

Is the Volume of a Credal Set a Good Measure for Epistemic Uncertainty?

Yusuf Sale^{1,3}

Michele Caprio²

Eyke Hüllermeier^{1,3}

yusuf.sale@ifi.lmu.de

caprio@seas.upenn.edu

eyke@lmu.de

¹LMU Munich, ²University of Pennsylvania, ³Munich Center for Machine Learning

Lack of Uncertainty-Awareness of ML Systems

(a) "typewriter keyboard" with certainty $\mathbf{83.14}~\mathbf{\%}$

(b) "stone wall" with certainty 87.63 %

Figure 1: Predictions by EfficientNet [Tan and Le, 2019] on test images from ImageNet.

- Aleatoric uncertainty (AU)
 - □ refers to the notion of randomness, that is, the variability in the outcome which is due to inherently random effects,
 - \square is a property of the data-generating process, and as such irreducible.
- **Epistemic** uncertainty (EU)
 - $\hfill\square$ refers to uncertainty caused by a lack of knowledge, i.e.,
 - \Box to the epistemic state of the agent (e.g., learning algorithm),
 - can in principle be reduced on the basis of additional information (e.g., training data).

Definition (Credal set)

Let $(\mathcal{Y}, \sigma(\mathcal{Y}))$ be a generic measurable space and denote by $\mathbb{P}(\mathcal{Y})$ the set of all probability measures on $(\mathcal{Y}, \sigma(\mathcal{Y}))$. A convex subset $\mathcal{P} \subseteq \mathbb{P}(\mathcal{Y})$ is called a credal set.

In the following \mathcal{Y} denotes a finite label space, i.e., $\mathcal{Y} = \{y_1, \ldots, y_d\}$, where $d \in \mathbb{N}_{\geq 2}$. Further, we call

$$\overline{P}(A)\coloneqq \sup_{P\in\mathcal{P}}P(A), \hspace{1em} ext{for all} \hspace{1em} A\in\sigma(\mathcal{Y})$$

upper probability (associated with a credal set \mathcal{P}), and

$$\underline{P}(A) := \inf_{P \in \mathcal{P}} P(A), \quad \text{for all} \quad A \in \sigma(\mathcal{Y})$$

lower probability, respectively.

In the binary case Vol(\mathcal{P}) satisfies a set of desirable axioms (see Abellán and Klir [2005], Jiroušek and Shenoy [2018], Hüllermeier et al. [2022]):

A1 Non-negativity and boundedness:

(i) $Vol(\mathcal{P}) \geq 0$, for all $\mathcal{P} \in Cr(\mathcal{Y})$;

(ii) there exists $u \in \mathbb{R}$ such that $Vol(\mathcal{P}) \leq u$, for all $\mathcal{P} \in Cr(\mathcal{Y})$.

- **A2** Continuity: $Vol(\cdot)$ is a continuous functional.
- A3 Monotonicity: for all $Q, P \in Cr(Y)$ such that $Q \subset P$, we have $Vol(Q) \leq Vol(P)$.

- A4 Probability consistency: Vol(\mathcal{P}) reduces to 0 as the distance between $\overline{\mathcal{P}}(A)$ and $\underline{\mathcal{P}}(A)$ goes to 0, for all $A \in \sigma(\mathcal{Y})$.
- A5 Sub-additivity: Suppose $\mathcal{Y} = \mathcal{Y}_1 \times \mathcal{Y}_2$, and let \mathcal{P} be a joint credal set on \mathcal{Y} such that \mathcal{P}' is the marginal credal set on \mathcal{Y}_1 and \mathcal{P}'' is the marginal credal set on \mathcal{Y}_2 , respectively. Then, we have $\operatorname{Vol}(\mathcal{P}) \leq \operatorname{Vol}(\mathcal{P}') + \operatorname{Vol}(\mathcal{P}'')$.
- A6 Additivity: If \mathcal{P}' and \mathcal{P}'' are independent^[1], A5 holds with equality.
- **A7** Invariance: $Vol(\cdot)$ is invariant to rotation and translation.

^[1]Suitable notion of independence for credal sets, see Couso et al. [1999].

For a generic compact set $K \in \mathbb{R}^d$ and a positive real r, the *r*-packing of K, denoted by $\operatorname{Pack}_r(K)$, is the collection of sets K' that satisfy the following properties

(i) $K' \subset K$,

- (ii) $\bigcup_{x \in K'} B_r^d(x) \subset K$, where $B_r^d(x)$ denotes the ball of radius r in space \mathbb{R}^d centered at x,
- (iii) the elements of $\{B_r^d(x)\}_{x \in K'}$ are pairwise disjoint,
- (iv) there does not exist $x' \in K$ such that (i)-(iii) are satisfied by $K' \cup \{x'\}$.

The packing number of K, denoted by $N_r^{\text{pack}}(K)$, is given by $\max_{K' \in \text{Pack}_r(K)} |K'|$.

Let $\mathcal{P} \subset \mathbb{P}(\mathcal{Y})$ be a compact credal set, and $\mathcal{Q} \subset \mathbb{P}(\mathcal{Y})$ such that:

- (a) $\mathcal{Q} \subsetneq \mathcal{P}$, so that $\mathcal{Q}' := \mathcal{P} \setminus \mathcal{Q} \neq \emptyset$,
- (b) $d_H(\mathcal{P},\mathcal{Q}) = \varepsilon$, for some $\varepsilon > 0$,
- (c) ε is such that we can find r > 0 for which $N_r^{\text{pack}}(\mathcal{P}) \ge N_{r-\varepsilon}^{\text{pack}}(\mathcal{Q}').$

Theorem

Let \mathcal{Y} be a finite Polish space so that $|\mathcal{Y}| = d$, and let $\sigma(\mathcal{Y}) = 2^{\mathcal{Y}}$. Pick any compact set $\mathcal{P} \subset \mathbb{P}(\mathcal{Y})$, and any set \mathcal{Q} that satisfies (a) - (c). The following holds

$$rac{Vol(\mathcal{P}) - Vol(\mathcal{Q}')}{Vol(\mathcal{P})} \geq 1 - \left(1 - rac{arepsilon}{r}
ight)^d$$
 .

Yusuf Sale, Is the Volume of a Credal Set a Good Measure for , Epistemic Uncertainty?

< ロ > < 回 > < 臣 > < 臣 > 10/13

We conclude with the following key takeaways:

- Representing uncertainty in terms of credal sets is appealing from a ML perspective,
- Volume of a credal set is a good measure of epistemic uncertainty in binary classification.
- Its effectiveness diminishes in the context of multi-class classification, despite being intuitively appealing.
- Feasibility and efficacy of geometric approaches to uncertainty quantification in ML?

Abellán, J. and Klir, G. J. [2005]. Additivity of uncertainty measures on credal sets, *International Journal of General Systems* **34**(6): 691–713. Publisher: Taylor & Francis.

- Couso, I., Moral, S. and Walley, P. [1999]. Examples of independence for imprecise probabilities, Proceedings of the First International Symposium on Imprecise Probabilities and Their Applications (ISIPTA 1999), pp. 121–130.
- Hora, S. C. [1996]. Aleatory and epistemic uncertainty in probability elicitation with an example from hazardous waste management, *Reliability Engineering & System Safety* **54**(2-3): 217–223.
- Hüllermeier, E., Destercke, S. and Shaker, M. H. [2022]. Quantification of credal uncertainty in machine learning: A critical analysis and empirical comparison, *Uncertainty in Artificial Intelligence*, PMLR, pp. 548–557.
- Jiroušek, R. and Shenoy, P. P. [2018]. A new definition of entropy of belief functions in the Dempster–Shafer theory, *International Journal of Approximate Reasoning* **92**: 49–65.