UAI 2021 Program

For the final published version of the papers, please use the Proceedings of Machine Learning Research - Volume 161. Links below may point to older versions.

Access the blocks of the conference using the following links:

Block I

27 July - 06:00-06:01 PT - Welcome

27 July - 06:01-06:50 PT - Keynote talk - Susan Murphy

27 July - 07:00-08:00 PT - Bayesian Methods

  • 8: The Neural Moving Average Model for Scalable Variational Inference of State Space Models - Tom Ryder ; Dennis Prangle ; Andrew Golightly ; Isaac Matthews
  • 227: Asynchronous ε-Greedy Bayesian Optimisation - George De Ath ; Richard Everson ; Jonathan Fieldsend
  • 389: Probabilistic Selection of Inducing Points in Sparse Gaussian Processes - Anders Kirk Uhrenholt ; Valentin Charvet ; Bjoern Sand Jensen
  • 601: A Bayesian Nonparametric Conditional Two-sample Test with an Application to Local Causal Discovery - Philip Boeken ; Joris M. Mooij

27 July - 08:10-09:10 PT - Graphical Models

  • 127: Approximate Implication with d-Separation - Batya Kenig
  • 480: Extendability of Causal Graphical Models: Algorithms and Computational Complexity - Marcel Wienöbst ; Max Bannach ; Maciej Liskiewicz
  • 668: Markov Equivalence of Max-Linear Bayesian Networks - Carlos Amendola ; Benjamin Hollering ; Seth Sullivant ; Ngoc Tran
  • 679: Partial Identifiability in Discrete Data With Measurement Error - Noam Finkelstein ; Roy Adams ; Suchi Saria ; Ilya Shpitser

27 July - 09:20-10:00 PT - Lightning I

  • 30: Variational Inference with Continuously-Indexed Normalizing Flows - Anthony L Caterini ; Rob Cornish ; Dino Sejdinovic ; Arnaud Doucet
  • 42: Competitive Policy Optimization - Manish Kumar Prajapat ; Kamyar Azizzadenesheli ; Alexander Liniger ; Yisong Yue ; Animashree Anandkumar
  • 46: Improving Uncertainty Calibration of Deep Neural Networks via Truth Discovery and Geometric Optimization - Chunwei Ma ; Ziyun Huang ; Jiayi Xian ; Mingchen Gao ; Jinhui Xu
  • 66: The Curious Case of Adversarially Robust Models: More Data Can Help, Double Descend, or Hurt Generalization - Yifei Min ; Lin Chen ; Amin Karbasi
  • 72: XOR-SGD: Provable Convex Stochastic Optimization for Decision-making under Uncertainty - Fan Ding ; Yexiang Xue
  • 89: Path Dependent Structural Equation Models - Ranjani Srinivasan ; Jaron Jia Rong Lee ; Rohit Bhattacharya; Ilya Shpitser
  • 95: Application of Kernel Hypothesis Testing on Set-valued Data - Alexis Bellot ; Mihaela van der Schaar
  • 108: Constrained Labeling for Weakly Supervised Learning - Chidubem G Arachie ; Bert Huang
  • 112: Communication Efficient Parallel Reinforcement Learning - Mridul Agarwal ; Bhargav Ganguly ; Vaneet Aggarwal
  • 124: Matrix games with bandit feedback - Brendan O'Donoghue ; Tor Lattimore ; Ian Osband
  • 126: Improving Approximate Optimal Transport Distances using Quantization - Gaspard Beugnot ; Aude Genevay ; Justin M Solomon ; Kristjan Greenewald
  • 138: Lifted Reasoning Meets Weighted Model Integration - Leon Jonathan Feldstein ; Vaishak Belle
  • 144: Formal Verification of Neural Networks for Safety-Critical Tasks in Deep Reinforcement Learning - Davide Corsi ; Enrico Marchesini ; Alessandro Farinelli
  • 163: Action Redundancy in Reinforcement Learning - Nir Baram ; Tennenholtz Guy ; Shie Mannor
  • 167: Weighted Model Counting with Conditional Weights for Bayesian Networks - Paulius Dilkas ; Vaishak Belle
  • 171: Unsupervised Program Synthesis for Images By Sampling Without Replacement - Chenghui Zhou ; Chun-Liang Li ; Barnabas Poczos
  • 180: Bandits with Partially Observable Confounded Data - Tennenholtz Guy ; Uri Shalit ; Shie Mannor ; Yonathan Efroni
  • 192: A Weaker Faithfulness Assumption based on Triple Interactions - Alexander Marx ; Arthur Gretton ; Joris M. Mooij
  • 193: pRSL: Interpretable Multi-label Stacking by Learning Probabilistic Rules - Michael Kirchhof ; Lena Schmid ; Christopher Reining ; Michael ten Hompel ; Markus Pauly
  • 195: Regstar: Efficient Strategy Synthesis for Adversarial Patrolling Games - David Klaska ; Antonin Kucera ; Vit Musil ; Vojtech Rehak
  • 231: Global Explanations with Decision Rules: a Co-learning Approach - Géraldin Nanfack ; Paul Temple ; Benoît Frénay
  • 233: A Unifying Framework for Observer-Aware Planning and its Complexity - Shuwa Miura ; Shlomo Zilberstein
  • 234: A Heuristic for Statistical Seriation - Komal Dhull ; Jingyan Wang ; Nihar Shah ; Yuanzhi Li ; R Ravi
  • 242: Exploring the Loss Landscape in Neural Architecture Search - Colin White ; Sam Nolen ; Yash Savani
  • 274: Scaling Hamiltonian Monte Carlo Inference for Bayesian Neural Networks with Symmetric Splitting - Adam D Cobb ; Brian Jalaian
  • 279: Decentralized Multi-Agent Active Search for Sparse Signals - Ramina Ghods ; Arundhati Banerjee ; Jeff Schneider
  • 313: Dependency in DAG models with Hidden Variables - Robin Evans
  • 339: Time-Variant Variational Transfer for Value Functions - Giuseppe Canonaco ; Andrea Soprani ; Matteo Giuliani ; Andrea Castelletti ; Manuel Roveri ; Marcello Restelli
  • 350: On Random Kernels of Residual Architectures - Etai Littwin; Tomer Galanti ; Lior Wolf
  • 351: Neural Markov Logic Networks - Giuseppe Marra ; Ondrej Kuzelka
  • 354: On the Effects of Quantisation on Model Uncertainty in Bayesian Neural Networks - Martin Ferianc ; Partha Maji ; Matthew Mattina ; Miguel Rodrigues
  • 355: GP-ConvCNP: Better Generalization for Convolutional Conditional Neural Processes on Time Series Data - Jens Petersen ; Gregor Koehler ; David Zimmerer ; Fabian Isensee ; Paul Jäger ; Klaus H. Maier-Hein

27 July - 10:00-11:30 PT - Posters I

Posters of papers from long and lightning talks of Bayesian Methods, Graphical Models, Lightning I.





Sponsors