
KEEP-ALIVE CACHING FOR
THE HAWKES PROCESS

- SUSHIRDEEP NARAYANA

- IAN A. KASH

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF ILLINOIS AT CHICAGO

1

What is Serverless Computing?

Cloud Abstraction

• Users pay for usage, do not pay for resources

• Users do not worry about servers

 Provisioning, Reserving, and Configuring – all managed by cloud provider

What is Serverless Computing?

Cloud Abstraction

• Users pay for usage, do not pay for resources

• Users do not worry about servers

 Provisioning, Reserving, and Configuring – all managed by cloud provider

• Serverless - Function as a Service (FaaS)

• Users upload code of their functions to the cloud

• Functions get executed when “triggered” or “invoked” by events

Serverless Computing

• Examples

Serverless Computing

• Examples

Performance in Serverless Computing

Performance in Serverless Computing
• Quicker function execution - code, environment, and libraries to be in memory

 Warm Start (Cache Hit)

Performance in Serverless Computing
• Quicker function execution - code, environment, and libraries to be in memory

 Warm Start (Cache Hit)

• Slower Function execution - code, environment, and libraries not in memory

 Cold Start (Cache Miss)

Challenges in Serverless Computing
➢Challenge faced by cloud providers – cost effective policies

➢ Users are billed on application execution

 -Providers seek high performance with low resource costs

Challenges in Serverless Computing
➢Challenge faced by cloud providers – cost effective policies

➢ Users are billed on application execution

 -Providers seek high performance with low resource costs

➢Cost of a cold start

AWS Lambda

Introduction to Keep-Alive Caches

• Keep-alive caches

 - serverless computing

 - cost associated with the time an item stays in the cache

11

Introduction to Keep-Alive Caches

• Keep-alive caches

 - serverless computing

 - cost associated with the time an item stays in the cache

• Different compared to traditional caches – fixed cache size

• Decision in traditional cache policies

 What object to evict from the cache when the cache is full ?

12

Keep-Alive Caches

➢An object in keep-alive cache has a time policy associated to it

➢Cache size is not a concern as applications are in cloud computing

13

Keep-Alive Caches

➢An object in keep-alive cache has a time policy associated to it

➢Cache size is not a concern as applications are in cloud computing

➢Decision - When is it worth to keep an object in the cache?

 Answer : Model as trade-off problem between

 Expected time an object is kept in the cache

 vs

 Probability of a cache miss

14

Keep-Alive Cache Policy

➢Keep-alive cache policy governed by the following parameters

Keep-Alive Cache Policy

➢Keep-alive cache policy governed by the following parameters

1) Pre-warming window, τ𝑝𝑤 = Time policy waits before it loads the application image

Keep-Alive Cache Policy

➢Keep-alive cache policy governed by the following parameters

1) Pre-warming window, τ𝑝𝑤 = Time policy waits before it loads the application image

2) Keep-alive window, τ𝑘𝑎 = Time during which the application image is kept-alive either after

 pre-warming or after function execution

Keep-Alive Cache Policy

➢ Keep-alive cache policy = Sequence of keep-alive windows (and pre-warming windows)

 during which application image moved in & out of cache

Keep-Alive Cache Policy

➢ Keep-alive cache policy = Sequence of keep-alive windows (and pre-warming windows)

 during which application image moved in & out of cache

Keep-Alive Cache Policy

➢ Keep-alive cache policy = Sequence of keep-alive windows (and pre-warming windows)

 during which application image moved in & out of cache

➢ Goal

 Optimal Keep-Alive Cache Policy with theoretical guarantees for serverless computing?

Single Window Policy

Single Window Policy

𝑐𝑜𝑠𝑡 𝑥𝑚, τ𝑝𝑤 , τ𝑘𝑎 , 𝐻 = 𝑐𝑝 ∙ (𝑥𝑚−𝜏𝑝𝑤)

Single Window Policy

Single Window Policy

𝑐𝑜𝑠𝑡 𝑥𝑚, τ𝑝𝑤 , τ𝑘𝑎 , 𝐻 = 𝑐𝑐𝑠

𝑐𝑜𝑠𝑡 𝑥𝑚, τ𝑝𝑤, τ𝑘𝑎 , 𝐻 = 𝑐𝑝 ∙ 𝜏𝑘𝑎 + 𝑐𝑐𝑠

Expected Cost of a Cache Policy

➢Since 𝑥𝑚 is not known to provider

 – use distribution of x over past arrivals 𝐻

Expected Cost of a Cache Policy

➢Since 𝑥𝑚 is not known to provider

 – use distribution of x over past arrivals 𝐻

➢ 𝔼[𝑐𝑜𝑠𝑡(π ∙ 𝐻))] = 0

∞
π 𝑥 𝐻 ∙ 𝑔 𝑥 𝐻 𝑑𝑥 + 𝑐𝑐𝑠

 π ∙ 𝐻) = ቊ
1, 𝑥 ∈ 𝐿0, 𝐿1 ∪ 𝐿2, 𝐿3 ∪ ⋯ ∪ [𝐿𝑘−2, 𝐿𝑘−1]
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑔 𝑥 𝐻) = 𝑐𝑝 1 − 𝐹 𝑥 𝐻 − 𝑐𝑐𝑠 ∙ 𝑓(𝑥|𝐻)

 𝑔(𝑥|𝐻) = Instantaneous cost when the keep-alive window is active after 𝑥

Optimal Cache Policy

➢ Hazard rate λ 𝑥 𝐻) =
𝑓(𝑥|𝐻)

1−𝐹(𝑥|𝐻)

 - Conditional probability that the arrival process dies in the next instant,

 given that it has survived up to x

Optimal Cache Policy

➢ Hazard rate λ 𝑥 𝐻) =
𝑓(𝑥|𝐻)

1−𝐹(𝑥|𝐻)

 - Conditional probability that the arrival process dies in the next instant,

 given that it has survived up to x

➢ Theorem

 Points of sequence of keep-alive windows over an inter-arrival for optimal policy are at 0, ∞
or solutions to equation 𝑐𝑝 − (𝑐𝑐𝑠 ∙ 𝜆(𝑥|𝐻)) = 0 where the sign changes

Optimal Cache Policy

➢ Hazard rate λ 𝑥 𝐻) =
𝑓(𝑥|𝐻)

1−𝐹(𝑥|𝐻)

 - Conditional probability that the arrival process dies in the next instant,

 given that it has survived up to x

➢ Theorem

 Points of sequence of keep-alive windows over an inter-arrival for optimal policy are at 0, ∞
or solutions to equation 𝑐𝑝 − (𝑐𝑐𝑠 ∙ 𝜆(𝑥|𝐻)) = 0 where the sign changes

 Takeaway :

 Hazard rate 𝜆(𝑥|𝐻) determines the characterization of optimal policy

Optimal Policy for Poisson Process
❑Application invocations arrivals – Poisson process

 Probability density function 𝑓 𝑡 = λ ∙ 𝑒−λ𝑡 , 𝑡 ≥ 0

Optimal Policy for Poisson Process
❑Application invocations arrivals – Poisson process

 Probability density function 𝑓 𝑡 = λ ∙ 𝑒−λ𝑡 , 𝑡 ≥ 0

❑Optimal Cache Policy – Two possibilities

Optimal Policy for Poisson Process
❑Application invocations arrivals – Poisson process

 Probability density function 𝑓 𝑡 = λ ∙ 𝑒−λ𝑡 , 𝑡 ≥ 0

❑Optimal Cache Policy – Two possibilities

1) Keep-alive window – always active 𝜏𝑘𝑎 = ∞, if
𝑐𝑝

𝑐𝑐𝑠
 ≤ λ

 Expected cost =
𝑐𝑝

λ

2) Always encounter a cold start 𝜏𝑘𝑎 = 0, if
𝑐𝑝

𝑐𝑐𝑠
> λ

 Expected cost = 𝑐𝑐𝑠

Hawkes Process
❑ Hawkes Process

 - “self-exciting” each arrival increases rate of future arrivals

Hawkes Process
❑ Hawkes Process

 - “self-exciting” each arrival increases rate of future arrivals

❑ Hawkes process with exponential excitation

λ 𝑥 𝐻 =
𝑓(𝑥|𝐻)

1 − 𝐹(𝑥|𝐻)
 = λ0 +

𝑥>𝑡𝑖

𝛼 ∙ 𝑒−𝛽(𝑥 − 𝑡𝑖)

Hawkes Process
❑ Hawkes Process

 - “self-exciting” each arrival increases rate of future arrivals

❑ Hawkes process with exponential excitation

λ 𝑥 𝐻 =
𝑓(𝑥|𝐻)

1 − 𝐹(𝑥|𝐻)
 = λ0 +

𝑥>𝑡𝑖

𝛼 ∙ 𝑒−𝛽(𝑥 − 𝑡𝑖)

Optimal Policy for Hawkes Process

➢ Optimal cache policy has one of three forms with 𝜏𝑝𝑤 = 0, and 𝜏𝑘𝑎 as follows:

Optimal Policy for Hawkes Process

➢ Optimal cache policy has one of three forms with 𝜏𝑝𝑤 = 0, and 𝜏𝑘𝑎 as follows:

 1) 𝜏𝑘𝑎 = ∞, when ∀𝑥,
𝑐𝑝

𝑐𝑐𝑠
< λ 𝑥 𝐻)

Optimal Policy for Hawkes Process

➢ Optimal cache policy has one of three forms with 𝜏𝑝𝑤 = 0, and 𝜏𝑘𝑎 as follows:

 1) 𝜏𝑘𝑎 = ∞, when ∀𝑥,
𝑐𝑝

𝑐𝑐𝑠
< λ 𝑥 𝐻)

 2) 𝜏𝑘𝑎 = 0, when
𝑐𝑝

𝑐𝑐𝑠
> λ 𝑥 = 0 𝐻)

Optimal Policy for Hawkes Process

➢ Optimal cache policy has one of three forms with 𝜏𝑝𝑤 = 0, and 𝜏𝑘𝑎 as follows:

 1) 𝜏𝑘𝑎 = ∞, when ∀𝑥,
𝑐𝑝

𝑐𝑐𝑠
< λ 𝑥 𝐻)

 2) 𝜏𝑘𝑎 = 0, when
𝑐𝑝

𝑐𝑐𝑠
> λ 𝑥 = 0 𝐻)

 3) 𝜏𝑘𝑎=
1

𝛽
 ∙ log 𝛼 + log σ𝑗=1

𝑚−1 𝑒𝛽 𝑡𝑗 − 𝑡𝑚−1 − log
𝑐𝑝

𝑐𝑐𝑠
 − λ0 , otherwise

Fixed Keep-Alive Policy

➢ Disadvantage of Optimal keep-alive policy

 - Need to recompute the policy after every arrival

➢ Simple, history independent policy

Fixed Keep-Alive Policy

➢ Disadvantage of Optimal keep-alive policy

 - Need to recompute the policy after every arrival

➢ Simple, history independent policy

➢ Fixed policy is a 2-factor approximation with respect to the optimal keep-alive policy

 where 𝜏𝑓𝑖𝑥𝑒𝑑 = 𝑐𝑐𝑠
𝑐𝑝

 This result follows from classic Ski-rental problem

Optimized Time-to-Live (TTL) Policy

Optimized Time-to-Live (TTL) Policy

➢Computation

 1)

Optimized Time-to-Live (TTL) Policy

➢Computation

 1)

 2)

Optimized Time-to-Live (TTL) Policy
➢Computation

 1)

 2)

 3) Optimal TTL window

 =Empirical average of

 optimal windows

Azure Data Experiments
➢ Test Performance of Optimal and Optimized TTL policy

 for only Hawkes process fitted applications

Azure Data Experiments
➢ Test Performance of Optimal and Optimized TTL policy

 for only Hawkes process fitted applications

Azure Data Experiments
➢ Test Performance of Optimal and Optimized TTL policy

 for only Hawkes process fitted applications

Azure Data Experiments
➢ Test Performance of Optimal and Optimized TTL policy

 for only Hawkes process fitted applications

Azure Data Experiments
➢ Test Performance of Optimal and Optimized TTL policy

 for only Hawkes process fitted applications

Azure Data Experiments
➢ Test Performance of Optimal and Optimized TTL policy

 for only Hawkes process fitted applications

Azure Data Experiments
➢ Test Performance of Optimal and Optimized TTL policy

 on all applications (applied fixed policy on remaining non-fitted apps)

Azure Data Experiments
➢ Test Performance of Optimal and Optimized TTL policy

 on all applications (applied fixed policy on remaining non-fitted apps)

CONCLUSION

➢Presented a model for keep-alive cache policies

 - captures trade-off between :- cost of keeping objects in cache vs cost of cache misses

 - applications in serverless computing

CONCLUSION

➢Presented a model for keep-alive cache policies

 - captures trade-off between :- cost of keeping objects in cache vs cost of cache misses

 - applications in serverless computing

➢ Characterized optimal cache policies, and optimized TTL policies for the Hawkes process

CONCLUSION

➢Presented a model for keep-alive cache policies

 - captures trade-off between :- cost of keeping objects in cache vs cost of cache misses

 - applications in serverless computing

➢ Characterized optimal cache policies, and optimized TTL policies for the Hawkes process

➢Evaluation on Azure data trace

 - our approach yields small, yet economically meaningful improvements at scale of datacenter

THANK YOU

EXTRA BACKUP SLIDES

Azure Data Experiments
➢ Experimented on Azure Data set

Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry, Paul Batum, Jason Cooke, Eduardo Laureano,
Colby Tresness, Mark Russinovich, and Ricardo Bianchini. 2020. Serverless in the wild: characterizing and optimizing the
serverless workload at a large cloud provider. In Proceedings of the 2020 USENIX Conference on Usenix Annual
Technical Conference (USENIX ATC'20). USENIX Association, USA, Article 14, 205–218.

➢ Available at : https://github.com/Azure/AzurePublicDataset

➢ Traces collect invocation counts binned in 1-min intervals for applications

➢ Evaluation metrics

 Wasted memory – Total wasted memory time normalized w.r.t. 10 min fixed policy

 Cold start- Average number of cold starts per application

https://github.com/Azure/AzurePublicDataset

Azure Data Experiments

▪ Fixed Keep-alive policy applied for 5, 10 , 20, 30, 45, 60, 90, and 120 minutes

▪ Optimal Policy applied with 𝑐𝑝 = 1, 𝑐𝑐𝑠 = 5, 10, 20, 30, 45, 60, 90, 120 units

▪ Hawkes process parameters

 - Estimated via Minimum Negative Log-Likelihood

▪ Hawkes process parameters fitness checked

 -via Random time change theorem and KS test similarity measure

 - around 25% of applications pass the similarity test measure

	Slide 1: KEEP-ALIVE CACHING FOR THE HAWKES PROCESS
	Slide 2: What is Serverless Computing?
	Slide 3: What is Serverless Computing?
	Slide 4: Serverless Computing
	Slide 5: Serverless Computing
	Slide 6: Performance in Serverless Computing
	Slide 7: Performance in Serverless Computing
	Slide 8: Performance in Serverless Computing
	Slide 9: Challenges in Serverless Computing
	Slide 10: Challenges in Serverless Computing
	Slide 11: Introduction to Keep-Alive Caches
	Slide 12: Introduction to Keep-Alive Caches
	Slide 13: Keep-Alive Caches
	Slide 14: Keep-Alive Caches
	Slide 15: Keep-Alive Cache Policy
	Slide 16: Keep-Alive Cache Policy
	Slide 17: Keep-Alive Cache Policy
	Slide 18: Keep-Alive Cache Policy
	Slide 19: Keep-Alive Cache Policy
	Slide 20: Keep-Alive Cache Policy
	Slide 21: Single Window Policy
	Slide 22: Single Window Policy
	Slide 23: Single Window Policy
	Slide 24: Single Window Policy
	Slide 25: Expected Cost of a Cache Policy
	Slide 26: Expected Cost of a Cache Policy
	Slide 27: Optimal Cache Policy
	Slide 28: Optimal Cache Policy
	Slide 29: Optimal Cache Policy
	Slide 30: Optimal Policy for Poisson Process
	Slide 31: Optimal Policy for Poisson Process
	Slide 32: Optimal Policy for Poisson Process
	Slide 33: Hawkes Process
	Slide 34: Hawkes Process
	Slide 35: Hawkes Process
	Slide 36: Optimal Policy for Hawkes Process
	Slide 37: Optimal Policy for Hawkes Process
	Slide 38: Optimal Policy for Hawkes Process
	Slide 39: Optimal Policy for Hawkes Process
	Slide 40: Fixed Keep-Alive Policy
	Slide 41: Fixed Keep-Alive Policy
	Slide 42: Optimized Time-to-Live (TTL) Policy
	Slide 43: Optimized Time-to-Live (TTL) Policy
	Slide 44: Optimized Time-to-Live (TTL) Policy
	Slide 45: Optimized Time-to-Live (TTL) Policy
	Slide 46: Azure Data Experiments
	Slide 47: Azure Data Experiments
	Slide 48: Azure Data Experiments
	Slide 49: Azure Data Experiments
	Slide 50: Azure Data Experiments
	Slide 51: Azure Data Experiments
	Slide 52: Azure Data Experiments
	Slide 53: Azure Data Experiments
	Slide 54: CONCLUSION
	Slide 55: CONCLUSION
	Slide 56: CONCLUSION
	Slide 57: THANK YOU
	Slide 58: EXTRA BACKUP SLIDES
	Slide 59: Azure Data Experiments
	Slide 60: Azure Data Experiments

