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Confounders?



• Typical predictions are descriptive. 

• Causal inferences are prescriptive. 

• We aim to predict the outcome of an intervention.  

• If a study produces actionable insights, then it is claiming 
to make a causal inference, whether explicitly or not. 

• If we know there might be confounders (endogeneity), then 
point identification of causal outcomes is impossible. 

• Partial identification is our best bet: produce a set of 
outcomes admitted by the causal setting. 

Why Partial Identification […] with Hidden Confounders
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Why Dose Responses
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• “Amount” of treatment is important in many problems. 

• Derivative of the curve gives incremental effects.



Related: Simpson’s Paradox
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Our Proposed Method



Potential Outcomes Setup
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• Say we have an outcome prediction model. Assume we learned it perfectly. 

• This predicts the potential outcome at t. 

• “Potential outcomes” are the different treatment outcomes after controlling for 
everything else that is relevant in the problem, i.e. confounders. 

• The dose response is                             as a function of t.

treatment

covariatesoutcome



The Ignorability Assumption
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• No hidden confounding!

potential outcomes

treatment assignment

covariates



Hidden Confounding
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• If the ignorability assumption held, then 
assigned treatment wouldn’t affect the 
potential outcome, conditioned on 
observed confounders. 

• In that case,  

• However, a hidden confounder could 
ruin this via a backdoor path. 

• The graph to the right gives one such 
example with the red arrows.



Continuous Treatments
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the potential outcome

propensity



Continuous Treatments
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the potential outcome

the counterfactual

“what is this person’s potential outcome at t given that their assigned treatment is tau”

propensity



The Problem with

Continuous Treatments

12



13

• Infinite unobservable 
counterfactuals! 

• The integrand cannot 
be identified almost 
anywhere.

The Problem with

Continuous Treatments
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• Infinite unobservable 
counterfactuals! 

• The integrand cannot 
be identified almost 
anywhere. 

• We need an 
approximation.

The Problem with

Continuous Treatments



We Know Nothing!
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• First step to the solution is extrapolating from the point that we can observe.

the counterfactual the prediction

extrapolations



Now We Know Something
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• Second step is to specify where that extrapolation can be trusted, and how much.

(from before)



Now We Know Something

17

• Second step is to specify where that extrapolation can be trusted, and how much.

(from before)

(use weights and split)



Solution Outline

18

• We find that 

• We’ll figure out what to do with the “trust weights” later. 

• We still have two unknowns: the approximation, and the denominator. 



Finally Introducing the Sensitivity Model, δMSM
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• For binary treatments, the classical MSM bounds the Radon-Nikodym derivative of 
the two counterfactuals, i.e. the ratio of their densities.



Finally Introducing the Sensitivity Model, δMSM
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• For binary treatments, the classical MSM bounds the Radon-Nikodym derivative of 
the two counterfactuals, i.e. the ratio of their densities. 

• We follow a similar route but take it to the infinitesimal limit:

ratio of nearby

counterfactuals



Finally Introducing the Sensitivity Model, δMSM
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• For binary treatments, the classical MSM bounds the Radon-Nikodym derivative of 
the two counterfactuals, i.e. the ratio of their densities. 

• We follow a similar route but take it to the infinitesimal limit:

by Bayes’ rule.

nominal propensities complete propensities



Definition of the δMSM
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Definition of the δMSM
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ratio of complete and

nominal propensities

“how much is this person’s treatment assignment informed by a potential outcome (through backdoor paths)”



Necessary Assumptions for Hidden Confounding
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• First Assumption: δMSM holds with some Γ. 

• Second Assumption: we need an “anchor point,” designated as zero treatment.



Necessary Assumptions for Hidden Confounding
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• First Assumption: δMSM holds with some Γ. 

• Second Assumption: we need an “anchor point,” designated as zero treatment. 

• This is necessary to solve the integrals. 

• What does the second assumption mean for our partial identification? 

• Informally, hidden confounders “matter less” at near-zero treatment values.



Combining the Ingredients
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approx. potential outcome outcome prediction

partial identification factor



• Admissible probability densities are governed by 
 
 
 
 
which can be solved in closed form!    Note:

Combining the Ingredients
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approx. potential outcome outcome prediction

partial identification factor



Settling the Trust Weights
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• Accuracy of the extrapolation depends on the continuity of the counterfactual 
density with respect to treatment assignment. 

• Narrower treatment propensity densities                  suggest worse extrapolations. 

• Therefore, we parametrize the weights                  to have the same narrowness  
 
(and form) as the nominal propensities, but always centered at t of course. 

• We found solutions for various exponential families.



One Last Thing: Relaxing the Second Assumption
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• For Beta-distributed treatments, we symmetrify the anchor point assumption. 

• New interpretation: the more distant the potential outcome, the less informative it is 
about treatment assignment.



Relaxed Anchor Points, Illustrated
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• Are you the kind of person that drinks a lot of wine? ( ) 

‣ Depends on your health outcome from drinking a lot of wine.  

‣ Depends on your health outcome from drinking no wine.  

• Are you the kind of person that drinks no wine? ( ) 

‣ Depends on your health outcome from drinking a lot of wine.  

‣ Depends on your health outcome from drinking no wine. 

τ = 1

(y1)

(y0)

τ = 0

(y1)

(y0)



• Partial-identification costs of 90% coverage of the average dose responses. 

• Semi-synthetic confounders are random projections of original data. 

• Random quadratic forms describe the potential outcome. 

• 500 experiments per dataset and method.

Benchmark Results
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Conclusion — So What
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• We described the first sensitivity model for continuous treatments that 

• changes with the propensity (& in a sensical way) 

• always admits valid potential outcome densities. 

• Extensive semi-synthetic benchmarks show consistently superior performance to 
baseline sensitivity models.
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