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RL Algorithms Are Not Scalable in Sparse Reward Settings

Solution? 
A good abstraction can improve the scalability of RL.
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Example: Office World



State Abstraction Can Make RL Algorithms More Scalable

• Abstraction maps the original problem representation to a new reduced representation.

• Let 𝑀 = 𝑆, 𝐴, 𝑇, 𝑅, 𝛾  be a ground MDP from which an abstract MDP 𝑀 = ҧ𝑆, 𝐴, ത𝑇, ത𝑅, 𝛾  can be derived.

• 𝜙: 𝑆 →  ҧ𝑆 maps a concrete state 𝑠 to an abstract state s.t. ҧ𝑠 =  𝜙 𝑠 . 
• ത𝑇 and ത𝑅  are defined as follows:

3



Why Abstraction Refinement?
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Constructing state abstraction using bottom-up 
approaches may suffer from scalability issues. Abstract State 

Space

Concrete State 
Space

Offline methods [Dietterich, 1999, Jons- son 
and Barto, 2000, Givan et al., 2003]. 

Graph-theoretic state abstraction methods 
[Mannor et al., 2004, Chiu and Soo, 2010].

Abstraction based on Monte-Carlo tree 
search [Kocsis and Szepesvári, 2006, Jiang et 
al., 2014]. 

Abstraction refinement for classical planning 
[Seipp and Helmert, 2018]. 

Categorization of concrete transitions 
[Uther and Veloso 1998].

Abstraction refinement using a 
deterministic model of the world 
[Whiteson, 2010]. 

Constructing state abstraction efficiently using 
top-down requires an abstract RL routine.
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What Is a Good Abstraction?
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Example: Taxi World
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Intuitively, a good abstraction should capture more 
detail on the more salient parts of the state space.

The abstraction on a state variable should be contingent 
on the value of other state variables.
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Intuitively, a good abstraction should capture more 
detail on the more salient parts of the state space.

The abstraction on a state variable should be contingent 
on the value of other state variables.

Our method learns those abstractions in the form of 
conditional abstraction trees (CATs) while doing RL.



CAT+RL Constructs Conditional Abstractions

Example: Wumpus World
• The pitfall and goal are terminal states.
• The agent can move to cardinal adjacent cells. 

• CAT+RL deals with ranges of state variables.
• Partitioning these ranges constructs abstractions.  
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x and y represent the location of the agent:

• Range of x: [1,4]
• Range of y: [1,4]
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x and y represent the location of the agent:

• Range of x: [1,4]
• Range of y: [1,4]

x and y represent the location of the agent:

• Range of x: [1,2], [3,4]
• Range of y: [1,2], [3,4]



CAT+RL Constructs Conditional Abstractions

Example: Wumpus World
• The pitfall and goal are terminal states.
• The agent can move to cardinal adjacent cells. 

• The refinement of conditional abstractions is 
guided by the dispersion of TD errors.
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State-action pairs with high variation of TD error: 

( ҧ𝑆1, 𝑟𝑖𝑔ℎ𝑡), ( ҧ𝑆1, 𝑑𝑜𝑤𝑛), ҧ𝑆4, 𝑟𝑖𝑔ℎ𝑡 , and 

( ҧ𝑆4, 𝑑𝑜𝑤𝑛) 



CAT+RL Constructs Conditional Abstractions

Example: Wumpus World
• The pitfall and goal are terminal states.
• The agent can move to cardinal adjacent cells. 

• The refinement of conditional abstractions is 
guided by the dispersion of TD errors.
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when y > 2, the domain of x is 
abstracted into sets {1, 2}, {3}, 
and {4}.

when y ≤ 2, the domain of x is 
abstracted into sets {1}, {2}, 
and {3, 4}.



Conditional Abstraction Trees (CATs)

High variation of
 TD error
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Root of CAT

Range of x

Range of y

Finding contributing state variable:
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Conditional Abstraction Trees (CATs)
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Root of CAT
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Range of y



Learning a CAT is Synthesized with RL

Learning Phase:
• Starting with an initial coarse abstraction, the RL agent interacts with the 

environment and learns the abstract policy ഥ𝝅.

Evaluation Phase
• CAT+RL initiates this phase if the success rate is below a threshold.
• In this phase, CAT+RL identifies unstable abstract states.

Refinement Phase
• Given the logs of the TD errors, CAT+RL finds the unstable states on which 

the CAT will be refined with respect to the contributing state variables.
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Empirical Results Show Improved Sample Efficiency
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Empirical Results Show Improved Scalability
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Empirical Results Show Improved Runtime

Total time taken (mean and standard deviation) by CAT+RL, Q-learning, and PPO to solve 
Office World problems with increasing complexity.
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Conclusions

▪ CAT+RL learns conditional abstraction trees on-the-fly 

while doing purely abstract RL.

▪ CAT+RL enables vanilla Q-learning to outperform SOTA 

baselines by significantly improving its sample efficiency. 

▪ CAT+RL learns well-defined abstract representations and 

draws out similarities across the state space.

▪ CAT+RL requires significantly less hyperparameter tuning 

in comparison to many of the baselines.
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