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Abstract

In representation learning, capturing correlations
between the represented elements is paramount.
A recent line of work introduces the notion of
learning region-based representations, with the ob-
jective of being able to better capture these cor-
relations as set interactions. Box models use re-
gions which are products of intervals on [0, 1] (i.e.,
“boxes”), representing joint probability distribu-
tions via Lebesgue measure. To mitigate issues
with training, a recent work models the endpoints
of these intervals using Gumbel distributions, cho-
sen due to their min/max-stability. In this work
we analyze min/max-stability on a bounded do-
main and provide a specific family of such distribu-
tions which, replacing Gumbel, allow for stochas-
tic boxes embedded in a finite measure space. This
allows for a latent noise model which is a proba-
bility measure. Furthermore, we demonstrate an
equivalence between this region-based representa-
tion and a density representation, where intersec-
tion is given by products of densities. We compare
our model to previous region-based probability
models, and demonstrate it is capable of being
trained effectively to modeling correlations.

1 INTRODUCTION

Two of the most fundamental tasks in machine learning are
the ability to compactly represent joint probability distribu-
tions and the ability to learn representations of data which
facilitate performance in downstream tasks. While histori-
cally disparate, several recent lines of work have explored
methods which combine these two objectives, learning a
representation which is simultaneously capable of encod-
ing a joint probability distribution. |Vilnis and McCallum
[2015]] introduce the idea of learning representations with

probabilistic semantics by representing words using Gaus-
sian densities, an approach which has been successfully
extended to mixtures [Athiwaratkun and Wilsonl 2017 and
graph embeddings [He et al.| | 2015 |Bojchevski and Giinne{
mann, 2018]].

An alternative line of work takes a region-based approach,
representing elements using “cones” [Vendrov et al.| 2016]
or “boxes” [Subramanian and Chakrabarti, 2018]] in R". Lai1
and Hockenmaier|[2017]] extends the cone representations
with probabilistic semantics by integrating their volume un-
der the negative exponential measure on R, . Probabilistic
box embeddings, introduced in|Vilnis et al |[2018]], constrain
the space to the unit hypercube, wherein Lebesgue measure
becomes a probability measure. These models provide geo-
metric representations which, given a finite measure on the
space, compactly represent a joint probability distribution
over binary random variables.

The problem we are interested in is as follows: given a
probability space over a finite set (S, P(.S), Ps), we seek a
distributed embedding representation which is capable of
modeling Ps on P(.S). For example, we consider the set S
of outcomes from n (not necessarily independent) coin flips,
S = {H,T}", and seek to model the full joint distribution
over head and tail outcomes. The goal is to choose a repre-
sentation which can encode this distribution with fewer than
2™ — 1 parameters while maintaining sufficient flexibility to
represent the sort of distributions we typically encounter.

If m;: S — {H,T} is projection to the ith coordinate, then
7; L(H) is the set of outcomes where the ith coin is heads.
We define I to be the set of intervals [a,b] C [0, 1], along
with the empty set. A (one dimensional) box embedding is a

random variable B: [0, 1] — S such that

B lon Y(H) = [z;,z]] € L. (1)

Note that this implicitly defines z; and xj' as the endpoints
of an interval, and specifying these endpoints for each ¢ also
fully defines the box embedding B.
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We denote the pushforward measure as Q = Ao B~1. In
practice, these parameters {:cljE »_, are trained via gradient-
descent on a cross-entropy loss between Pg and (). Learn-
ing such parameters via gradient descent is problematic, as
many regions of the loss landscape are flat. This issue was
addressed in |L1 et al.| [2019] by convolving the indicator
functions of the boxes with a Gaussian kernel.|Dasgupta et al.
[2020] improved on this further by introducing latent noise
on the parameters to improve learning. Specifically, they
model the endpoints {zX} as random variables X = {X*}.
If the X, , X, are constrained to [0, 1], given X we can

define a probability measure @ on P(S) where, for R C S,
Q(R) = Ex[Q(R| X)]. @)

In Dasgupta et al.|[2020], the authors make use of Gumbel
distributions, which come in two variants,

Smax (w3 1, B) = %GXP<*%*6_%)7 and (3)

Fuin( 1. B) = frexp (25 — 7). @)

The motivating reason for choosing these distributions is
that they are max- and min-stable, respectively, which facil-
itates the ability to tractably compute (2). Gumbel random
variables are unbounded, and thus (2)) is not a probability
measure. However, the authors exclusively evaluate on tasks
which require modeling conditional probabilities of the form

Ps(m; ' (H) | m; ' (H)), ®)

and thus consider the ratio of expectations

Ex[Q(r; ' (H) Ny ' (H) | X))

3

Ex[Q(; ' (H) | X))

(6)

as an approximation, on which sets @ is finite. The practical
impact of these approximations is not entirely clear, however
a model which eschews these difficulties by introducing
bounded min- and max-stable random variables would not
only have the benefit of probabilistic soundness but also
provide the capability for training and evaluating on joint
probabilities, a major benefit of the original probabilistic
box embeddings model which was lost as a consequence of
introducing latent noise.

In this work, we provide a theoretical treatment of min- and
max-stable distributions on a bounded domain. Using this
framework, we derive a particular set of bounded min- and
max-stable distributions which allow for tractable computa-
tion of (Z). An alternative approach, as taken by probabilistic
order embeddings, would be to learn a finite measure on the
space R, however we demonstrate that these two perspec-
tives are actually one and the same, connected via the unique
form of the integrand which implies that the expected vol-
ume of box intersections are actually given by products of
their unnormalized densities. We demonstrate that this entire

enterprise can be viewed as learning representations in the
form of a particular class of probability distributions, thus
tying the probabilistic box embedding model tighter to pre-
vious work on density representation learning. Finally, we
demonstrate empirically that this approach has advantages
when regressing to joint probabilities.

2 BACKGROUND

Probabilistic Box Embeddings, introduced in |Vilnis et al.
[2018]], are an embedding method which represents entities
with a Cartesian product of intervals, or “box”,

d
Box(x) = H[x;,m;}'] = [z7, 2] x - x [z, 2]
=1
gQBongd
where 2, < af,x = (z1,...,z ,27,...,2)) € R¥.

We adopt the convention that if any z, > sz_, Box(x) = 0,
and define the collection of all boxes as I({2pox). Note
that this is closed under (set) intersection, that is if X,Y €
I(Qpox), XNY € I(Qpox). If this intersection is nonempty
we have

d
Box(x) N Box(y) = H[max(x[, y, ), min(z;, y; )]
=1
(N

A box embedding of a probability space (S, P(.S), Ps) into
some measure space (Q2pox, 0 (I (QBox)), tBox ) 1S @ measur-
able function B: Qpey — S, such that B~ o 7, '(H) €
I(Qpox), where m; is the ith projection. If up.y is a proba-
bility measure, the pushforward measure Q = jigox © B~*
is a probability measure on S, in which case we call B a
probabilistic box embedding.

Example 1. Given some parameters x; € R?? associated
with each m; ' (H), we define the random variable B(x)
such that

mi(B(r)) =

{H if 2 € Box(x;), ®)

T otherwise.

If QBox = [0,1]%, iBox = A is Lebesgue measure, then B
is a probabilistic box embedding, and

d
UBox (Box(x)) = H max(0, x}, — x,). 9
=1

We train box embeddings using gradient descent, learning
the parameters {x;}? ; which minimize a cross-entropy
loss between ) and Pg. We will only consider situations
where (2o is a product space, and ppox a product mea-
sure. Thus, it is enough to consider one-dimensional box
embeddings.



Following |Dasgupta et al.[[2020], we consider a latent noise
model where the box parameters {xli} are modeled using
X = {X}, where X, , X, are independent random vari-
ables taking values in 2pox. Our goal will be to choose a
distribution for the variables in X such that we can compute
(or at least reasonably approximate) @, defined for R C .S
as

Q(R) =Ex[Q(R] X)]. (10)

As previously mentioned, in the case of Qg = [0, 1] with
UBox Lebesgue measure, @ is a probability measure. More
generally, if pox(2Box) is finite, we can normalize ) to a
probability measure on P(.S). Furthermore, the restriction
of Qtoo(J_, 7 (H)) = o(S\{T™}) is always finite for
each X, and hence the expectation is a finite measure. (This
follows from sub-additivity of the measure by observing
that Q(m; ' (H)) < oo, provided E[X] is finite).

We are thus left with two possible solutions:

1. Use bounded random variables for X, and ppox = A.

2. Allow X to be unbounded, but find a measure ppoyx for
which ppex(R) < oo.

In both cases, we further require that @I) is able to be cal-
culated explicitly, at least for the subsets R C S of interest,
and thus we first investigate the difficulty of calculating this
expectation in general.

3 BOX MEASURES

We ended the previous section by mentioning that we need
to be able to compute @]) for “sets of interest”’, which we
will refine and explore in this section. In particular, the most
primitive set of interest we might inquire about are boxes
given by 7, ' (H). If pipox is Lebesgue; this means we must
be able to calculate

Ex [Q(n; '(H)| X)] = Ex [max(0,X;" — X;)].
1n
We adopt the following conventional notation: for a random
variable X we denote its cdf, potentially parameterized by 6,
by Fx(z;0), and, if X is a.c., we denote its pdf as fx (x;8).

We recall the following lemmas:

Lemma 1. If X is a real-valued random variable with finite
mean then

lim zF(z)=0 and

r— —00

lim z(1 — F(x)) =0

r—00

Lemma 2. Let X,Y be independent random variables a.c.
with respect to the Lebesgue measure. Then

o0

E[max(X,Y)] = /

— 00

z( fy(z)FX(z)+fa:(z)Fy(z)) dz.

For completeness, we include elementary proofs of these
results in Appendix [A]

Leveraging these results, we prove the following general
result for computing (TT):

Lemma 3. Let X,Y be independent real-valued random
variables for which B[ X| and E[Y] are finite. Then

E[max(0,Y — X)] = /IR 1=Fy(2)] Fx(z)dz. (12)

Proof. Since E[X] is finite, we have

E[max(0,Y — X)] = E[max(X,Y)] — E[X] (13)

= /z(fy(z)FX(z) —|—fX(z)Fy(z)) dz — /zfx(z) dz
R R

(14)

- /Rz(fy(z)FX(z) = fx(2))1 ny(z)}) dz.  (15)

Integrating by parts, we find this is equal to

= Fr(2)Fx ()] +/°° [l — Fy(2)]Fx () dz.

- (16)
The first term is 0 by Lemma[I} which completes the proof.
O

Remark 1. Lemma[3|provides a much more straightforward
calculation for the expected volume of a Gumbel box than
that which was provided in |Dasgupta et al.| [2020]. (See

Appendix [B])

The next simplest set of interest to consider are pairwise
intersections, ;' (H) N 7rj_1(H) for i # j. Given X, this
intersection becomes

m H(H) N H) = (X XN X X (17)
= [maX(X;,X;)7min(Xi+7X;r)].
(18)

Setting

Z~ =max(X;,X;) and Zt = min(Xf,X;r),
19

Lemma 3]implies,

(2

_ /]R (1= Fye(2) Fy () dz 63))

Q(r; ' (H) Ny (H)) = Ex[max(0, 2% — Z7)] (20)

= /]R[l - FX?(z)} Fy—(2) [1 - FX;r (z)} Fy-(2)dz.

@ J

(22)

where (22)) follows due to independence. This extends, via
induction, for any nonempty set of indices J C {1,...,m}



as follows:

Qe ) = | IO - g 0 ()
(23)

Remark 2. Since, forall z € R,
11— Fyi () Fy-(2) <1,
then
E[max(0, Z" — Z7)] < E[max(0, X* — X7)].

That is, the expected volume of the intersection of two boxes
is bounded above by the minimum of the expected volume
of each box.

Remark 3. Although motivated and presented as latent
noise over the parameters of a region-based model, an alter-
native perspective which this analysis lays bare is that one
is simply learning representations of unnormalized densities
of the form

[1 ~ Fys (zi)} Fy-(2). (24)

i

We will investigate this perspective further in Section [6]

Remark 4. If upox is a probability measure, and therefore
so is @, we can use inclusion-exclusion to calculate Q(R)
forany i C S. Hence, if we can identify a bounded distri-
bution such that (23) is tractable we can calculate Q(R) for
any R C S.

Without additional assumptions about the random variables,
finding all general distributions for which (23)) is tractable
for any nonempty J C {1,...,m} is difficult. If, however,
we identify some parameterized families of distributions
{F; }, {F,’} which are max- and min-stable respectively
for which we can also calculate

/R [1- F;;(z)] F, (2)dz (25)

for any setting of parameters 6y, 62 then by observing (T9)
and (21) we find the measure of any pairwise intersection
Q(m; H(H)N ﬂ;l(H)) is also tractable. This extends in-
ductively to show that (23) can be calculated explicitly, and
thus we seek a formal characterization of min- and max-

stable distributions.

4 MIN/MAX-STABILITY

Motivated by our observation in Section [3] that deriving
bounded min- and max-stable distributions for which (25)
is calculable implies that @) is a probability measure on
P(S) and allows us to calculate the probability Q(R) for
any R C S, we formally define our notion of min- and
max-stability.

Definition 1 (Min/Max-Stability). We call a family of dis-
tributions on €2 parameterized by § € ©, which we denote

F=Fge = {Fgl Q— [0, 1]}06@7 (26)

max-stable if there exists some g: © x © — O, such that,
for X and Y random variables with distributions Fp, and
Iy,

Fyy, Fy, € Fo = Fmax(X,Y) = Fy(ox,0v) € Fa-

We call g the max parameter transformation. Min-stability
and min parameter transformation are defined analogously.

As mentioned previously, Gumbel distributions come in
min- and max-stable variants, and in fact the min variant
Smin(z; 1, B) in @) is equivalent to fiax(—z; —p, 3), as
defined in (3). The following proposition shows that this is
actually true more generally.

Proposition 1. Let S,T C R, Fr g be some min- or max-
stable family of distributions, and let h: T — S be any
measurable monotonic bijection. Then the family

Fso={Fpoh™: S —[0,1] for Fye€ Fre}

has the same stability as Fr e if h is increasing and oppo-
site stability (eg. min becomes max) if h is decreasing. In
each case, the parameter transformation is preserved.

Proof. Suppose that Fr g is max-stable and h is mono-
tonically increasing. Let X and Y be random variables
with distributions Fx, Fy € Fg . By definition of Fs e,
there exist random variables X and Y with distributions
Fo ,Fp, € Fresuchthat X = hoXandY = hoV.
Then,

max(X,Y) = max(ho X,hoY)) = homax(X,Y).

Since Fr e is max-stable, there exists g, such that,

Fax(x,7) = Fg(04,05) € Fr,0. Therefore, Fg e is max-

stable with the same g as Fg o.
Alternatively, suppose h is monotonically decreasing. Then,
min(X,Y) =min(ho X, hoY)) = homax(X,Y).

The proof for the case of 7 g min-stable is similar. O

This yields the following useful corollaries:

Corollary 1. If F = {Fp: R — R} is min- (resp. max-
) stable then F' = {Fy o (x — —z): R — R} is max-
(resp. min-) stable. That is, there is a bijection between max-
and min-stable families on R.

Corollary 2. There is a bijection between min/max-stable
distributions on R and those on any open interval (a,b).



This latter corollary arises from noting that (a, b) is home-
omorphic to R, and any continuous injective function
h: (a,b) — R must be (strictly) monotonic. Obviously,
this gives us infinitely many choices for bounded min- and
max-stable distributions, however we may reasonably pause
at this point to consider if there are already some common
min- and max-stable distributions on a bounded interval.

Example 2. Let Hy be the cdf of the delta distribution g,
then

F={Hy:0€0,1]} @7

is a bounded family of distributions on [0, 1] which are
both min- and max-stable, with parameter transformation
functions simply given by min and max respectively. Uti-
lizing these distributions in our current framework leads
precisely to the original probabilistic box embedding model
introduced in |Vilnis et al.|[2018]].

Delta distributions struggle with learning precisely because
E[max(0,Y — X)] = max(0,0y — 6x) has zero gradi-
ent when 0y < 0x, and this situation is exasperated when
computing the expectation of the intersection of multiple
elements. Dasgupta et al.|[2020] introduce the Gumbel dis-
tribution to mitigate this issue.

Example 3. The Gumbel max distribution provides a source
of infinitely many max-stable families on R (one for each
scale parameter 3 € R ) defined as:

F(R,R; ) = {Fu(m) = exp(—ejy) | ne R}-
(28)
The max parameter transformation is given by
by sy
91 pty) = BIn (eF 4+ F) 29)
The fact that the Gumbel min distribution is min-stable is
now a specific instance of Proposition T}

Remark 5. Note that the parameter transformation g for
the Gumbel distributions is smooth. Furthermore, the ap-
proximation

Elmax(0,Y — X)] ~ Slog(1+exp(F55* —27)) (30)

introduced in|Dasgupta et al. [2020] is smooth with respect
to the p1y, px parameters, and thus the chain rule implies
tklat if X is modeled using Gumbel min/max distributions,
Q(R) is a smooth function of their location parameters,
which assists with training.

5 GUMBEL BOX MEASURES

With the necessary machinery developed, we now derive spe-
cific min- and max-stable families of distributions which are
bounded, for which we can approximate E[max(0,Y — X)],

and furthermore preserve the smoothness property men-
tioned in Remark 51

Building off our previous work, we consider Y with distri-
bution Fy € Fuin, and X with distribution F'x € Fax,
where F i, is min-stable and . is max-stable on R. Let
h: R — (0,1) be a monotonically increasing C* bijection
with C'! inverse. Then by Lemrna we have that

En(x),n(vy[max(0, (YY) — h(X))] 31)

1
:/0 [1 = Fravy () x)(2) dz (32)

_ A 1= Fy (h=Y(2)| Fx (h™(2)) d=
(33)

| / T LRy () Fx ()L () du. 34)

4« du

Note that for any h as described, -=h(u) = g(u) is the pdf
of some probability distribution, and furthermore any pdf
g(w) yields a unique h(u). Thus, it simply remains to choose
a probability distribution for which the above calculation
is tractable, which depends on the possible Fy-, F'x distri-
butions. The observation in Remark [3] suggests considering

g(u) oc [1 = Fy+ (u)] Fyr- (u) (35)
for any fixed Fy;+ € Fiax, Fy— € Fmin- The properties of
min/max stability referenced in imply, therefore, that
(B4) is computable if and only if [~ [1 — Fy (u)]Fx (u) du
is. If we take Fnin, Fmax as Gumbel min and max fam-
ilies, therefore, we can approximalte this using (30), and
further preserve the smoothness of Q(R) with respect to the
Gumbel parameters.

5.1 ALTERNATIVE PERSPECTIVES

As described, the approach we took focused on deriving
min/max stable distributions on [0, 1], in which case we
have Qpox = [0,1] and pupox = A. Inspecting the form of
(34), however, it is obvious that this is entirely equivalent to
allowing 2o« = R and simply using the measure ppox =
g(u) du.

Furthermore, a naive approach to mitigating the fact that
Gumbel distributions are not defined over a bounded do-
main would be to simply fix some Gumbel box, called the
“universe box” U. Then, when asked to calculate a marginal
probability P(w; ' (H)), for example, we would actually
compute

IEX><U [ﬂBox(Bil(ﬂ-iil(H)) N U)]
Ev [pBox(U)]

(36)



If pBox = A, using Lemma 3|and (22)), this is equivalent to

Ji [1 = Fr ()] Fy— () [1 = Fye ()] Fy— () du

Jz 1 = Fy+ (w)] Fy-(u) du ’
37

and hence this is equivalent to the aforementioned approach,

with g as in (33).

Remark 6. Note that this also naturally proves that the ratio
of expectations (6)) as used in[Dasgupta et al.|[2020] is, for
the 7; ' (H), a valid probability measure.

Thus, there are actually three entirely equivalent perspec-
tives:

1. Transforming Gumbel distributions to min-/max-stable

distributions on (0, 1) via h =1, where - h(u) = g(u).

2. Defining ppox to be some a.c. finite measure on R, in

which case g(u) = dl&%-

3. Intersection with some (normalized) “universe” box,
corresponding to the density g(u).

These alternative perspectives align geometric intuition and
probabilistic formalism. The first perspective is most natural
when attempting to rectify the lack of finite measure present
in|Dasgupta et al.|[2020]], and also opens the possibility of
other transformation functions h. Perspective 2 facilitates
analytic computation of intersection volumes, as described
in section 6. When choosing parameters of the distributions
depicted in Figures[2]and 3] (a realization of the first perspec-
tive) we can use geometric intuition based on perspective
3 to adjust position/scale. Perspective 3 is also most useful
when implementing the model in practice.

6 GUMBEL BOX DENSITIES

We end our theoretical analysis by expanding on Remark 3]
wherein we observed our region-based interpretation was
equivalent to one in which elements were represented using
unnormalized densities, and thus the box embedding model
(particularly in cases with latent noise on the parameters)
can be equivalently viewed as a density representation.

To recap, a box embedding with latent noise parameter-
izes the sets ;' (H) via some random variables X;, X;*
which represent the endpoints of some interval in [0, 1]. In-
tersections 7; ' (H) N 7r;1 (H) correspond to intersections
of these stochastic intervals. Thus, from this perspective
we consider elements to be represented by regions (inter-
vals), with unary marginal probability given by expected
length of this interval and joint probabilities given by their
intersections.

On the other hand, as noted in (23)), for any nonempty set of

h(u;0,0,1) h(u;0,5,1)

Figure 1: Universe Box Transformation i We plot the func-
tion h for different parameters of the universe box. Plots are labeled
as h(u™, ut, B). As one would expect, shifting the universe box
to the right has the corresponding effect on h, as does stretching
the width, both of which can be observed in the plot for (0, 5, 1)
above. Increasing the 3 also has an intuitive effect, as lower val-
ues of (3 lead to steeper h functions. In the bottom right we plot
sigmoid, noting it’s extreme similarity with h(—3, 3, 2).

foc-1,1, h) fo6-1,1, h)
f0 -4, -3, h) f0G-4, -3, h)
intersaction | intersection

14,7, h)
01,2, )
intorsection

162,14, h)
106,-3,3, h)
intersection

— f(x;2,14, h)
fl-3,3, )
intersection

— f(x;2,14, h)
flc-3,3,0)
intersection

Figure 2: One-Dimensional Gumbel Boxes We plot the un-
normalized densities representing the transformed Gumbel boxes
in [0, 1]. The parameters for the universe box h(u~,u", 3) are
shown at the top for each plot, the legend includes labels for each
density as f(z; ™, u™, h), and in each plot we include the density
which represents the intersection in green. From left to right, top to
bottom: (a) arbitrary boxes in position, (b) translates the universe
box from (a) by 5, (c) translates the box parameters by 5 as well,
(d) shows the effect of using larger boxes, (¢) demonstrates the
effect of higher scale (3, and (f) demonstrates low /3.



indices J C {1,...,m} we have

é(mjeJWj_l(H)) = /R H [1 - FXJJr(Z)} FX;(z) dz.
jeJ (38)

Therefore, we may consider ;" 1(H) to be represented
by the unnormalized density [1 — Fy+(2)]Fy - (z), where

1
L2, i.e. joint probabilities between pairs correspond to an
inner product in an infinite-dimensional vector space, and
marginal probabilities are given by the inner product with
the constant function 1 € £2 (). It is, therefore, of supreme
interest to develop a better understanding of the properties
of these densities.

Q(r Y (H)N 7rj_1 (H)) corresponds to an inner product in

In order to map unbounded random variables to (0, 1) we
had chosen the transformation h : R — (0, 1) such that

() = g(u) o [1 = Fy+ (w)]Fy-(u),  (39)

where [U~, U™] represents a “universe box”. For Gumbel
random variables, all variables use the same scale 3 (to en-
sure min-/max-stability), and therefore the parameter trans-
formation itself has 2 parameters, which are the location
parameters u~, ut of U™, Ut. We plot h for various values
of these parameters in Figure [I] and note that the depen-
dence on the parameters is quite intuitive.

Including the global 5 and the universe box parameters, we
have introduced a family of distributions on [0, 1] indexed
by five parameters: p =, u*,u",u™, 5. To gain intuition
about the unnormalized density representation, we plot these
densities for various values of the parameters in Figure [2]
We note that, while there are 5 parameters, there are only
4 degrees of freedom, as the densities are invariant when
translating all location parameters. As 8 — 0 we recover
the “hard box” model of [Vilnis et al,[2018]]. We also note
that the model is extremely flexible, capable of capturing
large regions in the center of the space as well as small areas
in a corner or along a side.

7 EXPERIMENTS

7.1 DATASET

In order to evaluate the ease of training and capability to
effectively model real-world data, we create a dataset from
MovieLens-25M which consists of movie ratings given by
different users. Following 2019], we calculate the
values for binary random variables indicating whether or not
a user likes a given movie. Specifically, we consider a user
to have liked a movie if they gave it a rating greater than 4.
In order to ensure relevance, we select only popular movies,
i.e., movies must have more than 200 ratings. This pro-
vided us with 160, 369 users and 3, 093 movies. Given this

oo 02 04 06 08

Figure 3: Two-Dimensional Gumbel Boxes We plot the
unnormalized densities representing the transformed Gumbel
boxes in [0, 1]2. We use universe parameters u~ = —5,ut =
5, and § = 1. From top to bottom, we have plotted (a)
f(ilf; _37 _37 h)f(y7 _37 _37 h)’ (b) f(x7 37 97 h)f(y7 37 97 h)7
and (¢) f(x;3,9,h) f(y; —4,4,h).

data, we then calculted P(MovieA), P(MovieB, MovieA),
where the joint probability indicates the probability a given
user liked both Movie A and Movie B, and used this to
calculate P(MovieB | MovieA). Explicitly,

i MovieA, MovieB
P(Movie, MovieB) = #Rating(MovieA, Moviels)
#Users

The conditional probabilities are then calculated by diving
the pair-wise joint probabilities with the marginals.

7.2 BASELINES

We compare our method with the following probabilistic
embedding methods:

1. Probabilistic Order Embeddings (POE)
Hockenmaier] 2017]]: A model which represents el-

ements using infinite cones, integrated under the nega-
tive exponential measure.

2. Probabilistic Box Embeddings (PBE)
2018]: This model can be viewed as representationally




equivalent to our model where the distributions are
simply delta distributions, however to solve issues with
disjoint boxes during training the authors introduce a
surrogate loss function.

7.3 RESULT

A properly trained probabilistic embedding model should
be able to predict joint probabilities P(MovieA, MovieB)
when trained with marginal P(MovieA) and conditional
P(MovieA | MovieB) probabilities. We evaluate this for
the two baselines and compare with our proposed method
as well. The results are reported in Table[I]

Table 1: KL divergence (lower is better) for training and
validation.

Train Train Validation

P(A|B) | P(B) | P(A B)
POE 0.0052 0.0002 0.00003
PBE 0.0049 0.0006 0.00004
Gumbel Bounded | 0.0022 0.00004 | 0.000009

We observe that all the probabilistic models including the
baselines are able to learn both marginals and joint distribu-
tion reasonably well. However, our proposed method leaned
a distribution which achieves a KL divergence to the target
distribution that is a third of the other methods’ divergence.
We credit this to the smoothness of our model’s training
objective, as well as the flexibility of the box distributions.

8 RELATED WORK

Critical to our objective was defining a family of transfor-
mations h: R — [0, 1]. Furthermore, we wish this & to be
sufficiently smooth such that the parameters of the Gumbel
distribution can be learned after composition. While quite
similar, this is different from the objective for learning a
Normalizing Flow [Tabak and Turner, 2013, |Rezende and
Mohamed, 2015} Kobyzev et al., 2020]], wherein the objec-
tive is to learn a chain of compositions such that the Jacobian
of the composition is easy to compute. Furthermore, Nor-
malizing Flows are used to sample and estimate densities
from the transformed distribution, whereas in our case we
are interested in analytically calculating an expectation.

Historically, the study of max-stable distributions focused
on a more restricted notion of max-stability [Gnedenko|
1943| \Gumbel, |1958|, [Pantcheva, |1985, |Kunin, |1997]]. That
is, a distribution F' is max-stable if there exists a sequence of
strictly monotone continuous functions (G,,: R — R),en
such that

F(z) = F*"(Gn(x)) forall z € R.

The motivation for such a definition is related to the asymp-
totic behavior of F™ with n — o0, i.e., the maximum be-
tween a numerable set of i.i.d. random variables. In contrast,
the definition presented in this paper aims to take the max-
imum of a set of variables not necessarily identically dis-
tributed, as long as the set is finite and all variables belong
to the same family. Moreover, this definitions gives enough
freedom to choose a family for which the quantity of (34)
can be analytically computed, while still getting gradient
information with respect to the parameters. It is this last con-
dition which prevented us from using the distributions over
bounded support defined in [[Pantcheval |[1985] and [[Kunin,
1997]I.

There are many approaches to representation learning which
use objects other than standard Euclidean vectors. In particu-
lar, a recent line of work explores the notion of representing
elements using vectors in hyperbolic space. Nickel and Kiela
[2017] consider a Poincaré disk model, and Nickel and Kiela
[2018]) consider an equivalent approach using the Lorentzian
model, further extended by [Law et al. [2019].|Ganea et al.
[2018]] extends this to a region-based representation where
elements are represented by infinite cones in hyperbolic
space, a concept originally introduced in Euclidean space
by Vendrov et al.| [2016]. None of these representations are
probabilistic, however. Probabilistic order embeddings [Lai
and Hockenmaier}, |2017]], which we compare with, extend
Vendrov et al.|[2016] probabilistically by integrating the
space under the negative exponential measure. |Vilnis et al.
[2018]] originally introduced the probabilistic box embed-
ding model, and improvements to training were introduced
in|Li et al.|[2019]] and Dasgupta et al.| [2020], however these
approaches resulted in models which no longer provide
methods for evaluating joint probabilities, and thus we do
not compare directly to them. Non-probabilistic methods for
embedding boxes have also been introduced in|Subramanian
and Chakrabarti| [2018]].

9 CONCLUSION

In this work, we actually introduce several novel families of
distributions on [0, 1]. First, motivated by the requirements
of box embeddings, we introduce a families of min- and
max- stable distributions on a bounded domain for which
an explicit expectation can be calculated. We also proved
that any such family on R can be transformed to a family
on any set homeomorphic to R. Second, we observe that
the densities corresponding to box embeddings themselves
can be normalized to provide a novel distribution on [0, 1]
which is closed under multiplication and demonstrates im-
pressive flexibility. Practically, we leverage these results by
demonstrating the equivalence of learning box representa-
tions with latent noise and learning representations of these
unnormalized densities. As a result, we derive a box model
with latent noise which can benefit learning which provably



maintains the probabilistic nature of the original box em-
bedding model. The equivalent perspectives of region and
density representation of this model provides new methods
of analysis, extension, and insight which we plan to explore
in the future.
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