UAI 2021 Program
For the final published version of the papers, please use the Proceedings of Machine Learning Research - Volume 161. Links below may point to older versions.
Access the blocks of the conference using the following links:
Block IV
28 July - 18:00-18:01 PT - Welcome
28 July - 18:01-18:50 PT - Keynote talk - Judea Pearl
28 July - 19:00-20:00 PT - Dimensionality Reduction
- 405: Hierarchical Infinite Relational Model - Feras Saad ; Vikash Mansinghka
- 713: Doubly Non-Central Beta Matrix Factorization for DNA Methylation Data - Aaron Schein ; Anjali Nagulpally ; Hanna Wallach ; Patrick Flaherty
- 770: Exact and Approximate Hierarchical Clustering Using A* - Craig S Greenberg ; Sebastian Macaluso ; Nicholas Monath ; Kumar Avinava Dubey ; Patrick Flaherty ; Manzil Zaheer ; Amr Ahmed ; Kyle Cranmer ; Andrew McCallum
- 841: Sequential Core-Set Monte Carlo - Boyan Beronov ; Christian Weilbach ; Frank Wood ; Trevor Campbell
28 July - 20:10-21:10 PT - Privacy / Theory
- 218: Generalized Parametric Path Problems - Kshitij Gajjar ; Girish Varma ; Prerona Chatterjee ; Jaikumar Radhakrishnan
- 289: Measuring Data Leakage in Machine-Learning Models with Fisher Information - Awni Hannun ; Chuan Guo ; Laurens van der Maaten
- 441: Principal Component Analysis in the Stochastic Differential Privacy Model - Fanhua Shang ; Zhihui Zhang ; Tao Xu ; Yuanyuan Liu ; Hongying Liu
- 829: Geometric Rates of Convergence for Kernel-based Sampling Algorithms - Rajiv Khanna ; Liam Hodgkinson ; Michael Mahoney
28 July - 21:20-22:00 PT - Lightning IV
- 238: LocalNewton: Reducing Communication Bottleneck for Distributed Learning - Vipul Gupta ; Avishek Ghosh ; Michal Derezinski ; Rajiv Khanna ; Ramchandran Kannan ; Michael Mahoney
- 262: Finite-Time Theory for Momentum Q-learning - Bowen Weng ; Huaqing Xiong ; Lin Zhao ; Yingbin Liang ; Wei Zhang
- 284: When is Particle Filtering Efficient for Planning in Partially Observed Linear Dynamical Systems? - Simon Du ; Wei Hu ; Zhiyuan Li ; Ruoqi Shen ; Zhao Song ; Jiajun Wu
- 286: Thompson Sampling for Markov Games with Piecewise Stationary Opponent Policies - Anthony DiGiovanni ; Ambuj Tewari
- 299: Improved Generalization Bounds of Group Invariant / Equivariant Deep Networks via Quotient Feature Spaces - Akiyoshi Sannai ; Masaaki Imaizumi ; Makoto Kawano
- 304: Probabilistic task modelling for meta-learning - Cuong Cao Nguyen ; Thanh-Toan Do ; Gustavo Carneiro
- 305: Approximation Algorithm for Submodular Maximization under Submodular Cover - Naoto Ohsaka ; Tatsuya Matsuoka
- 308: Tighter Generalization Bounds for Iterative Privacy-Preserving Algorithms - Fengxiang He ; Bohan Wang ; Dacheng Tao
- 315: Natural Language Adversarial Defense through Synonym Encoding - Xiaosen Wang ; Hao Jin ; Yichen Yang ; Kun He
- 319: Path-BN: Towards Effective Batch Normalization in the Path Space for ReLU Networks - Xufang Luo ; Qi Meng ; Wei Chen ; Yunhong Wang ; Tie-Yan Liu
- 330: Combinatorial Semi-Bandit in the Non-Stationary Environment - Wei Chen ; Liwei Wang ; Haoyu Zhao ; Kai Zheng
- 370: No-Regret Learning with High-Probability in Adversarial Markov Decision Processes - Mahsa Ghasemi ; AbolfazL Hashemi ; Haris Vikalo ; Ufuk Topcu
- 434: Unsupervised Constrained Community Detection via Self-Expressive Graph Neural Network - Sambaran Bandyopadhyay ; Vishal Peter
- 445: Variance-Dependent Best Arm Identification - Pinyan Lu ; Chao Tao ; Xiaojin Zhang
- 452: Stochastic Continuous Normalizing Flows: Training SDEs as ODEs - Liam Hodgkinson ; Chris van der Heide ; Fred Roosta ; Michael Mahoney
- 456: On The Distribution of Penultimate Activations of Classification Networks - Minkyo Seo ; Yoonho Lee ; Suha Kwak
- 462: Faster Convergence of Stochastic Gradient Langevin Dynamics for Non-Log-Concave Sampling - Difan Zou ; Pan Xu ; Quanquan Gu
- 466: Tractable Computation of Expected Kernels - Wenzhe Li ; Zhe Zeng ; Antonio Vergari ; Guy Van den Broeck
- 491: Trumpets: Injective Flows for Inference and Inverse Problems - Konik Kothari ; AmirEhsan Khorashadizadeh ; Maarten de Hoop ; Ivan Dokmanic
- 519: ReZero is All You Need: Fast Convergence at Large Depth - Thomas Bachlechner ; Bodhisattwa Prasad Majumder ; Huanru Henry H Mao ; Garrison Cottrell ; Julian McAuley
- 527: Subset-of-Data Variational Inference for Deep Gaussian-Processes Regression - Ayush Jain ; P. K. Srijith ; Mohammad Emtiyaz Khan
28 July - 22:00-23:30 PT - Posters IV
Posters of papers from long and lightning talks of Dimensionality Reduction, Privacy / Theory, Lightning IV.