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Motivation

Many ML models are overconfident — often assign high probabilities to (wrong) pre-
dictions, even for unseen categories.
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[Amodei et al., arXiv 2016; Guo et al., ICML 2017; Boult et al., AAAI 2019; Hendrycks et al., ICLR 2019]
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Motivation

e The issue impacts even major deep models like VAEs and normalizing flows.
[Nalisnick et al., ICLR 2019]
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e Probabilistic circuits (PCs) are assumed to overcome this — casted as
well-calibrated models.
[Peharz et al., UAI 2020; Peharz et al., ICML 2020; Choi et al., UCLA 2020]
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Our Contributions (1/2)

Show that PCs suffer from overconfidence and struggle to distinguish
in-distribution from out-of-distribution data in discriminative setting.
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Our Contributions (2/2)

e Introduce Tractable Dropout Inference (TDI) — provides tractable model
uncertainty estimation.

¢ Derive a sampling-free analytical solution for Monte Carlo dropout (MCD), a
Bayesian method for model uncertainty in neural networks (NNs).

¢ Demonstrate TDI’s robustness against distribution shifts and
out-of-distribution data in three key scenarios.
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Probabilistic Circuits

We focus on sum-product networks (SPNs), a prominent type of PCs.

SPNs are known for inference capabilities and representational power.

Like NNs, SPNs are deep graphs but they explicitly encode a normalized
probability distribution.

SPNs can generate new samples and calculate various exact, tractable
probabilistic queries, even with partial evidence.
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Probabilistic Circuits

Clear probabilistic semantics!

@ P=TI,N;
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Probabilistic Circuits
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Remark

¢ Probabilistic modeling targets uncertainties, but it's crucial to quantify model
uncertainty or epistemic uncertainty.

¢ Quantification can tell us how confident the model is in its predictions,
including class label distribution p(Y| X = ).

e Overconfident models can assign near 1 probabilities to out-of-distribution
instances or unseen labels.

¢ Model uncertainty helps us know when the model “does not know”, need to
take predictions with caution.
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Model Uncertainty Quantification in Deep Networks

e A common Bayesian way to quantify model uncertainty involves choosing the
most likely parameters configuration 0 that represents the data D.

argmaxp(@|D) where p(0|D) x p(D|0)p(0)
0

e This approach is usually intractable as it involves integrating over parameters 6.

e Dropout is a popular method in NNs to prevent overfitting and improve
generalization by randomly removing connections between layers.
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Monte Carlo Dropout

e Gal et al. (ICML 2016) interpret dropout as a Bayesian approximation for
model uncertainty, assuming Bernoulli distribution on weights.

e The intractable integration over parameters is approximated by a tractable sum
over n parameter sets: 6; ~ p (0 | D).

e With n predictions, first (mean) and second (variance) raw moments serve as
prediction and model uncertainty.
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MCD in PCs
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Can we do better?

MCD needs n stochastic forward-passes of the model ... — inefficient!
Var[S] is induced by random instantiations of dropout at sum nodes.

Can we find a closed-form solution to obtain Var[S] in a single forward-pass?

Yes! = Tractable Dropout Inference (TDI)
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Tractable Dropout Inference (TDI)

Key idea:
1) View node output as function f of inputs and dropout RVs
2) Compute Var[f] — decomposes into input variances (and more)
3) Propagate Var[f] from leaf nodes to root node

TDI only needs a single forward evaluation of a model ... — efficient!
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TDI: Basic Idea

Consider sum nodes as linear combinations of their Bernoulli dropout RVs and
inputs:

dropout RVS mputs
S = g 5 w; N; |
weights

where ; ~ Bern(gq) and p = 1 — ¢ is the dropout probability.
How do we tractably compute the variance of a PC with dropout?

= Find a closed-form expression of Var[S] and perform variance propagation!
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TDI: Variance Propagation
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Closed-form Solutions

Recall: D s=3.6wN; @ P=TIN;

input variance  input expectation input covariance
¥ v

Variance ~ @ Var[S] = ¢, w?( Var¢[NZ~] +pENi] %) + ¢ X, wiw; CovN;, Nj]
@ Var[P] = [[,(Var[N;] + E[N;}*) — T1,

)

E[N;J*
Expectation D E[S] = q>; wiE[N;]

® E[P] = [, E[Ni]
Covariance & Cov[s4,58] =¢* Y, wit Y, ijCov[N{‘, NJB]

® Cov[P4,PP] = E[Hi N/ T, Nﬂ ~[LEN] HjE[NJB]

# not decomposable in general # ]
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Covariance: Three Solutions

¢ not decomposable in general ¢

%

X COV[PA, PB] = ]E|:H2 Nf‘ Hj Nﬂ - HzE[Nﬂ HjE[NB}

J

We're not at a dead-end with covariance! We provide three solutions:

a) Structural Knowledge: LearnSPN, RAT-SPN, ... — add. independencies
b) Covariance Bounds: Cauchy-Schwarz inequality — lower/upper bound

Cov[N;, N;] { Var[N;] Var[N;], +4/Var[N;] Var|N }

c) Copy-paste Solution: Graph augmentation — enforce covariance to be zero
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Leaf Nodes

No dropout (in our current framework) — leaves become a point estimate!

E[L] =L, Var[L] =0, Cov[L;L;]=0

BUT: This allows to include prior knowledge about aleatoric and epistemic
uncertainty by setting Var[L] > 0 and Cov|L;, L;] # 0 (future work).

(Note: MCD does not allow that)
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Experiments: Out-of-Distribution Detection
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TDI remarkably improves OOD detection in PCs!
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Experiments: Out-of-Distribution Detection
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0.0 0.2 0.4 0.6 0.8 1.0 TDI is competitive with MCD and
OOD Threshold only needs a single instead of n = 100
forward passes!
TDI allows PCs to adequately balance
ID vs. OOD detection!
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Experiments: Data Perturbations (Rotated MNIST)
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TDI better captures the distribution shift while retaining predictive accuracy!
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Experiments: Data Corruptions (MNIST)
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TDI detects distribution shifts and is more robust in predictive accuracy against
the corruption!
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Future Work

Influence of dropout parameter p?

Can we generalize to arbitrary PC structures?

Density estimation?

Can we use uncertainty during training?
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Conclusion

e Overconfidence in PCs makes ID and OOD data separation challenging

e Tractable Dropout Inference: MCD-inspired solution, offers straightforward
single-pass uncertainty estimation for PCs which ...

enhances PC robustness and helps in detecting distribution shifts

removes the computational burden of MCD

paves the way to include uncertainty into PC training

allows for prior knowledge of epistemic or alleatoric uncertainty
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Backup Slides
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Structural Knowledge

The easiest solution is when we know two product nodes P4 and PZ share no
common ancestors. This implies P4 L PZ and thus Cov[P4, PB] = 0.

This is always the case for tree-structured PCs!

For binary tree random and tensorized (RAT) structures, the covariance simplifies to:

Cov[P,.Py /] = Cov[S}, S| E[SE|E[SE]
+ Cov[SE,SE| E[S}] E[S/]
+ Cov/[S}, Sf/] Cov[SE,SE] .
In this case, the covariance of two product nodes only depends on the covariance
of the input sum nodes of the same graph partition (L or R).
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Covariance Bounds

If we don'’t have structural knowledge, we can still find lower and upper bounds for
the covariance using the Cauchy-Schwarz inequality:

Cov[N;,N;]* < Var|N;] Var[N,]

& Cov[N;,N;] € [— Var[N;] Var[N;],
+ Var[Nl-}Var[Nj]]
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Copy-paste Solution

¢ We can augment the DAG to enforce zero covariance between two nodes, N4
and N g, by treating their common input as two separate nodes.

e For each node N¢ with paths Path4 := N4 — Ng and Pathg := N — N, we
“copy” N¢ to an equivalent node N and replace the original N¢ in Pathg with
NC’-

e This enforces a tree structure on the PC, making the covariance between two
inputs of a node N zero.

¢ In practice, we don’t need to modify the DAG. Instead, we can simply ignore the
covariance.
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Classification Uncertainty

In classification, we express class conditionals p (x| y;) = S; with class priors
p (yi) = ¢;, and find the posterior via Bayes’ rule:
SZ‘Ci
p(yilx) = :
' >, 5S¢

Here, the expectation and variance of the posterior are those of a random variable
ratio, E[4] and Var[4], with A = S;c; and B = Y, S;c;.

While this ratio isn't well-defined, we can approximate it using a second-order
Taylor approximation:

A E[A] Cov[A, B] = Var[B]E[A]

E[ } EB ®B)° | (EB)
E[A]* [Var[A] _Cov[A, B] | Var(B]
VarM E(BP [ AP~ “E[AEB] " E[BP
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Classification Uncertainty

We can simplify each component of the previous equations.
The expectations are:

Z SjCj] = ZE[SJ] Cj .

E[B] = E

The variances become:

Var[A] = Var[S;] ¢?
Var[B] = ) "Var[S;]c; + > Cov[S;,,S),] cjcj, -
J

J1#j2
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Classification Uncertainty

e Covariance between a root node and sum of all root nodes can be
deconstructed:

Cov[A,B] =¢; Y _¢;Cov[S;,S;]

J

e Assumption of statistical independence between A and B is an approximation.

e This approximation has proven effective in practice.

UAI 2023 | Probabilistic Circuits That Know What They Don't Know | F. Ventola, S. Braun, Z. Yu, M. Mundt, K. Kersting

32



Tractability

PCs and SPNs are tractable models with linear time queries.

TDI formulations have at most quadratic space and time complexity.

Sparse structures like trees allow for linear computational cost.

In cases needing all covariance combinations, cost is locally quadratic.

Full bottom-up pass is tractable and parallelizable.
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Using the “copy-paste” DAG augmentation, cost can be reduced to linear.
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