
Probabilistic Circuits That
KnowWhat They Don’t Know

Fabrizio Ventola*1 Steven Braun*1 Zhongjie Yu1 Martin Mundt1,2 Kristian Kersting1,2,3,4

1Department of Computer Science, TU Darmstadt
2Hessian Center for AI (hessian.AI)

3German Research Center for Artificial Intelligence (DFKI)
4Centre for Cognitive Science, TU Darmstadt

* indicates equal contribution

UAI 2023 | Probabilistic Circuits That KnowWhat They Don’t Know | F. Ventola, S. Braun, Z. Yu, M. Mundt, K. Kersting 1



Motivation

ManyMLmodels are overconfident— often assign high probabilities to (wrong) pre-

dictions, even for unseen categories.

[Amodei et al., arXiv 2016; Guo et al., ICML 2017; Boult et al., AAAI 2019; Hendrycks et al., ICLR 2019]
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Motivation

• The issue impacts even major deep models like VAEs and normalizing flows.

[Nalisnick et al., ICLR 2019]

• Probabilistic circuits (PCs) are assumed to overcome this — casted as

well-calibrated models.

[Peharz et al., UAI 2020; Peharz et al., ICML 2020; Choi et al., UCLA 2020]
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Our Contributions (1/2)
Show that PCs suffer from overconfidence and struggle to distinguish

in-distribution from out-of-distribution data in discriminative setting.
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Our Contributions (2/2)

• Introduce Tractable Dropout Inference (TDI) — provides tractable model

uncertainty estimation.

• Derive a sampling-free analytical solution for Monte Carlo dropout (MCD), a

Bayesian method for model uncertainty in neural networks (NNs).

• Demonstrate TDI’s robustness against distribution shifts and

out-of-distribution data in three key scenarios.
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Probabilistic Circuits

• We focus on sum-product networks (SPNs), a prominent type of PCs.

• SPNs are known for inference capabilities and representational power.

• Like NNs, SPNs are deep graphs but they explicitly encode a normalized

probability distribution.

• SPNs can generate new samples and calculate various exact, tractable

probabilistic queries, even with partial evidence.

[Poon et al., UAI 2011; Delalleau et al., NeurIPS 2011; Peharz et al., AISTATS 2015]
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Probabilistic Circuits

Clear probabilistic semantics!

S =
∑

iwiNi

P =
∏

iNi

S

X3 X1

X1 X2 X1 X2 X2 X3 X2 X3

w1 w2

w3 w4 w5 w6
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Probabilistic Circuits

• Instance LLvia forward pass

• S(x) = pX(X = x)

• MAP & MPE need

top-down pass

• Inference linear in the

network size

S

X3 X1

X1 X2 X1 X2 X2 X3 X2 X3

P1 P2

S2 L31 L12 S3

P3 P4 P5 P6

L13 L24 L15 L26 L27 L38 L29 L310

UAI 2023 | Probabilistic Circuits That KnowWhat They Don’t Know | F. Ventola, S. Braun, Z. Yu, M. Mundt, K. Kersting 8



Remark

• Probabilistic modeling targets uncertainties, but it’s crucial to quantify model

uncertainty or epistemic uncertainty.

• Quantification can tell us how confident the model is in its predictions,

including class label distribution p(Y |X = x).

• Overconfident models can assign near 1 probabilities to out-of-distribution

instances or unseen labels.

• Model uncertainty helps us knowwhen the model “does not know”, need to

take predictions with caution.

[Kendall et al., NeurIPS, 2017; Hüllermeier et al., MLJ 2021]
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Model Uncertainty Quantification in Deep Networks

• A common Bayesian way to quantify model uncertainty involves choosing the

most likely parameters configuration θ that represents the data D.

arg max
θ

p(θ|D) where p(θ|D) ∝ p(D|θ)p(θ)

• This approach is usually intractable as it involves integrating over parameters θ.

• Dropout is a popular method in NNs to prevent overfitting and improve

generalization by randomly removing connections between layers.

[MacKay, Neural computation 1992; Srivastava et al., JMLR 2014]
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Monte Carlo Dropout

• Gal et al. (ICML 2016) interpret dropout as a Bayesian approximation for

model uncertainty, assuming Bernoulli distribution on weights.

• The intractable integration over parameters is approximated by a tractable sum

over n parameter sets: θi ∼ p (θ | D).

• With n predictions, first (mean) and second (variance) raw moments serve as
prediction and model uncertainty.

[Gal et al., Dropout as a bayesian approximation: Representing model uncertainty in deep learning, ICML 2016]
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MCD in PCs

• Place Bernoulli distribution

at sum node weights

• Calculating two raw

moments requires n evals!

S

X3 X1

X1 X2 X1 X2 X2 X3 X2 X3

P1 P2

S2 L31 L12 S3

P3 P4 P5 P6

L13 L24 L15 L26 L27 L38 L29 L310
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Canwe do better?

MCD needs n stochastic forward-passes of the model ... → inefficient!

Var[S] is induced by random instantiations of dropout at sum nodes.

Can we find a closed-form solution to obtain Var[S] in a single forward-pass?

Yes! ⇒ Tractable Dropout Inference (TDI)
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Tractable Dropout Inference (TDI)

Key idea:

1) View node output as function f of inputs and dropout RVs

2) Compute Var[f ] → decomposes into input variances (and more)

3) Propagate Var[f ] from leaf nodes to root node

TDI only needs a single forward evaluation of a model ... → efficient!
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TDI: Basic Idea

Consider sum nodes as linear combinations of their Bernoulli dropout RVs and

inputs:

S =
∑
i

δi wi Ni ,

dropout RVs

weights

inputs

where δi ∼ Bern(q) and p = 1− q is the dropout probability.

How do we tractably compute the variance of a PC with dropout?

⇒ Find a closed-form expression of Var[S] and perform variance propagation!
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TDI: Variance Propagation

Var[S ]

X3 X1

X1 X2 X1 X2 X2 X3 X2 X3

Var[P1] Var[P2]

Var[S2] Var[L
3
1] Var[L12] Var[S3]

Var[P3] Var[P4] Var[P5] Var[P6]

Var[L13]Var[L
2
4] Var[L15]Var[L

2
6] Var[L27]Var[L

3
8] Var[L29]Var[L

3
10]

UAI 2023 | Probabilistic Circuits That KnowWhat They Don’t Know | F. Ventola, S. Braun, Z. Yu, M. Mundt, K. Kersting 16



Closed-form Solutions

Recall: S =
∑

i δiwiNi P =
∏

iNi

Variance Var[S] = q
∑

iw
2
i ( Var[Ni] + p E[Ni]

2) + q2
∑

i 6=j wiwj Cov[Ni,Nj ]

input variance input expectation input covariance

Var[P] =
∏

i(Var[Ni] + E[Ni]
2)−

∏
i E[Ni]

2

Expectation E[S] = q
∑

iwiE[Ni]

E[P] =
∏

i E[Ni]

Covariance Cov[SA, SB] = q2
∑

iw
A
i

∑
j w

B
j Cov

[
NA

i ,N
B
j

]
Cov

[
PA,PB

]
= E

[∏
iN

A
i

∏
j N

B
j

]
−
∏

i E
[
NA

i

]∏
j E

[
NB

j

]
E not decomposable in general E
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Covariance: Three Solutions

Cov
[
PA,PB

]
= E

[∏
iN

A
i

∏
j N

B
j

]
−
∏

i E
[
NA

i

]∏
j E

[
NB

j

]E not decomposable in general E

We’re not at a dead-end with covariance! We provide three solutions:

a) Structural Knowledge: LearnSPN, RAT-SPN, ... → add. independencies

b) Covariance Bounds: Cauchy-Schwarz inequality→ lower/upper bound

Cov[Ni,Nj ] ∈
[
−
√
Var[Ni]Var[Nj ], +

√
Var[Ni]Var[Nj ]

]
c) Copy-paste Solution: Graph augmentation→ enforce covariance to be zero
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Leaf Nodes

No dropout (in our current framework)→ leaves become a point estimate!

E[L] = L, Var[L] = 0, Cov[Li, Lj ] = 0

BUT: This allows to include prior knowledge about aleatoric and epistemic

uncertainty by setting Var[L] > 0 and Cov[Li, Lj ] 6= 0 (future work).

(Note: MCD does not allow that)
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Experiments: Out-of-Distribution Detection

TDI remarkably improves OOD detection in PCs!
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Experiments: Out-of-Distribution Detection
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TDI allows PCs to adequately balance

ID vs. OOD detection!

AUC (↑) CIFAR CINIC LSUN

PC 29.3 29.9 30.3

PC + TDI 64.6 66.1 81.8

PC + MCD 68.5 70.0 84.9

TDI is competitive with MCD and

only needs a single instead of n = 100
forward passes!
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Experiments: Data Perturbations (Rotated MNIST)

0.00

0.10

0.20

Pr
ed

.E
nt

ro
py

0 15 30 45 60 75 90

Rotation (degrees)

0.00

0.03

0.06

Pr
ed

.U
nc

er
ta

in
ty

PC
PC + TDI

0

50

100

A
cc

ur
ac

y
(-

-)

TDI better captures the distribution shift while retaining predictive accuracy!
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Experiments: Data Corruptions (MNIST)
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TDI detects distribution shifts and is more robust in predictive accuracy against

the corruption!
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FutureWork

• Influence of dropout parameter p?

• Can we generalize to arbitrary PC structures?

• Density estimation?

• Can we use uncertainty during training?
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Conclusion

• Overconfidence in PCs makes ID and OOD data separation challenging

• Tractable Dropout Inference: MCD-inspired solution, offers straightforward

single-pass uncertainty estimation for PCs which ...

• enhances PC robustness and helps in detecting distribution shifts

• removes the computational burden of MCD

• paves the way to include uncertainty into PC training

• allows for prior knowledge of epistemic or alleatoric uncertainty

Paper Code
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Structural Knowledge

The easiest solution is when we know two product nodes PA and PB share no

common ancestors. This implies PA ⊥⊥ PB and thus Cov[PA,PB] = 0.

This is always the case for tree-structured PCs!

For binary tree random and tensorized (RAT) structures, the covariance simplifies to:

Cov
[
Pl,r,Pl′,r′

]
= Cov

[
SLl , S

L
l′
]
E
[
SRr

]
E
[
SRr′

]
+Cov

[
SRr , S

R
r′
]
E
[
SLl

]
E
[
SLl′

]
+Cov

[
SLl , S

L
l′
]
Cov

[
SRr , S

R
r′
]
.

In this case, the covariance of two product nodes only depends on the covariance

of the input sum nodes of the same graph partition (L or R).
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Covariance Bounds

If we don’t have structural knowledge, we can still find lower and upper bounds for

the covariance using the Cauchy-Schwarz inequality:

Cov[Ni,Nj ]
2 ≤ Var[Ni]Var[Nj ]

⇔ Cov[Ni,Nj ] ∈
[
−
√
Var[Ni]Var[Nj ],

+
√
Var[Ni]Var[Nj ]

]
.
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Copy-paste Solution

• We can augment the DAG to enforce zero covariance between two nodes, NA

and NB , by treating their common input as two separate nodes.

• For each node NC with paths PathA := NA → NC and PathB := NB → NC , we

“copy” NC to an equivalent node NC′ and replace the original NC in PathB with

NC′ .

• This enforces a tree structure on the PC, making the covariance between two

inputs of a node N zero.

• In practice, we don’t need to modify the DAG. Instead, we can simply ignore the

covariance.
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Classification Uncertainty
In classification, we express class conditionals p (x | yi) = Si with class priors
p (yi) = ci, and find the posterior via Bayes’ rule:

p (yi | x) =
Sici∑
j Sjcj

.

Here, the expectation and variance of the posterior are those of a random variable

ratio, E
[
A
B

]
and Var

[
A
B

]
, with A = Sici and B =

∑
j Sjcj .

While this ratio isn’t well-defined, we can approximate it using a second-order

Taylor approximation:

E
[
A

B

]
≈ E[A]

E[B]
− Cov[A,B]

(E[B])2
+
Var[B]E[A]

(E[B])3

Var

[
A

B

]
≈ E[A]2

E[B]2

[
Var[A]

E[A]2
− 2

Cov[A,B]

E[A]E[B]
+
Var[B]

E[B]2

]
.
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Classification Uncertainty
We can simplify each component of the previous equations.

The expectations are:

E[A] = E[Sici] = E[Si] ci

E[B] = E

∑
j

Sjcj

 =
∑
j

E[Sj ] cj .

The variances become:

Var[A] = Var[Si] c
2
i

Var[B] =
∑
j

Var[Sj ] c
2
j +

∑
j1 6=j2

Cov[Sj1 , Sj2 ] cj1cj2 .
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Classification Uncertainty

• Covariance between a root node and sum of all root nodes can be

deconstructed:

Cov[A,B] = ci
∑
j

cjCov[Si, Sj ] ,

• Assumption of statistical independence between A and B is an approximation.

• This approximation has proven effective in practice.

[Seltman N., CMU 2018]
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Tractability

• PCs and SPNs are tractable models with linear time queries.

• TDI formulations have at most quadratic space and time complexity.

• Sparse structures like trees allow for linear computational cost.

• In cases needing all covariance combinations, cost is locally quadratic.

• Using the “copy-paste” DAG augmentation, cost can be reduced to linear.

• Full bottom-up pass is tractable and parallelizable.
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