UAI 2021 Program
For the final published version of the papers, please use the Proceedings of Machine Learning Research - Volume 161. Links below may point to older versions.
Access the blocks of the conference using the following links:
Block III
28 July - 06:00-06:01 PT - Welcome
28 July - 06:01-06:50 PT - Keynote talk - Lenka Zdeborová
28 July - 07:00-08:00 PT - Neural Networks
- 145: Learnable Uncertainty under Laplace Approximations - Agustinus Kristiadi ; Matthias Hein ; Philipp Hennig
- 287: Hierarchical Indian Buffet Neural Networks for Bayesian Continual Learning - Samuel Kessler ; Vu Nguyen ; Stefan Zohren ; Stephen Roberts
- 328: Identifying Untrustworthy Predictions in Neural Networks by Geometric Gradient Analysis - Leo Schwinn ; An Nguyen ; René Raab ; Leon Bungert ; Daniel Tenbrinck ; Dario Zanca ; Martin Burger ; Bjoern Eskofier
- 607: Information Theoretic Meta Learning with Gaussian Processes - Michalis Titsias ; Francisco Ruiz ; Sotirios Nikoloutsopoulos ; Alexandre Galashov
28 July - 08:10-09:10 PT - Explainability / Fairness
- 232: Addressing Fairness in Classification with a Model-Agnostic Multi-ObjectiveAlgorithm - Kirtan S Padh ; Diego Antognini ; Emma LEJAL GLAUDE ; Boi Faltings ; Claudiu Musat
- 342: BayLIME: Bayesian Local Interpretable Model-Agnostic Explanations - Xingyu Zhao ; Wei Huang ; Xiaowei Huang ; Valentin Robu ; David Flynn
- 478: Classification with abstention but without disparities - Nicolas Schreuder ; Evgenii Chzhen
- 531: Local Explanations via Necessity and Sufficiency: Unifying Theory and Practice - David Watson ; Limor Gultchin ; Ankur Taly ; Luciano Floridi
28 July - 09:20-10:00 PT - Lightning III
- 359: Mixed Variable Bayesian Optimization with Frequency Modulated Kernels - Changyong Oh ; Efstratios Gavves ; Max Welling
- 361: Subseasonal Climate Prediction in the Western US using Bayesian Spatial Models - Vishwak Srinivasan ; Justin Khim ; Arindam Banerjee ; Pradeep Ravikumar
- 367: Variational Combinatorial Sequential Monte Carlo Methods for Bayesian Phylogenetic Inference - Antonio K Moretti ; Liyi Zhang ; Christian A Naesseth ; Hadiah Venner ; David Blei ; Itsik Pe'er
- 369: Estimating Treatment Effects with Observed Confounders and Mediators - Shantanu Gupta ; Zachary Lipton ; David Childers
- 378: A Decentralized Policy Gradient Approach to Multi-Task Reinforcement Learning - Sihan Zeng ; Aqeel Anwar ; Thinh T Doan ; Arijit Raychowdhury ; Justin Romberg
- 379: Compositional Abstraction Error and a Category of Causal Models - Eigil F Rischel ; Sebastian Weichwald
- 383: Bayesian optimization for modular black-box systems with switching costs - Chi-Heng Lin ; Joseph D Miano ; Eva Dyer
- 392: Entropic Inequality Constraints from e-separation Relations in Directed Acyclic Graphs with Hidden Variables - Noam Finkelstein ; Beata Zjawin ; Elie Wolfe ; Ilya Shpitser ; Robert Spekkens
- 403: Learning Proposals for Probabilistic Programs with Inference Combinators - Sam Stites ; Heiko Zimmermann ; Hao Wu ; Eli Z Sennesh ; Jan-Willem van de Meent
- 435: NP-DRAW: A Non-Parametric Structured Latent Variable Model for Image Generation - Xiaohui Zeng ; Raquel Urtasun ; Richard Zemel ; Sanja Fidler ; Renjie Liao
- 439: PALM: Probabilistic Area Loss Minimization for Protein Sequence Alignment - Fan Ding ; Nan Jiang ; Jianzhu Ma ; Jian Peng ; Jinbo Xu ; Yexiang Xue
- 467: Sparse Linear Networks with a Fixed Butterfly Structure: Theory and Practice - Nir Ailon; Omer Leibovitch ; Vineet Nair
- 470: Uncertainty-aware sensitivity analysis using Rényi divergences - Topi Paananen ; Michael Andersen ; Aki Vehtari
- 472: The Promises and Pitfalls of Deep Kernel Learning - Sebastian W Ober ; Carl Edward Rasmussen ; Mark van der Wilk
- 473: Confidence in Causal Discovery with Linear Causal Models - David Strieder ; Tobias Freidling ; Stefan Haffner ; Mathias Drton
- 479: Maximal Ancestral Graph Structure Learning via Exact Search - Kari M Rantanen ; Antti Hyttinen ; Matti Järvisalo
- 489: Gaussian Process Nowcasting: Application to COVID-19 Mortality Reporting - Iwona Hawryluk ; Henrique Hoeltgebaum ; Swapnil Mishra ; Xenia Miscouridou ; Ricardo P Schnekenberg ; Charles Whittaker ; Michaela Vollmer ; Seth Flaxman ; Samir Bhatt ; Thomas A Mellan
- 492: Stochastic Model for Sunk Cost Bias - Jon Kleinberg ; Sigal Oren ; Manish Raghavan ; Nadav Sklar
- 500: Optimized Auxiliary Particle Filters - Nicola Branchini ; Victor Elvira
- 502: Inference of Causal Effects when Control Variables are Unknown - Ludvig Hult ; Dave Zachariah
- 505: Dimension reduction for data with heterogeneous missingness - Yurong Ling ; Zijing Liu ; Jing-Hao Xue
- 512: Tensor-Train Density Estimation - Georgii Novikov ; Maxim Panov ; Ivan Oseledets
- 515: Similarity Measure for Sparse Time Course Data Based on Gaussian Processes - Zijing Liu ; Mauricio Barahona
- 516: Towards Robust Episodic Meta-Learning - Beyza Ermis ; Giovanni Zappella ; Cedric Archambeau
- 528: PLSO: A generative framework for decomposing nonstationary time-series into piecewise stationary oscillatory components - Andrew Song ; Demba Ba ; Emery Brown
- 535: Faster Lifting for Two-Variable Logic Using Cell Graphs - Timothy van Bremen ; Ondrej Kuzelka
- 536: Post-hoc loss-calibration for Bayesian neural networks - Meet P Vadera ; Soumya Ghosh ; Kenney Ng ; Benjamin Marlin
- 539: Towards Tractable Optimism in Model-Based Reinforcement Learning - Aldo Pacchiano ; Philip J Ball ; Jack Parker-Holder ; Krzysztof Choromanski ; Stephen Roberts
- 540: Probabilistic DAG Search - Julia Grosse ; Cheng Zhang ; Philipp Hennig
- 573: Multi-output Gaussian Processes for Uncertainty-aware Recommender Systems - Yinchong Yang ; Florian Buettner
- 582: Generalization Error Bounds for Deep Unfolding RNNs - Boris Joukovsky ; Tanmoy Mukherjee ; Huynh Van Luong ; Nikos Deligiannis
28 July - 10:00-11:30 PT - Posters III
Posters of papers from long and lightning talks of Neural Networks, Explainability / Fairness, Lightning III.