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For good performance, we need to choose a 
choosing a good feature extractor / kernel

linear kernel polynomial kernel RBF kernel



Problem: can’t choose a good feature 
extractor/kernel for complex data like images
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In deep-kernel methods, we switch to 
working entirely with Gram matrices

𝑮! = 𝑭!𝑭!"/𝑁!

Gram matrices

batch of 
input vectors, 𝑿

DGP

𝑮# = 𝑭#𝑭#"/𝑁#

𝑮$ = 𝑿𝑿"/𝑁%

𝑃×𝑁!

𝑃×𝑁"

𝑃×𝑃
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𝑃×𝑃

𝑃×𝑃

𝑃 = number of datapoints
𝑁ℓ = width of layer ℓ

GPs from Duvenaud et al. (2014)

hiddens,
𝑭# ∼ 𝒩(𝟎,𝑲&(𝑿)))

hiddens,
𝑭! ∼ 𝒩(𝟎,𝑲&(𝑭#))

outputs, 
𝐲 ∼ 𝒩 𝟎,𝑲&(𝑭! + 𝜎!𝑰)

𝑃×𝑁#



Trick 1: most kernels of interest can be 
computed from the Gram matrix
• True for e.g. arccos kernels used in infinite NNs (Cho and Saul 2009)
• Also true for standard GP kernels that only depend on distance 

between datapoints 𝑖 and 𝑗, because we can recover distance from 
the Gram matrix, (Duvenaud et al. 2014)

• Overall:
𝑲! 𝑭ℓ = 𝑲 𝑮ℓ



Trick 2: Gram matrices are Wishart distributed

To get next Gram matrix, we first sample a bunch of features,
𝑭ℓ ∼ 𝒩 𝟎,𝑲 𝑮ℓ#$

And then compute the Gram matrix

𝑮ℓ =
1
𝑁ℓ
𝑭ℓ𝑭ℓ%

But this exactly matches the definition of the Wishart distribution!
𝑮ℓ ∼ 𝒲(𝑲 𝑮ℓ#$ /𝑁ℓ, 𝑁ℓ)

(see Wikipedia for pdf, moments etc.)
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𝑲(𝑮!) 𝑲(𝑮") 𝑲(𝑮#)𝑮" 𝑮#

Sampling the prior in the kernelized DGP

• Next Gram matrix is “centered” on the kernel,
𝐸 𝑮$ 𝑮& = 𝑲(𝑮&)

DKP

𝑮! ∼ 𝒲(𝑲(𝑮#)/𝑁!, 𝑁!)

𝑮# ∼ 𝒲 𝑲(𝑮$ /𝑁#, 𝑁#)

outputs, 
𝐲 ∼ 𝒩 𝟎,𝑲	(𝑮! + 𝜎!𝑰)

𝑮$ = 𝑿𝑿"/𝑁%



Developing practical methods + our results
We developed:
• Two processes: “deep Wishart process” and “deep inverse Wishart process” 
• VI with priors + approximate posteriors over Gram matrices, not features.
• a bunch of approximate posteriors (e.g.         ) 

[1] Aitchison, Yang and Ober. “Deep kernel processes”  ICML (2021)
[2] Ober and Aitchison “An approximate posterior for the deep Wishart process” NeurIPS (2021)
[3] Ober, Anson, Milsom and Aitchison “An improved approximate posterior for the deep Wishart process” UAI (2023)
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Why less(?) Bayesian deep kernel machines?

Less(?) Bayesian approach:
• simplifies implementation
• gives lower-variance updates that converge faster
• provides a cleaner link to NN / neuro-theory
• great preliminary results…



We get a deep kernel machine by taking an 
infinite-width limit of a DGP
• True posterior over features becomes multivariate Gaussian [1]

𝑃 𝑭%, … , 𝑭& 𝑿, 𝒀 =(
ℓ(%

&
)

)(%

*ℓ
𝒩(𝒇)

ℓ ; 0, 𝑮ℓ∗)

• We choose a family of approximate posteriors capturing the true posterior:

𝑄 𝑭%, … , 𝑭& =(
ℓ(%

&
)

)(%

*ℓ
𝒩 𝒇)

ℓ ; 0, 𝑮ℓ

• Gram matrices, 𝑮%, …𝑮&, are the same kind of thing as in deep kernel process!

𝑮ℓ =
1
𝑁ℓ
𝑭ℓ𝑭ℓ,

• But here, Gram matrices appear as parameters of approximate posterior
• So to find the Gram matrices, we optimize the ELBO!

[1] Yang, Robeyns, Milsom, Anson, Schoots, Aitchison “A theory of representation learning gives a deep generalisation of kernel methods” ICML (2023)



A DKM is an infinite-width limit of a DGP!
• A nonlinear function approximator
• With multiple layers
• Parameterised by Gram matrices, not features or weights
ELBO:

ℒ 𝑮%, … , 𝑮& = log P(Y|	𝑮&) −)
ℓ(%

&

𝜈ℓ𝐷-.(𝒩(0, 𝑮ℓ)	‖𝒩(0,𝑲(𝑮ℓ/%)))

• Optimizes intermediate layer Gram matrices,
• Encourages good performance
• Keeps approximate posterior covariance, 𝑮ℓ, similar to prior covariance, 𝑲(𝑮ℓ/%)

The objective only talks about 𝑃×𝑃 Gram matrices, 𝑮ℓ, and 
kernel matrices, 𝑲(𝑮ℓ#$). So it is a deep kernel method!

likelihood approx post prior



What is a deep kernel machine?
• A nonlinear function approximator
• With multiple layers
• Parameterised by Gram matrices, not features or weights
• Trained using the DKM objective:

ℒ 𝑮%, … , 𝑮& = log P(Y|	𝑮&) −)
ℓ(%

&

𝜈ℓ𝐷-.(𝒩(0, 𝑮ℓ)	‖𝒩(0,𝑲(𝑮ℓ/%)))

• Optimizes intermediate layer Gram matrices,
• Encourages good performance
• Keeps approximate posterior covariance, 𝑮ℓ, similar to prior covariance, 𝑲(𝑮ℓ/%)

likelihood approx post prior



Preliminary results for convolutional deep 
kernel machines

But how slow are DKMs?   Surprisingly fast!
• We develop a novel inducing-point scheme
• Same FLOPs as CNN (computations ultimately look v. similar)
• Slower than a CNN (about 30 hours for largest model), as we’re using float64 FLOPs
• Orders of magnitude faster than “full” kernel methods above.

Edward Milsom
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Deep kernel landscape + our priorities
Our priorities
• More architectures for DKMs 

(GNNs + transformers).
• Understanding Bayesian-ness of 

DKMs
• speed/scale-up:
• memory efficiency
• lower-precision

• user-friendly library (we can 
share preliminary work)

shallow deep

feature linear 
regression neural net

kernel kernel ridge 
regression

deep kernel 
methods

Huge future opportunities:

If you’re interested, get in touch:
laurence.aitchison@bristol.ac.uk

[1] Aitchison, Yang and Ober. “Deep kernel processes”  ICML (2021)
[2] Ober and Aitchison “An approximate posterior for the deep Wishart process” NeurIPS (2021)
[3] Ober, Anson, Milsom and Aitchison “An improved approximate posterior for the deep Wishart process” UAI (2023)
[4] Yang, Robeyns, Milsom, Anson, Schoots, Aitchison “A theory of representation learning gives a deep generalisation of kernel methods” ICML (2023)
[5] Milsom, Anson, Aitchison “Convolutional deep kernel machines” (in prep)
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𝑖 = 1 𝑖 = 2

Deep kernel processes should work better 
because they have fewer local optima

• Implies loads of symmetric local 
optima…
• …and local optima are bad if you 

have unimodal approximate 
posteriors.
• DKPs don’t have these symmetries, 

so far fewer local optima!


