UAI 2021 Program
For the final published version of the papers, please use the Proceedings of Machine Learning Research - Volume 161. Links below may point to older versions.
Access the blocks of the conference using the following links:
Block I
27 July - 06:00-06:01 PT - Welcome
27 July - 06:01-06:50 PT - Keynote talk - Susan Murphy
27 July - 07:00-08:00 PT - Bayesian Methods
- 8: The Neural Moving Average Model for Scalable Variational Inference of State Space Models - Tom Ryder ; Dennis Prangle ; Andrew Golightly ; Isaac Matthews
- 227: Asynchronous ε-Greedy Bayesian Optimisation - George De Ath ; Richard Everson ; Jonathan Fieldsend
- 389: Probabilistic Selection of Inducing Points in Sparse Gaussian Processes - Anders Kirk Uhrenholt ; Valentin Charvet ; Bjoern Sand Jensen
- 601: A Bayesian Nonparametric Conditional Two-sample Test with an Application to Local Causal Discovery - Philip Boeken ; Joris M. Mooij
27 July - 08:10-09:10 PT - Graphical Models
- 127: Approximate Implication with d-Separation - Batya Kenig
- 480: Extendability of Causal Graphical Models: Algorithms and Computational Complexity - Marcel Wienöbst ; Max Bannach ; Maciej Liskiewicz
- 668: Markov Equivalence of Max-Linear Bayesian Networks - Carlos Amendola ; Benjamin Hollering ; Seth Sullivant ; Ngoc Tran
- 679: Partial Identifiability in Discrete Data With Measurement Error - Noam Finkelstein ; Roy Adams ; Suchi Saria ; Ilya Shpitser
27 July - 09:20-10:00 PT - Lightning I
- 30: Variational Inference with Continuously-Indexed Normalizing Flows - Anthony L Caterini ; Rob Cornish ; Dino Sejdinovic ; Arnaud Doucet
- 42: Competitive Policy Optimization - Manish Kumar Prajapat ; Kamyar Azizzadenesheli ; Alexander Liniger ; Yisong Yue ; Animashree Anandkumar
- 46: Improving Uncertainty Calibration of Deep Neural Networks via Truth Discovery and Geometric Optimization - Chunwei Ma ; Ziyun Huang ; Jiayi Xian ; Mingchen Gao ; Jinhui Xu
- 66: The Curious Case of Adversarially Robust Models: More Data Can Help, Double Descend, or Hurt Generalization - Yifei Min ; Lin Chen ; Amin Karbasi
- 72: XOR-SGD: Provable Convex Stochastic Optimization for Decision-making under Uncertainty - Fan Ding ; Yexiang Xue
- 89: Path Dependent Structural Equation Models - Ranjani Srinivasan ; Jaron Jia Rong Lee ; Rohit Bhattacharya; Ilya Shpitser
- 95: Application of Kernel Hypothesis Testing on Set-valued Data - Alexis Bellot ; Mihaela van der Schaar
- 108: Constrained Labeling for Weakly Supervised Learning - Chidubem G Arachie ; Bert Huang
- 112: Communication Efficient Parallel Reinforcement Learning - Mridul Agarwal ; Bhargav Ganguly ; Vaneet Aggarwal
- 124: Matrix games with bandit feedback - Brendan O'Donoghue ; Tor Lattimore ; Ian Osband
- 126: Improving Approximate Optimal Transport Distances using Quantization - Gaspard Beugnot ; Aude Genevay ; Justin M Solomon ; Kristjan Greenewald
- 138: Lifted Reasoning Meets Weighted Model Integration - Leon Jonathan Feldstein ; Vaishak Belle
- 144: Formal Verification of Neural Networks for Safety-Critical Tasks in Deep Reinforcement Learning - Davide Corsi ; Enrico Marchesini ; Alessandro Farinelli
- 163: Action Redundancy in Reinforcement Learning - Nir Baram ; Tennenholtz Guy ; Shie Mannor
- 167: Weighted Model Counting with Conditional Weights for Bayesian Networks - Paulius Dilkas ; Vaishak Belle
- 171: Unsupervised Program Synthesis for Images By Sampling Without Replacement - Chenghui Zhou ; Chun-Liang Li ; Barnabas Poczos
- 180: Bandits with Partially Observable Confounded Data - Tennenholtz Guy ; Uri Shalit ; Shie Mannor ; Yonathan Efroni
- 192: A Weaker Faithfulness Assumption based on Triple Interactions - Alexander Marx ; Arthur Gretton ; Joris M. Mooij
- 193: pRSL: Interpretable Multi-label Stacking by Learning Probabilistic Rules - Michael Kirchhof ; Lena Schmid ; Christopher Reining ; Michael ten Hompel ; Markus Pauly
- 195: Regstar: Efficient Strategy Synthesis for Adversarial Patrolling Games - David Klaska ; Antonin Kucera ; Vit Musil ; Vojtech Rehak
- 231: Global Explanations with Decision Rules: a Co-learning Approach - Géraldin Nanfack ; Paul Temple ; Benoît Frénay
- 233: A Unifying Framework for Observer-Aware Planning and its Complexity - Shuwa Miura ; Shlomo Zilberstein
- 234: A Heuristic for Statistical Seriation - Komal Dhull ; Jingyan Wang ; Nihar Shah ; Yuanzhi Li ; R Ravi
- 242: Exploring the Loss Landscape in Neural Architecture Search - Colin White ; Sam Nolen ; Yash Savani
- 274: Scaling Hamiltonian Monte Carlo Inference for Bayesian Neural Networks with Symmetric Splitting - Adam D Cobb ; Brian Jalaian
- 279: Decentralized Multi-Agent Active Search for Sparse Signals - Ramina Ghods ; Arundhati Banerjee ; Jeff Schneider
- 313: Dependency in DAG models with Hidden Variables - Robin Evans
- 339: Time-Variant Variational Transfer for Value Functions - Giuseppe Canonaco ; Andrea Soprani ; Matteo Giuliani ; Andrea Castelletti ; Manuel Roveri ; Marcello Restelli
- 350: On Random Kernels of Residual Architectures - Etai Littwin; Tomer Galanti ; Lior Wolf
- 351: Neural Markov Logic Networks - Giuseppe Marra ; Ondrej Kuzelka
- 354: On the Effects of Quantisation on Model Uncertainty in Bayesian Neural Networks - Martin Ferianc ; Partha Maji ; Matthew Mattina ; Miguel Rodrigues
- 355: GP-ConvCNP: Better Generalization for Convolutional Conditional Neural Processes on Time Series Data - Jens Petersen ; Gregor Koehler ; David Zimmerer ; Fabian Isensee ; Paul Jäger ; Klaus H. Maier-Hein
27 July - 10:00-11:30 PT - Posters I
Posters of papers from long and lightning talks of Bayesian Methods, Graphical Models, Lightning I.