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Abstract

We present a general framework for kernel hypoth-
esis testing on distributions of sets of individual
examples. Sets may represent many common data
sources such as groups of observations in time
series, collections of words in text or a batch of
images of a given phenomenon. This observation
pattern, however, differs from the common assump-
tions required for hypothesis testing: each set dif-
fers in size, may have differing levels of noise,
and also may incorporate nuisance variability, ir-
relevant for the analysis of the phenomenon of
interest; all features that bias test decisions if not
accounted for. In this paper, we propose to inter-
pret sets as independent samples from a collection
of latent probability distributions, and introduce
kernel two-sample and independence tests in this
latent space of distributions. We prove the consis-
tency of these tests and observe them to outperform
in a wide range of synthetic and real data exper-
iments, where previously heuristics were needed
for feature extraction and testing.

1 INTRODUCTION

Hypothesis tests are used to answer questions about a spe-
cific dependency structure in data (e.g. independence be-
tween variables, equality of distributions between samples
etc). They are used in applications across the sciences where
they serve as an essential tool to summarize experimental
data and quantify the evidence for discoveries on the rela-
tionship of variables of interest, see e.g. [23] for a general
introduction. As a consequence, a growing body of work is
constantly revisiting established modelling assumptions to
allow for consistent testing in increasingly heterogeneous
data sources. Examples include non-parametric tests formu-
lated as distances in Hilbert space, see e.g. [12, 11, 9, 47],

tests based on neural network representations as developed
in [24, 27, 3], and others that have significantly advanced
the reach of hypothesis tests towards high-dimensional data
of unknown distribution.

Almost universally however, non-parametric tests require a
fixed presentation of data (e.g. each instance living in Rd)
and do not account for non-homogeneous noise patterns
across examples. Many problems do exhibit these proper-
ties, for example with medical data, where each patient has
different levels of variation and have observations irregu-
larly measured over time. A similar pattern is observed in
many other domains involving time series and bagged data
(e.g. multiple images of the same phenomenon).

Intriguingly, there exists an appropriate representation of
data that naturally encodes a more flexible observation pat-
tern, namely each example represented as a set of observa-
tions (i.e. an unordered collection of multivariate observa-
tions), each set of potentially irregular length and sampled
from potentially different distributions. In particular, sets
do not presuppose a fixed representation of data (sets may
be of different length) and each set may be associated with
a unique distribution that encodes its particular variation
pattern (potentially different from other sets). Testing on
sets implicitly shifts the question of interest from a hypoth-
esis on groups of actual observations to an hypothesis on
groups of latent distributions assumed to represent each ob-
served example or set. See Figure 1 for an illustration of
this interpretation for the two sample problem. This set-up
is common in regression problems where one seeks to learn
a mapping from distributions to associated labels, see e.g.
[40, 41], but is unexplored in hypothesis testing.

The goal of this paper is to introduce kernel two-sample and
kernel independence tests defined on set-valued examples.

We will show that tests defined in this space appropriately
encode individual-level heterogeneity, are much more flexi-
ble, do not require heuristic pre-processing of data, and are
found to be more powerful than alternatives. We propose an
approach applicable to any kernel-based test that includes,
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Figure 1: We consider an example from electronic health records to illustrate the proposed approach. Right panel: we observe irregular,
uncertain biomarker measurements over time in two groups of patients (treated and control) colored with different shades of red and blue,
the question being whether these populations have the same trajectory in distribution. Middle panel: we encode the uncertainty in each
patient trajectory by a probability distributions on the space of observations. Left panel: The two-sample problem is to test for equality in
distribution on the space of patient-specific distributions, rather than actual observations. This two-level hierarchy allows for noisy inputs
and irregular input sizes. A description of the notation and more details can be found in Section 3.1.

in addition to two-sample and independence tests described
here, conditional independence tests and three-variable in-
teraction tests.

The technical challenge to achieve consistency of test deci-
sions is that latent distributions on which tests are defined
are not available (and instead are approximated with each
available set of observation). This introduces an additional
layer of uncertainty that must be bounded to derive well-
defined asymptotic distributions for the proposed test statis-
tics. For this reason, we put emphasis also on the quality
of finite-dimensional approximations of the proposed tests,
with approaches to minimize test statistic variance and to
tune hyperparameters for maximum power.

Our contributions are three-fold:

1. We formally describe tests on set-valued data, and to
the best of our knowledge for the first time.

2. We demonstrate the consistency of these tests for the
two-sample and independence testing problems.

3. We validate the proposed tests and optimization rou-
tines on simulated experiments that show that one may
consistently discriminate between hypotheses on data
that was previously not amenable to hypothesis testing.

2 BACKGROUND

The tests presented in this paper are formally defined on dis-
tributions. Testing on distributions is the problem of defining
a test statistic that maps distributions to a scalar that quan-
tifies the evidence for a hypothesis we might set on the
relationships in data. However, we do not have access to
probability distributions themselves, but rather distributions
are observed only through sets of samples,

{x1,j}n1
j=1, ..., {xN,j}nN

j=1. (1)

Each {xi,j}ni
j=1 is a set of ni individual observations xi,j

(typically in Rd). We assume that {xi,j}ni
j=1 are i.i.d sam-

ples from an unobserved probability distribution Pi. The
probability distributions {Pi}Ni=1 themselves have inherent
variability, such as can be expected for example from dif-
ferent medical patients. We assume each one of them to
be drawn randomly from some unknown meta-distribution
MP defined over a set of probability measures P . We il-
lustrate this set-up in Figure 1 for the two-sample problem
(more details in Section 3.1).

2.1 EMBEDDINGS OF DISTRIBUTIONS

Let X be a measurable space of observations. We use a posi-
tive definite bounded and measurable kernel k : X×X → R
to represent distributions Pi on X , and independent sam-
ples {xi,j}ni

j=1, as two functions µPi
, and µ̂Pi

respectively,
called kernel mean embeddings [30]. Both are defined in the
corresponding Reproducing Kernel Hilbert Space (RKHS)
Hk by,

µPi
:=

∫
X
k(x, ·)dPi(x), µ̂Pi

:=
1

ni

∑
x∈{xi,j}

ni
j=1

k(x, ·).

To make inference on populations of distributions, the de-
siratum however is on defining useful representations of
distributionsMP on the space probability measures, rather
than on the space of observations. Christmann et al. [6]
showed that one may do so analogously to the definition
of kernels on X by treating mean embeddings µP them-
selves as inputs to kernel functions, µP replacing x ∈ X in
the conventional learning setting as inputs to k, see eq. (2)
below.

Accounting for variance in embedding approximations.
In practice, each set representation µPi is limited to be ap-
proximated by irregularly sampled observations {xi,j}ni

j=1.



 Not all mean embeddings µP are expected to provide the
same amount of information about their underlying dis-
tribution P. Indeed, the empirical mean embeddings µ̂Pi

converge to their population counterpart at a rateO(1/√ni)
(see e.g. Lemma 1 in the Appendix and also [36]) in their set
size ni. Rather than assuming access to a uniform sample of
distributions {Pi}Ni=1 fromMP , like we did with the raw
observations {xi,j}ni

j=1, we may account for this irregularity
and uncertainty in approximation by interpreting the set of
distributions as a weighted sample {(Pi, wi)}Ni=1 ∼ MP .
Each weight quantifying the accuracy of the approximation
of each distribution with the limited samples available. The
corresponding population and empirical mean embedding
in this space may be written as,

µM :=

∫
P
K(µP, ·)dM(P), µ̂M :=

N∑
i=1

wiK(µPi
, ·).

(2)

We will make use of the Gaussian kernel between distri-
butions defined K(µP, µQ) := exp(−||µP − µQ||2HK

/2σ2)
[6, 29]. Note that for kernels on X , their RKHS consists of
functions X → R, while the kernel K lives on the space of
distributions on X , P(X ), and its RKHS consists of func-
tions P(X ) → R. We may use K to learn from samples
that are individual distributions, rather than individual ob-
servations, as described in [6].

Relationships with learning on distributions. With this
construction (i.e. kernels evaluated on mean embeddings)
[40] investigated generalization performance in distribu-
tional regression: regressing to a real-valued response from
a probability distribution. Results that were subsequently ex-
tended to study distributional regression for causal inference
in [26] and for transfer learning, see e.g. [5]. A technical
contribution of this paper is to extend these results to demon-
strate consistent hypothesis testing on distributions.

2.2 HYPOTHESIS TESTING WITH KERNELS

The advantage for hypothesis testing of mapping distribu-
tionsM andM′ to functions in an RKHS is that we may
now say thatM andM′ are close if the RKHS distance
||µM − µM′ ||HK

is small [9]. This distance depends on
the choice of the kernel K and k; a crucial property of the
embeddings is that for certain kernels the feature map is
injective. These kernels are called characteristic [37]. Prob-
ability distributions may be distinguished exactly by their
images in the RKHS, and also ||µM − µM′ ||HK

is zero if
and only if the distributions coincide [9]. From the statistical
testing point of view, this coincidence axiom is key as it
ensures consistency of comparisons for any pair of different
distributions.

As a key property of the set-up we have introduced, in Theo-
rem 2.2 [6] demonstrated that for well known kernels, such

as the Gaussian kernels, if used in both levels of the embed-
ding and defined on a compact metric space the resulting
embedding is injective (i.e. kernels are characteristic)1.

The empirical version of the RKHS distance, however, will
not necessarily be exactly zero even if the distributions
do coincide. Some variability is to be expected due to the
limited number of samples, and in contrast to conventional
kernel tests, in the case considered here also due to the
variability in the estimation of set embeddings. Instead of
testing on an i.i.d. sample {µPi}Ni=1, we are testing over
the set {µ̂Pi

}Ni=1. There is an additional level of uncertainty
which must be accounted for.

In practice, tests are constructed such that a certain hypoth-
esis is rejected whenever a test statistic exceeds a certain
threshold away from 0 [23]. Then, short from achieving
perfect discrimination between two hypotheses, the goal of
hypothesis testing is to derive a threshold such that false
positives are upper bounded by a design parameter α and
false negatives are as low as possible.

2.3 RELATED WORK

Distances on sets. As a first observation, note that kernels
defined on sets directly, as done e.g. by [19], measuring the
similarity between sets by the average pairwise point simi-
larities between the sets, are not known to be characteristic.
Attempts have also been made to define kernels on the space
of distributions, including probability product kernel [15],
the Fisher kernel [14], diffusion kernels [20] and kernels
arising from Kullback-Leibler divergences [28], none of
them known to be characteristic and in this case with the
shortcoming that many of the above are parameterized by a
family of densities which may or may not hold in data.

Possible extensions to other tests. Deep learning has
emerged as an alternative for defining tests on structured
objects. [27] define classifier two-sample tests and [24] use
deep kernels to embed structured objects. Tests in these
cases, however, are defined directly on the space of obser-
vations, it is not clear how to input examples of varying
sizes, or how to account for the uncertainty in individual
observations especially if these change across sets.

Other connections with hypothesis testing. Accommodat-
ing for input uncertainty has connections with robust hy-
pothesis testing. These tests attempt to explicitly enforce
invariances in test statistics in a certain uncertainty ball to
remove irrelevant sources of variation [8, 13]. Other types
of invariances can also be enforced, for instance [21] use
features designed to be invariant to additive noise and use
distances between those representations for hypothesis test-
ing. One may also use a model-based approach to capture

1Theorem 2.2 [6] technically shows that such kernels are uni-
versal, but universal kernels on a compact metric space are known
to be characteristic, see e.g. Theorem 1 [9].



 this uncertainty, for instance [4] use Gaussian processes and
compare posterior distributions. More generally, tests in the
functional data analysis literature, such as [46, 31, 44, 35, 7],
may be consistently applied on regularly sampled time series
data with a strong time-dependence. The set representation
in (1) assumes instead each observation (and time stamp
in the case of time series) to be drawn independently, a
formalism that may be adequate for some problems (e.g.
sufficiently sparse and irregular time series as observed in
primary care electronic health records see e.g. [2, 1, 22]
and other set-valued data) but not others (e.g. frequently
sampled time series).

3 HYPOTHESIS TESTS ON SETS

In the following sections, we propose tests to evaluate two
common hypotheses: the two sample problem of testing
equality of distributions in two samples, and the indepen-
dence problem of testing whether joint distributions in
paired samples coincide with the product of their marginals.

For both tests, the exposition mirrors well-known results in
kernel hypothesis testing which we will only briefly describe
(see [9, 12] for more background). The contribution of this
paper is to show that tests defined with a second level of
sampling are consistent and to show that correctly weighting
representations according to their set size is most efficient.

Algorithm. We may summarize hypothesis testing in this
context as follows:

1. Embed the distributions {Pi}Ni=1 into an RKHS us-
ing approximations of the mean embeddings {µ̂Pi}Ni=1

computed with independent samples {xi,j}ni
j=1 ∼ Pi.

2. Define test statistics on this feature representations to
test for a certain hypothesis or dependency structure in
M.

3.1 THE TWO SAMPLE PROBLEM

Consider a first collection of sets of observations, each i-
th set denoted {xi,s}ni

s=1 ∼ Pi, for a total of N such sets
with distributions {Pi}Ni=1 ∼ MP , and define similarly a
second collection of sets, each j-th set {yj,s}

nj

s=1 ∼ Qj ,
for {Qj}Mj=1 ∼ MQ. The problem we consider is to test
whether,

H0 :MP =MQ or else H1 :MP 6=MQ (3)

holds on the basis of the observations available in each
set. We illustrate this problem in Figure 1. The proposed
test statistic approximates the square of the RKHS distance
between densities MP and MQ, also called Maximum
Mean Discrepancy (MMD), which may be decomposed as

follows [9],

MMD2 :=EP,P′∼MP
K(P,P′) + EQ,Q′∼MQ

K(Q,Q′)
− 2EP∼MP ,Q∼MQ

K(P,Q) (4)

where K is the kernel on distributions given after equation

(2). We denote M̂MD
2

the empirical estimator of the MMD2

with expectations replaced by averages, obtained from in-
dependent samples {Pi}Ni=1 ∼ MP and {Qj}Mj=1 ∼ MQ.
The proposed statistic is defined by considering approxi-
mate mean embeddings of each distribution and considering
the weighted sample of their meta-distribution each of them
represents,

R̂MMD
2
:=

N∑
i,j=1

wPi
wPj

K(µ̂Pi
, µ̂Pj

)+

M∑
i,j=1

wQiwQjK(µ̂Qi , µ̂Qj )− 2

N,M∑
i,j=1

wPiwQjK(µ̂Pi , µ̂Qj )

R stands for robust. Assume for now that all weights are
fixed wPi = 1/N,wQj = 1/M for all i, j. We return to the
specification of weights in section 3.3. The asymptotic be-

haviour of M̂MD
2

is well understood [9] and the test itself
is extensively used in many applications [25, 33]. However,
these results do not extend trivially if each independent set
exhibits an additional source of variation due to the estima-
tion of the mean embedding. In the following proposition,
we bound the contribution of this additional source of varia-
tion and show that under the asymptotic regime where both
the set sizes and number of sets grow larger, asymptotic
distributions are well defined.

Proposition 1 (Asymptotic distribution). Let two samples
of data be defined as above and let K be characteristic
and LK-Lipschitz continuous. Then, under the null and
alternative and in the regime of increasing set size ni and
increasing sample size n, the asymptotic distributions of

R̂MMD
2

coincides with that of M̂MD
2
.

Proof. All proofs are given in the Appendix.

In other words, the additional variability due to a second
level of sampling converges to 0 asymptotically, and thus the
asymptotic distribution coverges to that of the well known
MMD two sample test of [9].

3.2 THE INDEPENDENCE PROBLEM

Independence tests are concerned with the question of
whether two random variables are distributed independently
of each other. For this problem, we start with a collection of
paired distributions {(Pi,Qi)}Ni=1 drawn from a joint dis-
tribution we denoteMPQ, and denote their marginalsMP



 andMQ. The hypothesis problem is to determine whether,

H0 :MPQ =MPMQ or else
H1 :MPQ 6=MPMQ (5)

Example. Consider an example from healthcare to illustrate
this problem.

• A similar set-up as that given in Figure 1 may
be used to illustrate independence testing with set-
valued data. A common problem is identify de-
pendencies between biomarkers, often observed ir-
regularly over time in many patients. For instance
cholesterol levels {xi,t1 , . . . , xi,tni

} and blood pres-
sure {yi,t1 , . . . , yi,tni

} may be observed over times
t1, . . . , tni

inN individuals i = 1, . . . , N . To formally
test for dependencies between these samples one must
account for the irregularity in observation time and
uncertainty in biomarker reads. This can be done by
considering instead distributions Pi and Qi and testing
for independence in this space directly.

As in the two-sample test, we may quantify the difference
between distributions using the RKHS distance ||µMPQ

−
µMP

⊗µMQ
||2HS . KernelsK, L are assumed characteristic;

|| · ||HS is the norm on the space of HK → HL Hilbert-
Schmidt operators, and ⊗ denotes the tensor product, such
that (a⊗b)c = a〈b, c〉 for a, b, c elements of a Hilbert space.
This distance is called the Hilbert Schmidt Independence
Criterion (HSIC) [10, 12].

Two empirical estimators can be written: one assuming ac-
cess to independent samplesMPQ and one with indepen-
dent samples from each of the paired distributions sampled
fromMPQ,

ĤSIC = Tr (KHLH)/N2

R̂HSIC = Tr (K̂HL̂H) ·N2 (6)

for kernel matrices with (i, j) entries Kij = K(Pi,Pj) =
〈µPi

, µPj
〉HK

and Lij = 〈µQi
, µQj

〉HL
for the popula-

tion version and K̂ij = wPiwPj 〈µ̂Pi , µ̂Pj 〉HK
and L̂ij =

wQiwQj 〈µ̂Qi , µ̂Qj 〉HL
with mean embeddings replaced by

their weighted finite sample counterparts for the robust
alternative. Assume for now that all weights are fixed
wPi

= 1/N,wQj
= 1/M for all i, j. The centering matrix

is defined by H = I − 1
N 11T and Tr is the trace operator.

Here, similarly to the two sample problem, approximations
due to a second level of sampling are well behaved and mir-
ror those of the robust statistic for the two-sample problem.
In particular, that asymptotic distributions of the RHSIC
and the HSIC coincide in the regime with increasing set
size and increasing sample size, making hypothesis testing
with the R̂HSIC consistent for the independence problem in
equation (5).

Proposition 2 (Asymptotic distribution). Let two samples
of data be defined as above and let K be characteristic
and LK-Lipschitz continuous. Then, under the null and
alternative and in the regime of increasing set size ni and
increasing sample size n, the asymptotic distributions of
R̂HSIC coincides with that of ĤSIC.

Independence testing with the ĤSIC has been studied in
[12, 47, 16].

3.3 PRACTICAL REMARKS

We make a number of remarks on the practical application
of our tests.

• Weights for high power. Set sizes in practice may be
limited. In the asymptotic regime of increasing number of
sets but finite set size, the properties of the estimator may
depend on appropriately weighting sets for high power.
The proposed weighting scheme addresses this point.
Recall that each individual observation xij is drawn inde-
pendently from their respective distributions Pi. Other fac-
tors of variations assumed to be common across sets, the
variance of the approximate embedding µ̂Pi

is therefore
proportional to 1/ni (i.e. the variation in approximation
of mean embeddings is due solely to diverging set sizes).
When mean embeddings have different variances, it is
efficient to give less weight to mean embeddings that have
high variances. By efficient in this context, we mean high-
est asymptotic power of tests based on mean embedding
representations of sets.
For V -statistics the asymptotic power function is well
known, and an argument involving the delta method for
differentiable kernels, expanded on in the Appendix, can
be used to determine the optimal weights to be given by
wPi

:= ni/
∑

i ni for each i.

• Hyperparameters for high power. With a similar intu-
ition, even though in theory we can expect high power for
any alternative hypothesis and any choice of kernel, with
finite sample size, some kernel hyperparameters will give
higher power than others. The proposed tests optimize
the choice of kernels by choosing hyperparameters that
minimize the asymptotic variance under the alternative
similarly to [39, 16]. But, in addition, we extend the opti-
mization to tune both the mean embedding to represent
sets and the kernel used for comparisons in Hilbert space.
Please find more details in the Appendix.

• Low-dimensional approximations for large scale data.
Testing on distributions as described is often not scalable
for even to large datasets, as computing each of the entries
of the relevant kernel matrices requires defining a high-
dimensional mean embedding. To define test statistics on
these representations we further embed the non-linear fea-
ture spaceHk defined by k into a random low dimensional
Euclidean space using their expansion in Hilbert space as



 a linear combination of the Fourier basis as proposed by
[34, 32]. If we draw m samples from the Gaussian spec-
tral measure, we can approximate the Gaussian kernel k
by,

k(x, y) ≈ 2

m

m∑
j=1

cos(〈ωj , x〉+ bj) cos(〈ωj , y〉+ bj)

= 〈φ(x), φ(y)〉

where ω1, ..., ωm ∼ N (0, γ), b1, ..., bm ∼ U [0, 2π], and

φ(x) =
√

2
m [cos(ω1x+ b1), ..., cos(ωmx+ bm)] ∈ Rm

[32]. The mean embedding µP = EX∼Pφ(X) can then be
approximated with elements in the span of (cos(〈ωj , x〉+
bj))

m
j=1. By averaging over the available ni samples

in Xi from the distribution Pi, the approximate finite-
dimensional embedding is given by,

µ̂Pi,m =
1

ni

∑
x∈{xij}

ni
j=1

√
2

m
(cos(〈wj , x〉+ bj))

m
j=1 ∈ Rm

All implementation details, including the above approxima-
tions, are given in the Appendix.

4 SYNTHETIC DATA EXPERIMENTS

The purpose of synthetic experiments will be to test power:
the rate at which we correctly rejectH0 when it is false, as
we increase the difficulty of the testing problems; and Type
I error: the rate at which we incorrectly rejectH0 when it
is true.

In all experiments, α (the target Type I error) is set to 0.05,
the number of time series is set to N = 500, the number of
observations made on each time series is random between 5
and 50, and each problem is repeated for 500 trials.

Tests for empirical comparisons. To the best of our knowl-
edge, no existing test naturally accommodates for set-valued
data with irregular sizes. Our approach to empirical com-
parisons will be to coerce the data into a fixed dimensional
vector in a well-defined manner, and evaluate existing tests
on this representation. To do so, we focus on time-series
-like data which we interpolate along the time axis with
cubic splines and evaluate at a fixed number of time points.

• The following tests are evaluated for the two-sample prob-
lem. The MMD [9] with hyperparameters optimized for
maximum power, two-sample classifier tests [27] which
involve fitting a deep classifier. We considered a recurrent
neural network with GRU cells for sequential data (C2ST-
GRU) and the DeepSets approach of [45] modelling
permutation invariance to be expected in sets (C2ST-
Sets). We consider also the Gaussian process-based test
(GP2ST) by [4].

• For the independence problem we consider: the HSIC
[12], the Randomized Dependence Coefficient (RDC)
[26] and Pearson Correlation Coefficient (PCC).

For all kernel-based tests, because their null distributions
are given by an infinite sum of weighted χ2 variables (no
closed-form quantiles), in each trial we use 400 random
permutations to approximate the null distribution. We give
more details on the implementation of each of these tests in
the Appendix.

4.1 TWO-SAMPLE PROBLEM

Experiment design. Each one of the two samples is de-
fined by a family of N distributions {Pi}Ni=1 we take to be
Gaussian Pi = η sin(2πt) + N (0, σi + σ). The variabil-
ity between the {Pi}Ni=1 is specified by σi, drawn from a
one-parameter inverse gamma distribution, which mimics
the behaviour of the meta-distribution and the observation
pattern we may observe in heterogeneous data. The differ-
ence between two populations of sampled distributions is
the mean amplitude η and/or shifts in baseline variance σ.

Two-sample problems become harder whenever these pa-
rameters converge to the same value in the two samples
and are easier when they diverge. The sampled Gaussian
distributions themselves are not observable and, in turn, we
have access to observations xij ∼ Pi. Each xij is obtained
by fixing t to tj ∼ U [0, 1] and subsequently sampling from
the Gaussian.

The result is two collections of noisy time series with non-
linear dynamics. Each time series, or set of observations, is
irregularly sampled with noise levels that vary between sets.

Results. We report performance for the two sample prob-
lems in the top row of Figure 2. Power is measured in three
experiments: first, as we increase the difference in time se-
ries amplitude (with equal variance σ = 0.1), second as
we increase the observation variance (with equal amplitude
η = 1) between the two populations, and third as the dimen-
sion of each time series increases (on data sampled with a
single dimension with a difference in amplitude equal to
0.25 and other dimensions with no difference). Type I error
is shown as a function of the number of samples.

All tests approximately control for type I error at the desired
threshold. In terms of power, we observe the RMMD to out-
perform across all experiments with an important contrast on
the difference in performance with the MMD. Even though
using similar test statistics, the RMMD much more faithfully
captures the irregularity and uncertainty of every individual
set of observations. RMMD similarly outperforms C2ST-
based tests, the strongest baselines, with up to a two-fold
increase in power for small differences in amplitude and
variance.



 

Figure 2: Power (higher better) and Type I error (at level 0.05) on synthetic data. The rightmost panel gives type I error with approximate
control at the level α = 0.05 for all methods. Top row: two-sample problem. Bottom row: independence problem. RMMD and RHSIC
are the proposed tests.

4.2 INDEPENDENCE PROBLEM

Experiment design. We aim to construct pairs of distri-
butions (Pi,Qi). Define the mean of each distribution Pi

as fi(t) := βi sin(2πt) + αit. Differently than in the two-
sample problem, the variability among the {Pi} appears in
the amplitude and trend of the sine function, let these be
βi ∼ U [0.5, 1.5] and αi ∼ U [−0.5, 0.5]. Once these param-
eters are sampled, paired distributions (Pi,Qi) are given
by Pi = fi(t) + N (0, σ) and Qi = g(fi(t)) + N (0, σ).
Each observation from this pair is obtained as in the two
sample problem by fixing a random t and sampling from
the resulting distribution.

The difficulty of the problem is governed by two factors: g
and σ. g determines the dependency between the two func-
tions. In every trial, g(x) is randomly chosen from the set
of functions {x2, x3, cos(x), exp(−x)}. Testing for depen-
dency is hard also for increasing variance σ of observations,
as this makes the dependent paired samples appear inde-
pendent. A sample of dependent sets of data using this data
generating mechanism is given in the lower rightmost panel
of Figure 2.

Results. Power and type I error are shown in the bottom row
of Figure . The bottom row of Figure 2 gives performance re-
sults for the independence problem. In the first two leftmost
panels we evaluate power as we increase the variance of
paired time series and as we increase the dimensionality of
each observation for a fixed variance σ = 0.5. The bottom
rightmost plot shows a sample of two dependent noisy time
series, colored blue and red respectively, for illustration.

The conclusions for this problem mirror the two-sample
testing experiments, with however a much larger increase
in power over alternatives, all using less flexible data rep-

resentations as none of them avoids interpolating between
observations before testing independence which we hypoth-
esize is one reason for their underperformance. This is con-
sistent with the increasing variance experiment, in this case
increasing variance worsens interpolation performance.

5 TESTING ON LUNG FUNCTION DATA
OF CYSTIC FIBROSIS PATIENTS

For people with Cystic Fibrosis (CF), mucus in the lungs
is linked with chronic infections that can cause permanent
damage, making it harder to breathe [17]. This condition
is often measured over time using FEV1% predicted;
the Forced Expiratory Volume of air in the first second of a
forced exhaled breath we would expect for a person without
CF of the same age, gender, height, and ethnicity [42]. For
example, a person with CF who has FEV1% predicted
equal to 50% can breathe out half the amount of air as we
would expect from a comparable person without CF. In this
experiment, we work with data from the UK Cystic Fibrosis
Trust containing records from 10, 980 patients with approx-
imately annual follow ups between 2008 and 2015, with the
objective of better understanding the dependence of lung
function over time with other biomarkers. For this problem
we found a significant influence of Body Mass Index (BMI)
over time and the number of days under intravenous antibi-
otics in a given year; both already known to be associated
with lung function [43, 18].



 

Figure 3: Illustration of the two-sample problem with global set-valued data versus local time series data.

Figure 4: Power and Type I error on Cystic Fibrosis data.

We use this information to create a set of problems under the
alternativeH1 with an additional twist. We increase hetero-
geneity among patients by artificially removing a proportion
p of densely sampled patients (here more than 4 record-
ings). The problem is to test for independence between a
patients two-dimensional trajectory of BMI and antibiotics
measurements over time, and their lung function trajectory
over time. In this set-up, we expect the information content
of the average patient to decrease, a scenario that lends it-
self to an importance-weighted approach (more weight on
densely sampled trajectories), such as described in section
3.3. In this section we test this property, which we found ad-
vantageous for higher missingness data patterns, as shown
in Figure 4. In this case, power tends to be higher after
weighting (RHSIC) versus not weighting (RHSIC-weight).
We report also type I errors, well controlled by all methods,
evaluated after shuffling the lung function trajectories be-
tween patients, such as to break the associations between
BMI and antibiotics, and lung function trajectories.

6 TESTING ON CLIMATE DATA

This experiment explores the use of extensive weather data
to determine whether the recent rapid changes in climate
associated with human-induced activities significantly differ
from natural climate variability. A number of variables are
used to monitor the state of the climate including precipi-
tation, wind patterns, and atmospheric composition among
others. It depends on the latitude and longitude, and regions
may vary and evolve differently over time [38].

Interpretation as set-valued data. We can think of the
multivariate measurements in different locations across the

globe at a given time as a set of data points. Each set sam-
pled from a probability distribution that represents the global
weather pattern of the climate. We follow standard descrip-
tions to define the climate as a collection of these sets ob-
served over a period of 20 years. The problem is to test
for significant differences in climate, represented by the
evolution of bags of (multi-channel) images, over time (see
Figure 3).

Experiment design. The data is publicly available, pro-
vided by the Copernicus Climate Change Service2. We in-
clude a total of 12 climate variables identified as essential
to characterize the climate3, including temperature, atmo-
spheric pressure, observed over monthly periods for the
last 40 years across Europe. The available data thus con-
sists of a two streams of sets {xi,j}ni

j=1 and {yi,j}ni
j=1 for

i = 1, . . . , 144 (12 months over 20 years). The first de-
scribes the climate over the period 1979 − 1999, and the
second set over the period 1999− 2019. Both contain mea-
surements xi,j ∈ R12 (yi,j respectively) in approximately
ni = 250 different locations (approximately because not all
locations are consistently observed over time) which makes
the length of each set irregular. Existing tests would thus
require some form of interpolation which is not trivial over
space and time in this case.

Problem. The problem is to test for the hypothesis of
equally distributed climate data over the past 4 decades.
We conduct 5 different tests: on data from the European,
African, North American, South American and South-East
Asian regions.

Results. RMMD rejects the hypothesis of equally dis-
tributed climate data over the past 4 decades in Europe
(p-value 0.0002), Africa (p-value 0.0014), and South Amer-
ica (p-value 0.0001) but fails to reject at a level of 0.01
for North America (p-value 0.016) and South-East Asia
(p-value 0.036).

In the case of Europe, we note that this result would be
different if only a particular location was considered (which
could have been a viable reductionist strategy to use existing
tests). For instance, we found that the RMMD applied to

2https://climate.copernicus.eu/.
3https://public.wmo.int/en/programmes/global-climate-

observing-system/essential-climate-variables



 climate data over the same periods in London and Paris to
not be significantly different (p-value 0.21). See Figure 3
for the time series of Paris and London temperature data.
This experiment demonstrates the potential benefits of using
more flexible tests that better represent available data to
faithfully investigate complex phenomena such as climate
that involve multiple measurements over time and space.

7 CONCLUSIONS

In this paper we extended the toolkit of applied statisticians
to do hypothesis testing on set-valued data. We have shown
that by appropriately representing each set of observations
in a Hilbert space, kernel-based hypothesis testing may be
applied consistently. Specifically, we introduced tests for
the two-sample and the independence problem, derived their
asymptotic distributions and provided efficient algorithms
and optimization schemes to analyse a wide range of scenar-
ios in an automatic fashion.
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