
KEEP-ALIVE CACHING FOR 
THE HAWKES PROCESS

- SUSHIRDEEP NARAYANA

- IAN A. KASH

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF ILLINOIS AT CHICAGO

1



What is Serverless Computing?

Cloud Abstraction

• Users pay for usage, do not pay for resources
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What is Serverless Computing?

Cloud Abstraction

• Users pay for usage, do not pay for resources

• Users do not worry about servers

    Provisioning, Reserving, and Configuring – all managed by cloud provider

• Serverless  -     Function as a Service  (FaaS)

• Users upload code of their functions to the cloud 

• Functions get executed when “triggered” or “invoked”  by events
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Performance in Serverless Computing
• Quicker function execution - code, environment, and libraries to be in memory

                                                                Warm Start      (Cache Hit)

• Slower Function execution - code, environment, and libraries not in memory

                                                                       Cold Start (Cache Miss)



Challenges in Serverless Computing
➢Challenge faced by cloud providers – cost effective policies
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Challenges in Serverless Computing
➢Challenge faced by cloud providers – cost effective policies

   

➢ Users are billed on application execution

                    -Providers seek high performance with low resource costs

➢Cost of a cold start

    

AWS Lambda
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Introduction to Keep-Alive Caches

• Keep-alive caches  

                                -  serverless computing

                                - cost associated with the time an item stays in the cache

•  Different compared to traditional caches – fixed cache size

                                                                

• Decision in traditional cache policies

      What object to evict from the cache when the cache is full ?
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Keep-Alive Caches

➢An object in keep-alive cache has a time policy associated to it

➢Cache size is not a concern as applications are in cloud computing
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Keep-Alive Caches

➢An object in keep-alive cache has a time policy associated to it

➢Cache size is not a concern as applications are in cloud computing

➢Decision - When is it worth to keep an object in the cache?    

    Answer :  Model as trade-off problem between  

    Expected time an object is kept in the cache

 vs 

      Probability of a cache miss
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Keep-Alive Cache Policy

➢Keep-alive cache policy governed by the following parameters

1) Pre-warming window, τ𝑝𝑤 = Time policy waits before it loads the application image

2) Keep-alive window, τ𝑘𝑎   = Time during which the application image is kept-alive either after

                                                  pre-warming or after function execution
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Keep-Alive Cache Policy

➢ Keep-alive cache policy  = Sequence of keep-alive windows (and pre-warming windows)

                                           during which application image moved in & out of cache

➢ Goal 

        Optimal Keep-Alive Cache Policy with theoretical guarantees for serverless computing?
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Single Window Policy

              
𝑐𝑜𝑠𝑡 𝑥𝑚, τ𝑝𝑤 , τ𝑘𝑎 , 𝐻 =  𝑐𝑐𝑠

𝑐𝑜𝑠𝑡 𝑥𝑚, τ𝑝𝑤, τ𝑘𝑎 , 𝐻 =  𝑐𝑝 ∙ 𝜏𝑘𝑎  +  𝑐𝑐𝑠
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Expected Cost of a Cache Policy

➢Since 𝑥𝑚 is not known to provider 

                                      – use distribution of x over past arrivals 𝐻

➢                             𝔼[𝑐𝑜𝑠𝑡(π ∙ 𝐻))] = 0׬ 

∞
π 𝑥 𝐻 ∙ 𝑔 𝑥 𝐻 𝑑𝑥 + 𝑐𝑐𝑠 

                                

                                      π ∙ 𝐻) =  ቊ
1,  𝑥 ∈ 𝐿0, 𝐿1 ∪ 𝐿2, 𝐿3 ∪ ⋯ ∪ [𝐿𝑘−2, 𝐿𝑘−1]
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝑔 𝑥 𝐻) =  𝑐𝑝 1 − 𝐹 𝑥 𝐻 − 𝑐𝑐𝑠 ∙ 𝑓(𝑥|𝐻) 

           𝑔(𝑥|𝐻) = Instantaneous cost when the keep-alive window is active after 𝑥
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Optimal Cache Policy

➢  Hazard rate          λ 𝑥 𝐻) =
𝑓(𝑥|𝐻)

1−𝐹(𝑥|𝐻)

                           - Conditional probability that the arrival process dies in the next instant,  

                              given that it has survived up to x

➢ Theorem

      Points of sequence of keep-alive windows over an inter-arrival for optimal policy are  at 0, ∞  
or solutions to equation 𝑐𝑝  −  (𝑐𝑐𝑠 ∙ 𝜆(𝑥|𝐻)) = 0 where the sign changes

        Takeaway :

                  Hazard rate 𝜆(𝑥|𝐻) determines the characterization of  optimal policy
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Optimal Policy for Poisson Process
❑Application invocations arrivals – Poisson process

   Probability density function  𝑓 𝑡 =  λ ∙ 𝑒−λ𝑡 ,  𝑡 ≥ 0

❑Optimal Cache Policy – Two possibilities

1) Keep-alive window – always active                      𝜏𝑘𝑎 =  ∞,  if 
𝑐𝑝

𝑐𝑐𝑠
 ≤  λ 

         Expected cost  =
𝑐𝑝

λ

2) Always encounter a cold start                                𝜏𝑘𝑎 = 0,  if 
𝑐𝑝

𝑐𝑐𝑠
>  λ 

        Expected cost  = 𝑐𝑐𝑠
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➢ Optimal cache policy has one of three forms with 𝜏𝑝𝑤 = 0, and 𝜏𝑘𝑎 as follows: 
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Optimal Policy for Hawkes Process

➢ Optimal cache policy has one of three forms with 𝜏𝑝𝑤 = 0, and 𝜏𝑘𝑎 as follows: 

    1) 𝜏𝑘𝑎 = ∞,    when ∀𝑥,  
𝑐𝑝

𝑐𝑐𝑠
<  λ 𝑥 𝐻) 

    2) 𝜏𝑘𝑎 = 0,    when
𝑐𝑝

𝑐𝑐𝑠
>  λ 𝑥 = 0 𝐻) 

    3) 𝜏𝑘𝑎=
1

𝛽
 ∙ log 𝛼 + log σ𝑗=1

𝑚−1 𝑒𝛽 𝑡𝑗 − 𝑡𝑚−1 − log
𝑐𝑝

𝑐𝑐𝑠
 −  λ0 , otherwise 



Fixed Keep-Alive Policy
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Fixed Keep-Alive Policy

➢ Disadvantage of Optimal keep-alive policy

            - Need to recompute the policy after every arrival

➢ Simple, history independent policy

➢    Fixed policy is a  2-factor approximation with respect to  the optimal keep-alive policy

              where 𝜏𝑓𝑖𝑥𝑒𝑑 = 𝑐𝑐𝑠
𝑐𝑝

 

             This result follows from classic Ski-rental problem 
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Optimized Time-to-Live (TTL) Policy
➢Computation

  1)

  2)

 3) Optimal TTL window 

      =Empirical average of 

         optimal windows  
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      on  all applications (applied fixed policy on remaining non-fitted apps)
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CONCLUSION

➢Presented a model for keep-alive cache policies 

      - captures trade-off  between :-  cost of keeping objects in cache vs cost of  cache misses 

      - applications in serverless computing

➢ Characterized optimal cache policies, and optimized TTL policies for the Hawkes process

➢Evaluation on Azure data trace 

   - our approach yields small, yet economically meaningful improvements at scale of datacenter



THANK YOU



EXTRA BACKUP SLIDES



Azure Data Experiments
➢ Experimented on Azure Data set 

Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry, Paul Batum, Jason Cooke, Eduardo Laureano, 
Colby Tresness, Mark Russinovich, and Ricardo Bianchini. 2020. Serverless in the wild: characterizing and optimizing the 
serverless workload at a large cloud provider. In Proceedings of the 2020 USENIX Conference on Usenix Annual 
Technical Conference (USENIX ATC'20). USENIX Association, USA, Article 14, 205–218.

➢ Available at : https://github.com/Azure/AzurePublicDataset

➢ Traces collect invocation counts binned in 1-min intervals for   applications

➢ Evaluation metrics

     Wasted memory – Total wasted memory time normalized w.r.t. 10 min fixed policy

      Cold start- Average number of cold starts per application

https://github.com/Azure/AzurePublicDataset


Azure Data Experiments

▪ Fixed Keep-alive policy applied for  5, 10 , 20, 30, 45, 60, 90, and 120 minutes

▪ Optimal Policy applied with 𝑐𝑝 = 1, 𝑐𝑐𝑠 = 5, 10, 20, 30, 45, 60, 90, 120 units

▪ Hawkes process parameters 

        -  Estimated via Minimum Negative Log-Likelihood

▪ Hawkes process parameters fitness checked 

        -via Random time change theorem and KS test similarity measure

        - around 25% of applications pass the similarity test measure
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