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Abstract

Density ratio estimation serves as an important
technique in the unsupervised machine learning
toolbox. However, such ratios are difficult to esti-
mate for complex, high-dimensional data, particu-
larly when the densities of interest are sufficiently
different. In our work, we propose to leverage an
invertible generative model to map the two dis-
tributions into a common feature space prior to
estimation. This featurization brings the densities
closer together in latent space, sidestepping patho-
logical scenarios where the learned density ratios
in input space can be arbitrarily inaccurate. At the
same time, the invertibility of our feature map guar-
antees that the ratios computed in feature space are
equivalent to those in input space. Empirically, we
demonstrate the efficacy of our approach in a va-
riety of downstream tasks that require access to
accurate density ratios such as mutual information
estimation, targeted sampling in deep generative
models, and classification with data augmentation.

1 INTRODUCTION

A central problem in unsupervised machine learning is that
of density ratio estimation: given two sets of samples drawn
from their respective data distributions, we desire an esti-
mate of the ratio of their probability densities [Nguyen et al.,
2007, Sugiyama et al., 2012b]. Computing this ratio gives us
the ability to compare and contrast two distributions, and is
of critical importance in settings such as out-of-distribution
detection [Smola et al., 2009, Menon and Ong, 2016], mu-
tual information estimation [Belghazi et al., 2018, Song
and Ermon, 2019], importance weighting under covariate
shift [Huang et al., 2006, Gretton et al., 2009, You et al.,
2019], and hypothesis testing [Gretton et al., 2012]. Related

*Denotes equal contribution.

Figure 1: Flowchart for the featurized density ratio esti-
mation framework. Direct density ratio estimation using a
black-box algorithm DRE on samples leads to poor ratio
estimates r̂(x) when p and q are sufficiently different. By
training a normalizing flow fθ on samples from both den-
sities and encoding them to a shared feature space prior to
estimation, we obtain more accurate ratios (r̂ ◦ fθ)(x).

areas of research which require access to accurate density ra-
tios, such as generative modeling [Gutmann and Hyvärinen,
2010, Goodfellow et al., 2014, Nowozin et al., 2016] and
unsupervised representation learning [Thomas et al., 2021],
have enjoyed tremendous success with the development of
more sophisticated techniques for density ratio estimation.

Despite its successes, density ratio estimation is an ex-
tremely hard problem when the two distributions of interest
are considerably different [Cortes et al., 2010, Yamada et al.,
2013, Rhodes et al., 2020]. The fundamental challenge in
reliably estimating density ratios in this scenario is precisely
the access to only a finite number of samples. As the dis-
tance between the densities increases, we become less likely
to observe samples that lie in low-density regions between
the two distributions. Therefore, without an impractically
large training set, our learning algorithm is highly likely to
converge to a poor estimator of the true underlying ratio.

To address this challenge, we propose a general-purpose
framework for improved density ratio estimation that brings
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 the two distributions closer together in latent space. The
key component of our approach is an invertible generative
model (normalizing flow), which is trained on a mixture
of datasets drawn from the two distributions and used to
map samples into a shared feature space prior to ratio esti-
mation [Rezende and Mohamed, 2015]. Encoding the data
via the normalizing flow transforms the observed samples
from the two densities to lie within a unit Gaussian ball.
We observe that this contraction helps mitigate pathologi-
cal scenarios where the learned ratio estimates are wildly
inaccurate. The invertibility of our feature map then guaran-
tees that the ratios computed in feature space are equivalent
to those in input space. We demonstrate the generality of
our framework by pairing it with several existing density
ratio estimation techniques, and explore various training
procedures in estimation algorithms that require learning a
probabilistic classifier. A flowchart of our featurized density
ratio estimation algorithm can be found on Figure 1.

Empirically, we evaluate the efficacy of our approach on
downstream tasks that require access to accurate density
ratios. First, we demonstrate that applying our approach
to existing density ratio estimation techniques on synthetic
data leads to better performance on downstream domain
adaptation and mutual information (MI) estimation. Next,
we demonstrate the utility of our framework on a targeted
generation task on MNIST [LeCun, 1998]. By leveraging
the “featurized" density ratios for importance sampling from
a trained generative model, we show that the resulting sam-
ples are closer to the target distribution of interest than the
synthetic examples generated using input-space density ra-
tios. Finally, we illustrate that our method can be used to
improve upon naive data augmentation methods by reweigh-
ing synthetic samples, outperforming relevant baselines on
multi-class classification on Omniglot [Lake et al., 2015].

The contributions of our work can be summarized as:

1. We introduce a general-purpose algorithm for estimat-
ing density ratios in feature space and show its applica-
bility to a suite of existing ratio estimation techniques.

2. By leveraging the invertibility of our feature map, we
prove that our featurized density ratio estimator inherits
key properties such as unbiasedness and consistency
from the original ratio estimation algorithm.

3. On downstream tasks that require access to accurate
density ratios, we show that our approach outperforms
relevant baselines that compute ratios in input space.

2 PRELIMINARIES

2.1 INVERTIBLE TRANSFORMATIONS VIA
NORMALIZING FLOWS

Deep invertible generative models, or normalizing flows,
are a family of likelihood-based models that describe the

two-way transformation between a complex, continuous
probability density and a simple one by the change of vari-
ables formula [Rezende and Mohamed, 2015, Papamakarios
et al., 2019]. The flow is parameterized by a deep neural
network fθ : X → Z with carefully designed architec-
tures such that the overall transformation is composed of
a series of bijective mappings with tractable inverses and
Jacobian determinants [Dinh et al., 2016, Kingma et al.,
2016, Papamakarios et al., 2017, Kingma and Dhariwal,
2018, Grathwohl et al., 2018, Ho et al., 2019]. As a result,
the density of the random variable X = f−1θ (Z) can be
evaluated exactly:

p(x) = t(fθ(x))

∣∣∣∣det
∂fθ(x)

∂x

∣∣∣∣
where f−1θ : Z → X denotes the inverse of the mapping fθ,
p denotes the probability density of the random variable X ,
and t denotes the probability density of Z. The base (prior)
distribution t(z) is typically chosen to be an isotropic Gaus-
sianN (0, I) – the simplicity of evaluating this prior density,
coupled with the tractability of f−1θ and its Jacobian, allows
us to train the normalizing flow via maximum likelihood.
The key property of normalizing flows that we exploit in our
method is their invertibility: the dimensionality of X and
Z are the same by design, and data points can be losslessly
mapped between the two spaces. As we will demonstrate in
Section 3.2, this will be critical for translating the density
ratios obtained in latent space back to those in input space.

2.2 DENSITY RATIO ESTIMATION
TECHNIQUES

Notation and Problem Setup. We denote the input vari-
able as x ∈ X ⊆ Rd, and let z ∈ Z ⊆ Rd be a latent
variable of the same dimensionality as the input. We use
capital letters to denote random variables, e.g. Xp ∼ p and
Xq ∼ q. Then, Zp = fθ(Xp) and Zq = fθ(Xq) denote the
random variables obtained by transforming Xp and Xq with
fθ. We note that since Zp and Zq are transformed by the
same normalizing flow fθ, we can form the mixture density
Z = 1

2Zp + 1
2Zq ∼ t, where t(z) ∼ N (0, I).

The learning setting we consider is as follows. Given two
sets of observed samples Dp = {xpi }

np

i=1 ∼ p(x) and Dq =
{xqj}

nq

j=1 ∼ q(x), we wish to estimate the ratio of their
underlying probability densities r(x) = p(x)/q(x). We
focus on direct ratio estimation techniques, where we learn
the density ratio estimator r̂ rather than constructing explicit
density estimates of p̂(x) and q̂(x) and computing their ratio
[Sugiyama et al., 2012b]. The estimator r̂ is obtained via an
estimation algorithm DRE which takes as input two datasets
and returns a function DRE(Dp,Dq) = r̂ : X → R. Then,
evaluating r̂ at a particular point x gives us an estimate of the
true density ratio r̂(x) ≈ r(x). In the following exposition,
we provide background information on the suite of existing
density ratio estimation algorithms.



 

(a) Baseline classifier (b) Separate training (flow) (c) Joint training (α = 0.9) (d) Discriminative training

(e) Ground truth data (f) Separate training (flow) (g) Joint training (α = 0.9) (h) Discriminative training

Figure 2: Top row: Motivating example on a synthetic 2-D Gaussian dataset, with learned density ratio estimates by method
relative to the ground truth values for (a-d). Bottom row: Visualizations of the learned encodings for various training
strategies for (f-h), with ground truth samples from p(x) and q(x) in (e). We note that using a pretrained flow as an invertible
encoder as in (b) leads to the most accurate density ratio estimates.

Direct Ratio Estimation. From the wealth of alternative
estimators for this task [Kanamori et al., 2009, Sugiyama
et al., 2012a, Vapnik et al., 2013], we outline two classical
methods which perform density ratio estimation that benefit
from featurization as per our framework: (1) Kernel Mean
Matching (KMM) [Huang et al., 2006, Gretton et al., 2009],
which draws inspiration from moment matching techniques,
and (2) the Kullback-Leibler Importance Estimation Proce-
dure (KLIEP) [Nguyen et al., 2007, Sugiyama et al., 2008].

For KMM, density ratio estimates are obtained by projecting
all inputs into a reproducing kernel Hilbert space (RKHS)
H induced by a characteristic kernel k : X × X → R.
Although several choices for the kernel are possible, Huang
et al. use the Gaussian kernel k(x,x′) = exp(||x − x′||2)
to arrive at the following objective:

min
r̂∈H
||Eq(x) [k(x, ·)r̂(x)]− Ep(x) [k(x, ·)] ||2H

where both expectations are approximated via Monte Carlo.
Intuitively, KMM attempts to match the mean embedding
of the two distributions (where the embedding is produced
by the canonical feature map defined by k) inH.

For KLIEP, the goal is to estimate density ratios r(x) =
p(x)/q(x) such that the Kullback-Leibler (KL) divergence
between p(x) and p̂(x) = r̂(x)q(x) is minimized:

min
r̂(x)

Ep(x)
[
log

p(x)

r̂(x)q(x)

]
s.t.

∫
r̂(x)q(x)dx = 1

The solution to this constrained optimization problem
can also be obtained in H by parameterizing r̂θ(x) =

∑np

i=1 θik(x,xpi ) for xp ∼ p(x) and some kernel k, sim-
ilar in spirit to KMM.

Probabilistic Classification. Another technique to obtain
density ratio estimates is via probabilistic classification, in
which a binary classifier cφ : X → [0, 1] is trained to dis-
criminate between samples from the two densities p(x) and
q(x) [Friedman et al., 2001, Gutmann and Hyvärinen, 2010,
Sugiyama et al., 2012b]. Concretely, suppose we construct
a dataset such that all samples Dp are given the pseudolabel
y = 1, and those from Dq are labeled as y = 0. Assuming
that the two datasets are equal in size (np = nq , though this
can be relaxed with a scaling factor), we can use Bayes’ rule
to arrive at the following expression for the density ratio:

r(x) =
p(x)

q(x)
=
p(x|y = 1)

q(x|y = 0)
=

c∗φ(x)

1− c∗φ(x)

where c∗φ(x) = P (y = 1|x) denotes the Bayes optimal
classifier for this particular task.

3 FEATURIZED DENSITY RATIO
ESTIMATION

3.1 MOTIVATING EXAMPLE AND INTUITION

Despite the suite of existing techniques for density ratio
estimation, they are of limited use in settings where p(x)
and q(x) are mismatched in support [Cortes et al., 2010,
Yamada et al., 2013, You et al., 2019, Rhodes et al., 2020]
We highlight an illustrative failure case in Figure 2 on a
2-dimensional toy dataset, where p(x) ∼ N ([0, 0]T , I) and



 q(x) ∼ N ([3, 3]T , I). As shown in Figure 2(e), the two
random variables have regions of minimal overlap – when
training a binary classifier cφ to distinguish the two sets of
samples, the log-ratio estimates log r̂φ(x) learned by the
classifier are noticeably inaccurate (Figure 2(a)).

To develop a solution, we consider a simple example to
build intuition about the problem (with more details in Ap-
pendix B). Suppose we want to estimate the density ratios be-
tween two 1-dimensional Gaussians, p ∼ N (m, 1) and q ∼
N (−m, 1), with a finite number of samples Dp = {xpi }ni=1

and Dq = {xqi }ni=1 of size n from each. The analytic solu-

tion for r(x) = p(x)/q(x) = exp
(
− (x−m)2−(x+m)2

2

)
=

exp(2mx) for x ∈ R, which grows exponentially with m.
Without access to the parametric forms of p and q, we train
a logistic regression model cφ to discriminate between Dp
and Dq , where the maximum likelihood objective is:

max
w0,w1

Ep[log σ(w0 + w1 · x)] + Eq[log σ(−w0 − w1 · x)]

where σ(z) = 1/(1 + exp(−z)). Although the logistic
regression model is well-specified in this setting, and can
achieve Bayes optimal risk in the limit of infinite data, we
illustrate what can go wrong in the finite sample regime.

Suppose that m > 0 is large – there exists a large separation
between p and q. Then, most samples Dp ∼ p will take
on positive values, and most samples Dq ∼ q will be nega-
tive. In this situation, the model will be incentivized to push
w1 →∞ to maximize the objective. This will lead to wildly
inaccurate density ratio estimates, as we know that the true
values of w1 = 2m and w0 = 0 are far from infinity (in fact,
r(x) = exp(w1 · x)). Thus we must see samples between p
and q during training: concretely, samples from p such that
xp ≤ 0 and samples from q such that xq ≥ 0. But with n
samples from p, the probability that Dp contains all posi-
tive samples is

∏n
i=1 P (Xp > 0) ≥ (1− n exp(−m2/2)),

which means that the number of samples required to avoid
pathological solutions is exponential in m2. This implies
that density ratio estimation via probabilistic classification
in input space is near impossible in such scenarios without
extremely large amounts of training data.

3.2 METHODOLOGY

The motivating example in the previous section suggests
that it is critical to bring p and q “closer together" to make
the density ratio estimation problem tractable. Our solution
is to do so in latent space by leveraging an invertible trans-
formation. Concretely, we consider training an invertible
deep generative model fθ on a mixture of p(x) and q(x),
such that fθ(Xp) and fθ(Xq) are mapped to a common fea-
ture space Z . The result of utilizing fθ as invertible feature
map can be visualized in Figure 2(f): the flow compresses
all data points to lie in different regions of a unit Gaussian
ball. By mapping regions of low density in X into regions

of higher density in Z , and training our probabilistic clas-
sifier cφ on fθ(x) ∈ Z rather than x ∈ X directly, this
contraction leads to learning more accurate density ratios as
shown in Figure 2(b). We refer the reader to Appendix F for
additional experimental details and results.

Our first observation is that as a direct consequence of the
invertibility of fθ, the density ratios obtained in feature
space are equivalent to those obtained in input space. We
formalize this statement in Lemma 1 below.

Lemma 1. Let Xp ∼ p be a random variable with density
p, and Xq ∼ q be a random variable with density q. Let
fθ be any invertible mapping. Let p′, q′ be the densities of
Zp = fθ(Xp) and Zq = fθ(Xq) respectively. Then for any
x:

p(x)

q(x)
=
p′(fθ(x))

q′(fθ(x))

Proof. We provide the proof in Appendix C.1.

This simple observation is quite powerful, as it lends us a
general-purpose algorithm that may improve many exist-
ing ratio estimation techniques as a black-box wrapper. We
provide the pseudocode for our training procedure in Algo-
rithm 1. Given the two sets of samples, the ratio estimation
method, and an invertible generative model family, we first
train the normalizing flow on a mixture of the two datasets
(Lines 2-3). We then use the trained flow to encode the sam-
ples into a common feature space and plug them into the
base density ratio estimator algorithm DRE(·) to obtain our
featurized density ratio estimator r̂ ◦ f∗θ , which is implicitly
composed with the trained normalizing flow (Line 6). This
algorithm allows us to lightly modify existing approaches
such as KMM and KLIEP as detailed in Appendix A, and
we explore their featurized variants in our experiments.

Algorithm 1 Featurized Density Ratio Estimation
Input: Datasets Dp and Dq, Density Ratio Estimation
Algorithm DRE, Invertible Generative Model Family
{fθ, θ ∈ Θ}
Output: Featurized Density Ratio Estimator r̂ ◦ f∗θ

1: . Phase 1: Train invertible generative model
2: Concatenate datasets D = {Dp,Dq}
3: Train fθ∗ on D via maximum likelihood
4: . Phase 2: Obtain density ratio estimator
5: r̂ = DRE(fθ∗(Dp), fθ∗(Dq))
6: return r̂ ◦ f∗θ

3.3 TRAINING PROCEDURE

In practice, there are a variety of ways to implement the
training procedure as outlined in Algorithm 1. The most



 general is separate training, which leverages a pre-trained
flow fθ as an invertible encoder to map the inputs into
a common feature space, prior to ratio estimation. This
approach is capable of handling all parametric and non-
parametric techniques which operate directly in input space.

In the probabilistic classification setting, where the density
ratio estimation algorithm DRE(·) requires learning a binary
classifier cφ to distinguish between Dp and Dq, we can
adapt the normalizing flow fθ to account for the known
structure of cφ. We call this procedure joint training. Both
the normalizing flow fθ and the discriminative classifier cφ
are trained jointly via the following objective:

Ljoint(θ, φ) = αLsup(θ, φ) + (1− α)Lflow(θ) (1)

where Lsup denotes the standard binary cross entropy (logis-
tic) loss, Lflow denotes the maximum likelihood objective
for the flow fθ, and α ∈ [0, 1] is a hyperparameter which
balances the importance of the two terms in the loss func-
tion. This approach is quite common in learning deep hybrid
models [Kuleshov and Ermon, 2017, Nalisnick et al., 2019].

Finally, we explore discriminative training, where we
modify the classifier cφ’s architecture to incorporate that of
the flow fθ to build an “invertible" classifier cφ,θ : X →
[0, 1] that is trained solely via the logistic loss Lsup(θ, φ).
This is inspired by the strong performance of invertible net-
works such as i-RevNet [Jacobsen et al., 2018], i-ResNet
[Behrmann et al., 2019], and Mintnet [Song et al., 2019] on
downstream classification tasks.

3.4 CHARACTERIZATION OF THE LEARNED
FEATURE SPACE

At a first glance, Lemma 1 appears to suggest that any fea-
ture space induced by an invertible map should work well
for density ratio estimation, as long as fθ(Xp) and fθ(Xq)
are closer together than Xp and Xq . To gain further insight
into the desirable characteristics of the learned feature space,
we visualize the encodings of the various training strategies
in Figure 2. For both a pretrained (Figure 2(f)) and jointly
trained (Figure 2(g)) normalizing flow, the data points are
mapped to lie closer together in different regions of the unit
Gaussian ball. However, for the discriminatively trained clas-
sifier equipped with an invertible “encoder" (Figure 2(h)),
the encoded examples more closely resemble the shape of
the original inputs (Figure 2(e)). This observation, combined
with the low quality density ratio estimates in Figure 2(d)
relative to the other training methods (Figure 2(b-c)), sug-
gests that maximum likelihood training of the normalizing
flow fθ in addition to shrinking the gap between the densi-
ties p and q is crucial for obtaining accurate density ratios
in feature space. We hypothesize that mapping the observa-
tions into a unit Gaussian ball is an important property of
our method, and we save an in-depth theoretical analysis of
this phenomenon for future work.

4 THEORETICAL ANALYSIS

In this section, we provide theoretical justifications for sev-
eral properties of the featurized density ratio estimator. As a
consequence of Lemma 1, we find that our estimator inherits
many of the desirable properties of the original estimator.

4.1 PROPERTIES OF THE ESTIMATOR

Unbiasedness. Unbiasedness is one of the most funda-
mental desiderata of a statistical estimator, as it guarantees
that the estimated parameter is equivalent to the parameter’s
true value in expectation. In Corollary 1, we prove that un-
biasedness of the featurized ratio estimator follows directly
if the original estimator is also unbiased.

Corollary 1. Let Dp be n i.i.d samples from density p, and
Dq be n i.i.d samples from density q. Let r̂(x) obtained from
r̂ = DRE (Dp,Dq) be an unbiased estimator of r(x) = p(x)

q(x)

and any p, q, and let fθ denote any invertible mapping. Then,
(r̂′ ◦ fθ)(x) obtained from r̂′ = DRE (fθ(Dp), fθ(Dq)) is
also an unbiased estimator of p(x)q(x) for any p, q.

Proof. We provide the proof in Appendix C.2.

Consistency. Consistency is another key property in a sta-
tistical estimator, as it guarantees that in the limit of infinite
data used in the estimation procedure, the probability that
the estimator becomes arbitrarily close to the true parameter
converges to one. We prove in Corollary 2 that consistency
of the featurized density ratio estimator also follows if the
original density ratio estimator is consistent. This is de-
sirable, as estimators such as the KLIEP and KMM (with
universal kernels) are both consistent [Huang et al., 2006,
Gretton et al., 2009, Sugiyama et al., 2012b].

Corollary 2. Let Dp be n i.i.d samples from density p,
and Dq be n i.i.d samples from density q. Let r̂(x) ob-
tained from r̂ = DRE(Dp,Dq) be a consistent estima-
tor of p(x)

q(x) for all x ∈ X and for any p, q. Let fθ be
any invertible mapping. Then, (r̂′ ◦ fθ)(x) obtained from
r̂′ = DRE (fθ(Dp), fθ(Dq)) is also a consistent estimator
of p(x)q(x) for any p, q.

Proof. We provide the proof in Appendix C.3.

5 EXPERIMENTAL RESULTS

In this section, we are interested in empirically investigating
the following questions:

1. Are the density ratios learned in feature space indeed
more accurate than those learned in input space?



 2. Do estimates in feature space yield better performance
on downstream tasks that rely on density ratios?

For conciseness, we report the average over several runs for
all experiments and report complete results in Appendix F.

Datasets. We evaluate the efficacy of featurized density ra-
tio estimation on both synthetic and real-world datasets. The
synthetic experiments include toy examples on Gaussian
mixtures of varying dimensionality (see Appendix F.2), as
well as datasets from the UCI Machine Learning Repository
[Dua and Graff, 2017]. For more challenging scenarios, we
consider MNIST [LeCun, 1998] and Omniglot [Lake et al.,
2015]. Additional details on the dataset construction for all
experiments can be found in Appendix D.

Models. We train different classifiers depending on the dif-
ficulty of the classification task, but largely keep the same
architecture (either an MLP or CNN) across different tasks.
For the normalizing flow, we utilize the Masked Autore-
gressive Flow (MAF) for all datasets [Papamakarios et al.,
2017]. We train the MAF separately on the mixture of the
two datasets prior to density ratio estimation for all experi-
ments with the exception of the MI estimation experiment
in Section 5.2, where we explore various training strategies
mentioned in Section 3.3. For additional details regarding
architecture design and relevant hyperparameters, we refer
the reader to Appendix E.

5.1 DOMAIN ADAPTATION

We first pair our method with two existing techniques, KMM
and KLIEP, to assess whether estimating ratios in feature
space improves performance on domain adaptation tasks
with: 1) 2-D Gaussian mixtures and 2) the UCI Breast Can-
cer dataset. On the synthetic dataset, our method achieves a
lower test error than both baseline logistic regression (with-
out importance weighting) and reweighted logistic regres-
sion using density ratios estimated by KMM and KLIEP in
input space. See Appendix F.2 for full results.

The UCI Breast Cancer dataset consists of n = 699 ex-
amples from 2 classes: benign (y = 1) and malignant
(y = −1), where each sample is a vector of 9 features.
We replicate the experimental setup of [Huang et al., 2006]
to construct a source dataset with a heavily downsampled
number of benign labels, while leaving the target dataset
as is. After learning the importance weights via density ra-
tio estimation on a mixture of the source and (unlabeled)
target datasets, we train a support vector machine (SVM)
with a Gaussian kernel of bandwidth σ = 0.1 and varying
penalty hyperparameter values C = {0.1, 1, 10, 100} with
importance weighting on the source domain. The binary
classifier is then tested on the target domain. As shown in
Figure 3, when applied to KMM, for nearly all values of C,
our method (z-dre) achieves the lowest test error on the
target dataset compared to both a vanilla SVM (baseline)

and a reweighted SVM with density ratio estimates com-
puted in input space (x-dre). Additionally, we note that
our method achieves the absolute lowest test error across
varying values of C. We report the average values of our
KMM experiments over 30 runs in Figure 3.

All methods performed poorly overall for our KLIEP experi-
ments. This result aligns with many past works with KLIEP
importance-weighted classification; empirically, KLIEP
only outperforms baseline unweighted classifiers on syn-
thetic data, while on more complex datasets (e.g. UCI),
KLIEP shows no significant improvements [Sugiyama et al.,
2007, Tsuboi et al., 2008, Yamada and Sugiyama, 2009,
Loog, 2012]. In order to confirm the consistency of this
behavior, we performed an additional experiment with a
slightly different dataset-biasing process in which data
points that were further from the mean were selected less
often, similarly to Huang et al. [2006]; we report more de-
tails on the biased subsampling process in Appendix D.2.
We used two datasets: 1) the UCI Blood Transfusion dataset
and 2) the UCI Wine Quality dataset and found that both
reweighted classifiers performed similarly to the baseline.
Notably, our z-dre method does not degrade the perfor-
mance of KLIEP. Table 1 shows our results.

Figure 3: KMM test error on binary classification of the UCI
Breast Cancer dataset using a SVM with varying C. Lower
is better. Results are averaged over 30 runs.

5.2 MUTUAL INFORMATION ESTIMATION

Next, we test our approach on a mutual information (MI)
estimation task between two correlated 20-dimensional
Gaussian random variables, where the ground truth MI is
tractable. MI estimation between two random variables Xp

and Xq is a direct application of density ratio estimation, as
the problem can be reduced to estimating average density
ratios between their joint density and the product of their
marginals. If we let v denote the joint density of Xp and Xq ,

we can see that: I(Xp;Xq) = Ev(xp,xq)

[
log v(xp,xq)

p(xp)q(xq)

]
.

We adapt the experimental setup of [Belghazi et al., 2018,
Poole et al., 2019, Song and Ermon, 2019] to use a correla-
tion coefficient of ρ = 0.9.



 Blood Transfusion C = 0.1 C = 1 C = 10 C = 100

KLIEP with DRE in z-space (ours) 0.235± .0274 0.235± .0274 0.234± .0283 0.234± .0282
KLIEP with DRE in x-space 0.235± .0274 0.235± .0274 0.234± .0282 0.233± .0284
Unweighted SVM baseline 0.235± .0274 0.235± .0274 0.234± .0287 0.234± .0285

Wine Quality C = 0.1 C = 1 C = 10 C = 100

KLIEP with DRE in z-space (ours) 0.304± .0120 0.260± .00937 0.265± .00817 0.290± .00987
KLIEP with DRE in x-space 0.304± .0123 0.262± .0105 0.266± .0113 0.290± .0103
Unweighted SVM baseline 0.302± .0274 0.257± .0074 0.262± .00863 0.289± .0933

Table 1: KLIEP test error of each method on binary classification for the UCI Blood Transfusion and Wine Quality datasets.
Results are averaged over 30 runs. KLIEP reweighting in general does not offer significant improvement over the unweighted
baseline–in particular, our method (z-space) doesn’t degrade performance.

We further explore the effect of the various training strate-
gies as outlined in Section 3.3. While we use a MAF as
the normalizing flow for all configurations, we evaluate our
approach against: (a) the baseline classifier (baseline);
(b) the two-stage approach (separate), where the flow
is trained first on a mixture of Dp and Dq before training
the classifier on the encoded data points; (c) jointly training
the flow and the classifier (joint); and (d) a purely dis-
criminative approach where the classifier architecture has
a flow component (disc-only). For joint training, we
sweep over α = {0.1, 0.5, 0.9}. As shown in Figure 4, the
probabilistic classifier trained in feature space (after encod-
ing the data using the normalizing flow) via our method
outperforms relevant baselines. Interestingly, we find that
for the joint training, higher values of α (which places a
greater emphasis on the classification loss Lsup rather than
Lflow as in Eq. 1) leads to more accurate MI estimates. For
additional details on the data generation process and experi-
mental setup, we refer the reader to Appendix E.

Figure 4: Estimated MI for various training strategies. The
true MI for the corresponding value of ρ = 0.9 is 16.67.
While separate training outperforms all baselines, joint train-
ing achieves competitive performance with larger α.

5.3 TARGETED GENERATION WITH MNIST

For this experiment, we evaluate the effectiveness of our
learned density ratio estimates on a targeted generation task
using the MNIST dataset. Our goal is to generate samples

according to a target distribution q(x) in a data-efficient
manner, given samples from both p(x) and q(x). We test
two scenarios: (a) diff-digits: a subset of MNIST in
which p(x) is comprised of the digits labeled {1,2}, and
q(x) which is comprised of the digits labeled {0,7}; (b)
diff-background: a setting in which p(x) contains the
original MNIST digits (black background, white digits);
and q(x) contains the same examples but with flipped col-
ors (white background, black digits). The second scenario
is trickier than the first, since there exists an obvious gap
between the two distributions. We also explore the effect
of the target dataset size q(x) in learning accurate den-
sity ratios. Following the setup of [Choi et al., 2020], we
sweep over various sizes of q(x) relative to p(x), which
we call perc={0.1, 0.25, 0.5, 1.0} (where perc = 0.5
indicates that Dq is 50% the size of Dp). After training a
MAF on both Dp and Dq and obtaining density ratio esti-
mates (importance weights), we sample from the trained
MAF via sampling-importance-resampling (SIR) [Liu and
Chen, 1998, Doucet et al., 2000] at generation time.

As shown in Table 2, we achieve greater success in the
targeted generation task when performing SIR with impor-
tance weights learned in feature space. Averaged across
perc={0.1, 0.25, 0.5, 1.0} with 1000 generated samples
each, our method generates 19.1% more samples from
q(x) relative to the pretrained flow and 6.7% more sam-
ples than the baseline with importance weights learned
in input space on the diff-digits task. Similarly for
the diff-background task, our framework generates
18.8% more samples from q(x) relative to the pretrained
flow and 16.4% more samples than the baseline. For addi-
tional experimental details, as well as the generated samples,
we refer the reader to Appendix D and F.

5.4 CLASSIFICATION WITH DATA
AUGMENTATION ON OMNIGLOT

Finally, we follow the experimental setup of [Grover et al.,
2019] by utilizing Data Augmentation Generative Adversar-
ial Networks (DAGAN) [Antoniou et al., 2017] as a genera-



 Different Digits perc=0.1 perc=0.25 perc=0.5 perc=1.0

SIR with IW(z) (ours) 0.447 ± 0.020 0.518 ± 0.008 0.777 ± 0.018 0.860 ± 0.004
SIR with IW(x) 0.441 ± 0.002 0.528 ± 0.004 0.639 ± 0.007 0.754 ± 0.007
Regular sampling 0.406 ± 0.055 0.457 ± 0.07 0.596 ± 0.052 0.720 ± 0.035

Different Backgrounds perc=0.1 perc=0.25 perc=0.5 perc=1.0

SIR with IW(z) (ours) 0.186 ± 0.005 0.377 ± 0.001 0.580 ± 0.005 0.732 ± 0.008
SIR with IW(x) 0.085 ± 0.003 0.202 ± 0.003 0.345 ± 0.013 0.528 ± 0.022
Regular sampling 0.084 ± 0.003 0.196 ± 0.003 0.304 ± 0.003 0.493 ± 0.016

Table 2: MNIST targeted generation results averaged over 3 runs. Columns show the fraction of generated samples with the
target attribute (higher is better) across varying sizes of the target dataset. 1000 samples were generated for each setup.

tive model for importance-weighted data augmentation on
the Omniglot dataset [Lake et al., 2015]. Since Omniglot is
comprised of 1600+ classes with only 20 examples per class,
the goal of this experiment is improve the performance of
a downstream multi-class classifier by effectively leverag-
ing additional samples generated by the DAGAN. To do
so, we train a separate probabilistic classifier to distinguish
between the true and the generated examples, yielding im-
portance weights for each synthetic example that can be
used for training the downstream classifier of interest.

We first train a MAF on a mixture of the training examples
and generated samples, encode all the data using the flow,
and obtain importance weights via the encodings. The im-
portance weights are obtained by training a binary classifier
on the featurized inputs. We experiment with different base-
lines: (a) training the classifier without any data augmen-
tation (Data-only); (b) training the classifier on purely
synthetic samples (Synthetic-only); (c) training the
classifier with data-augmentation without any importance
weighting (Mixture-only); (d) the data-augmented clas-
sifier with importance weights obtained from input space
(Mixture + IW(x)); and (e) the data-augmented classi-
fier with importance weights obtained from feature space
(Mixture + IW(z)). As shown in Table 3, the impor-
tance weights learned in the feature space show a significant
boost in overall downstream classification accuracy as com-
pared to relevant baselines: our method improves 3.7% over
the Data-only baseline, and 2.2% over the highest per-
forming baseline. We refer the reader to Appendix F for
additional experimental details and results.

6 RELATED WORK

Density Ratio Estimation in Feature Space. Although
density ratio estimation in machine learning has an ex-
tremely rich history [Friedman et al., 2001, Huang et al.,
2006, Nguyen et al., 2007, Gutmann and Hyvärinen, 2010,
Sugiyama et al., 2012b], there is considerably less work ex-
ploring the method’s counterpart in feature space. [Rhodes
et al., 2020], while tackling the same problem of density

ratio estimation between two different data distributions,
adopts a different approach than our framework. In particu-
lar, they propose a divide-and-conquer solution by construct-
ing intermediate distributions between the two densities p(x)
and q(x), and requires the training of a multi-task logistic
regression model rather than a single binary classifier. Their
interpolation technique, which is also conducted in the latent
space of a normalizing flow in one of their experiments, is
complementary to our framework – investigating the combi-
nation of these two approaches would be interesting future
work. Additionally, density ratio estimation (in the form of
learning importance weights) has been popular in a variety
of domain adaptation approaches such as [Bickel et al., 2007,
Long et al., 2015, You et al., 2019] which leverage a feature
extractor to project the inputs into a lower-dimensional man-
ifold prior to estimation. Although our approach shares a
similar idea, the invertibility of our feature map guarantees
that the density ratios between input space and feature space
are equivalent – this is not necessarily true if the inputs are
lossily compressed.

Neural Hybrid Models. Combining both generative and
discriminative training approaches in neural networks has
previously been explored in the literature [Maaløe et al.,
2016, Gordon and Hernández-Lobato, 2017, Kuleshov and
Ermon, 2017]. Our work bears most similarity to [Nalis-
nick et al., 2019], as we also require learning an invertible
generative model and a discriminator. However, our method
does not require that the normalizing flow be trained to-
gether with the probabilistic classifier, and can be used for
more downstream applications beyond out-of-distribution
detection and semi-supervised learning, as our goal is to ac-
curately estimate density ratios. Additionally, our approach
is related to conditional normalizing flows such as [Dinh
et al., 2019] and [Winkler et al., 2019] which explicitly par-
tition the latent space of the flow pZ(z) to map different
components of the input into disjoint regions in the prior.
Although we empirically verify that this is also the case for
our method, it is more general precisely because the best
partitioning is learned by the model.



 Dataset Data-only Synthetic-only Mixture-only Mixture + IW(x) Mixture + IW(z)

Accuracy 0.756± 0.001 0.557± 0.003 0.767± 0.003 0.765± 0.005 0.784± 0.007

Table 3: Downstream predictive accuracy on the Omniglot dataset. Standard errors are computed over 3 runs.

7 CONCLUSION

In this paper, we proposed a general-purpose framework
for improved density ratio estimation in settings where the
two underlying data distributions of interest are sufficiently
different. The key component of our approach is a normal-
izing flow that is trained on a mixture of the data sources,
which is then used to encode the data into a shared feature
space prior to estimating density ratios. By leveraging the
invertibility of the flow, we showed that the ratios of the
densities in feature space are not only identical to those
in input space, but are also easier to learn. Additionally,
our method is applicable to a suite of existing density ra-
tio estimation techniques. Empirically, we demonstrated
the utility of our framework on various combinations of
density ratio estimation techniques and downstream tasks
that rely on accurate density ratios for good performance,
such as domain adaptation, mutual information estimation,
and targeted generation in deep generative models. We pro-
vide a reference implementation in PyTorch [Paszke et al.,
2017], and the codebase for this work is open-sourced at
https://github.com/ermongroup/f-dre.

One limitation of our method is the need to train a normal-
izing flow on a mixture of the two datasets if a pre-trained
model is not available; this may be difficult if the generative
model must be extremely high-capacity. For future work,
it would be interesting to explore whether the necessity of
strict invertibility of the flow can be relaxed, and to gain a
deeper theoretical understanding of the role of maximum
likelihood training in our framework.
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