties do we need to consider when designing PFCs?

MAP requires the ability to compute the **modes** of leaf distributions

PC Unimodal Leaf Easy to compute mode **PFC** Multimodal Leaf Difficult to compute mode

	Spline-based flows are among SOTA	
Splines - piecewise functions	Divide the data space into K bins and fit a polynomial function f_k within each	

Experimental Results

Experimental Results

Experimental Results

Retains Tractability – which can be exploited for downstream tasks

Can perform **controlled** generation

References

[1.] Choi, Y., Antonio Vergari, and Guy Van den Broeck. "Probabilistic circuits: A unifying framework for tractable probabilistic models." 2020.

[2.] Pevný, Tomáš, et al. "Sum-product-transform networks: Exploiting symmetries using invertible transformations." PGM 2020.

[3.] Peharz, Robert, et al. "Einsum networks: Fast and scalable learning of tractable probabilistic circuits." ICML 2020.

[4.] Dolatabadi, Hadi Mohaghegh, Sarah Erfani, and Christopher Leckie. "Invertible generative modeling using linear rational splines." AISTATS 2020.

[5.] Papamakarios, George, et al. "Normalizing flows for probabilistic modeling and inference." JMLR 2021.

Thank You! Questions?

@starling_lab @Sriraam_utd

https://starling.utdallas.edu