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Abstract

Zero-Shot Learning (ZSL) is a classification task
where some classes referred to as unseen classes
have no training images. Instead, we only have side
information about seen and unseen classes, often
in the form of semantic or descriptive attributes.
Lack of training images from a set of classes re-
stricts the use of standard classification techniques
and losses, including the widespread cross-entropy
loss. We introduce a novel Similarity Distribution
Matching Network (SDM-Net) which is a stan-
dard fully connected neural network architecture
with a non-trainable penultimate layer consisting
of class attributes. The output layer of SDM-Net
consists of both seen and unseen classes. To enable
zero-shot learning, during training, we regularize
the model such that the predicted distribution of
unseen class is close in KL divergence to the dis-
tribution of similarities between the correct seen
class and all the unseen classes. We evaluate the
proposed model on five benchmark datasets for
zero-shot learning, AwA1, AwA2, aPY, SUN, and
CUB datasets. We show that, despite the simplicity,
our approach achieves competitive performance
with state-of-the-art methods in Generalized-ZSL
setting for all of these datasets.

1 INTRODUCTION

Supervised classifiers, specifically Deep Neural Networks,
need a large number of labeled samples to perform well.
Deep learning frameworks are known to have limitations
in fine-grained classification regimes and detecting object
categories with no labeled data [Xiao et al., 2015, Socher
et al., 2013, Xian et al., 2017, Zhang and Koniusz, 2018].
On the contrary, humans can recognize new classes using
their previous knowledge. This power is due to the ability

of humans to transfer their prior knowledge to recognize
new objects [Fu and Sigal, 2016, Lake et al., 2015]. Zero-
shot learning aims to achieve this human-like capability for
learning algorithms, which naturally reduces the burden of
labeling.

In the zero-shot learning problem, there are no training
samples available for a set of classes, referred to as unseen
classes. Instead, semantic information (in the form of visual
attributes or textual features) is available for unseen classes
[Lampert et al., 2009, 2014]. Besides, we have standard
supervised training data along with the semantic information
for a different set of classes, referred to as seen classes.
The key to solving zero-shot learning problem is to train
a classifier on seen classes to predict unseen classes by
transferring knowledge analogous to humans.

Early variants of ZSL assume that during inference, samples
are only from unseen classes. Recent observations [Chao
et al., 2016, Scheirer et al., 2013, Xian et al., 2017] real-
ize that such an assumption is not realistic. Generalized
ZSL (GZSL) addresses this concern and considers a more
practical variant. In GZSL there is no restriction on seen
and unseen classes during inference. We are required to
discriminate between all the classes. Clearly, GZSL is more
challenging because the trained classifier is generally biased
toward seen classes.

Where samples are images, in order to create a bridge be-
tween visual space (training data) and semantic attribute
space (semantic information), some methods utilize embed-
ding techniques [Palatucci et al., 2009, Romera-Paredes
and Torr, 2015, Socher et al., 2013, Bucher et al., 2016, Xu
et al., 2017, Zhang et al., 2017, Kodirov et al., 2015, Akata
et al., 2016, 2015, Simonyan and Zisserman, 2014, Frome
et al., 2013, Xian et al., 2016, Zhang and Saligrama, 2016,
Al-Halah et al., 2016, Zhang and Shi, 2019, Atzmon and
Chechik, 2018] and the others use semantic similarity be-
tween seen and unseen classes [Zhang and Saligrama, 2015,
Fu et al., 2015b, Mensink et al., 2014]. Semantic similarity
based models represent each unseen class as a mixture of
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 seen classes. While the embedding based models follow
three various directions; mapping visual space to seman-
tic space [Palatucci et al., 2009, Romera-Paredes and Torr,
2015, Socher et al., 2013, Bucher et al., 2016, Xu et al., 2017,
Socher et al., 2013], mapping semantic space to the visual
space [Zhang et al., 2017, Kodirov et al., 2015, Shojaee and
Baghshah, 2016, Ye and Guo, 2017], and mapping both vi-
sual and semantic space into a joint embedding space [Akata
et al., 2016, 2015, Simonyan and Zisserman, 2014, Frome
et al., 2013, Xian et al., 2016, Zhang and Saligrama, 2016,
Al-Halah et al., 2016].

Another recent methodology which follows a different
perspective is deploying Generative Adversarial Network
(GAN) to generate synthetic samples for unseen classes by
utilizing their attribute information [Mishra et al., 2018,
Zhu et al., 2018, Xian et al., 2018, Felix et al., 2018, Ku-
mar Verma et al., 2018]. Although generative models boost
the results significantly, it was argued that they are more dif-
ficult to train [Sutskever et al., 2015, Salimans et al., 2016].
Furthermore, training requires generation of a large number
of samples followed by training on much larger augmented
data which hurts their scalability.

A recent notable model called DCN [Liu et al., 2018], is also
based on mapping visual features and semantic attributes to
a common embedding. DCN minimizes cross-entropy on
seen classes to learn their visual features. For the model to
not ignore the unseen class attributes, it employs a regular-
ization. DCN chooses to minimize the entropy of unseen
classes. In essence, it is forcing the network not to predict
uniform distribution (maximum entropy). Instead, it forces
all the probability mass on one of the unseen classes (least
entropy). While this entropy regularization is simple and re-
markably improves network accuracy on unseen classes, we
argue that it is sub-optimal. Consider an example where the
correct class is a squirrel, and we have rats, mice, and several
similar rodents in the unseen class. These unseen classes
likely have attributes similar to the squirrel’s attribute. How-
ever, forcing the network to concentrate the probability only
on one class is likely to lose information. Worse, nothing
stops the entropy loss to converge on an utterly wrong class,
which also minimized the entropy.

To resolve these issues, we propose a Similarity Distribution
Matching (SDM) regularizer, which enforces a complete
distribution on the unseen class to match the distribution
obtained from the semantic similarity of class attributes with
the correct class. Therefore, SDM uses attribute informa-
tion in a more explicit way. The regularization imposes a
larger structure on the network. We show that SDM outper-
forms DCN by a significant margin and achieves compet-
itive performance with state-of-the-art algorithms on ZSL
benchmark datasets.

1.1 OUR CONTRIBUTION

We propose a simple, fully connected neural network archi-
tecture with unified (both seen and unseen classes together)
cross-entropy loss. Our proposal differs from a standard
neural network for supervised classification in two ways.
The first difference is that in the proposed network, the final
layer is fixed and non-trainable. The weight vectors for neu-
rons in the last non-trainable layer are precisely the available
semantic attributes. We argue that this standard architecture
is no less powerful than the popular embedding models. The
second difference is a novel loss function based on semantic
similarity-based regularization.

In ZSL, due to the lack of training data for the unseen class,
after minimizing any loss function over the training data,
the classifier will always prefer seen classes over unseen
classes. This is the main challenge of ZSL problem where
for any given input, the predicted class will likely only come
from the seen classes. We propose Similarity Distribution
Matching (SDM) to regularize this minimization problem
which enables training data from seen classes to also learn
and even predict unseen classes.

In particular, we directly use attribute similarity information
between the correct seen class and the unseen classes to cre-
ate a regularizer. Among all classifiers with small training
loss on the seen data, we prefer classifiers whose predicted
probability distribution on unseen classes, matches the nor-
malized similarity distribution. The similarity distribution is
defined by the attribute similarity between the correct seen
class and all the unseen classes. As a result of SDM, training
instances for seen classes also serve as proxy training in-
stances for the unseen class without increasing the training
corpus. Thus SDM after simplification leads to a straight-
forward regularizer, which we argue is more informative
than the recently proposed entropy regularizer [Liu et al.,
2018]. SDM regularization, along with cross-entropy loss,
enables a simple MLP network to tackle GZSL problem.
Our proposed model achieves competitive performance with
state-of-the-art methods in Generalized-ZSL setting on all
five ZSL benchmark datasets.1

2 RELATED WORKS

The main goal of ZSL problem is to bridge the gap be-
tween visual features and semantic representations of un-
seen classes. Semantic representations are usually available
in the form of word embeddings learned on text corpus or
human annotation attributes. Some early ZSL methods uti-
lized a two-step approach, [Lampert et al., 2009, Al-Halah
et al., 2016] learn a probabilistic attribute classifier and then
estimate class posteriors, [Norouzi et al., 2013] predict seen

1The code is available at
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 class posteriors then take the convex combination of class
label embeddings to project images into the semantic space.
These two-step methods suffer from projection domain shift
[Fu et al., 2015a]. On the other hand, recent works in ZSL
directly learn an embedding between visual and semantic
representations. [Akata et al., 2015, 2013] learn a bilin-
ear compatibility function through structural SVM loss and
ranking loss, respectively. DeViSE [Frome et al., 2013] uti-
lizes a pairwise ranking loss to learn a mapping between
visual space and semantic space. ESZSL [Romera-Paredes
and Torr, 2015] introduces a simple analytical approach and
utilizes square loss with L2 norm regularization to learn the
compatibility function between visual and semantic space.

Loss functions in embedding based models have training
samples only from seen classes and there is no sample from
unseen classes. It is not difficult to see that this lack of
training samples biases the learning process towards seen
classes only. One of the recently proposed techniques to
address this issue is augmenting the loss function with some
unsupervised regularization such as entropy minimization
over the unseen classes [Liu et al., 2018].

The two most recent state-of-the-art discriminative GZSL
methods, CRnet [Zhang and Shi, 2019] and COSMO [Atz-
mon and Chechik, 2018], both employ a complex mixture
of experts approach. CRnet is based on k-means cluster-
ing with an expert module on each cluster (seen class) to
map semantic space to visual space. The output of experts
(cooperation modules) are integrated and finally sent to a
complex loss (relation module) to make a decision. CRnet is
a multi-module (multi-network) method that needs end-to-
end training with many hyperparameters. Also, COSMO is
a complex gating model with three modules: a seen/unseen
classifier and two expert classifiers over seen and unseen
classes. Both of these methods have many modules, and
hence, several hyperparameters; architectural, and learning
decisions. A complex pipeline is susceptible to errors, for
example, CRnet uses k-means clustering for training and
determining the number of experts and a weak clustering
will lead to bad results.

Utilizing generative models is a totally different approach in
GZSL setting. Given the semantic representation of classes,
GANs aim to synthesize visual features and turn GZSl prob-
lem into a conventional classification problem. Xian et al.
[2018] generates discriminative visual features through par-
ing Wasserstein GAN [Ishaan et al., 2017] with classifica-
tion loss. Sariyildiz and Cinbis [2019] extends this notion
with gradient matching loss and learning an unconditional
discriminator. Mishra et al. [2018] train a conditional Vari-
ational Auto-Encoder (cVAE) to generates samples from
given semantic representations. Kumar Verma et al. [2018]
follows a similar approach and adds a multivariate regres-
sor to map the generated samples to the relevant semantic
representation. Xian et al. [2019] employs both GAN and
VAE with an additional discriminator to generate more dis-

criminative features.

Our proposed model follows a discriminative framework
to solve GZSL setting. We map visual features to semantic
space, calculate similarity measures in semantic space and
finally apply a softmax classifier. By utilizing SDM regular-
ization, We efficiently implement all three components by a
simple MLP network.

3 PROBLEM DEFINITION

Training dataset D = {(xi, yi)}
n
i=1 includes n samples

where xi is the visual feature vector of the i-th image and yi
is the class label. All samples in D belong to seen classes S
and during training there is no sample available from unseen
classes U. The total number of classes is C = |S| + |U|.
Semantic information or attributes ak ∈ Ra, are given for all
C classes and the collection of all attributes are represented
by attribute matrix A ∈ Ra×C . In the inference phase, our
objective is to predict correct classes for the test dataset
D′. Classic ZSL setting assumes that all test samples in
D′ belong to unseen classes U and tries to classify test
samples only to unseen classes U. While in a more realistic
setting i.e. GZSL, there is no such assumption and we aim
at classifying samples in D′ to either seen or unseen classes
S ∪ U.

4 PROPOSED METHODOLOGY

In the next few sections, we outline the specific components
of our method. The proposed network architecture, the SDM
regularization details, and the employed training strategy
are presented.

4.1 NETWORK ARCHITECTURE

As Figure 1 illustrates our architecture, the architecture is a
fully connected neural network that takes visual features and
predicts the class using standard softmax and Similarity Dis-
tribution Matching (described later). The final softmax layer
has one node for every class, both seen and unseen. To incor-
porate the semantic attributes of every class in the learning
process, we replace the weight corresponding to each class
node, in the softmax layer, with the given attributes and
make this layer non-trainable or immutable during training.
The penultimate layer of the network has the same size as
the dimension of semantic embedding of the class.

4.1.1 Why is this Architecture Sufficient?

We contrast our approach with popular embedding based
approaches for zero-shot learning and argue that the two
approaches are equally powerful in terms of architecture.



 The whole learning process is about finding the right com-
patibility score between the input visual features, call it v,
and the class attributes, call it a. In embedding models, this
score is computed via inner product between embedding of
visual features and the embedding of attributes. Lets f(v)
denotes the embedding of v and g(a) denotes embedding of
a. Here, f and g are non-linear functions which are gener-
ally a neural networks. Thus, the compatibility between v
and a, call it C(v, a) is given by

C(v, a) = 〈f(v), g(a)〉

In our architecture, the score is softmax which is monotonic
in the inner product of the penultimate embedding, which is
a function of v (call it f ′(v)), and the semantic attributed a.
Thus, with our model we can write

C(v, a) = 〈f ′(v), a〉

Since f ′ is non-linear neural network and can be as complex
as we want, given f and g, we can always choose f ′ complex
enough such that

〈f ′(v), a〉 = 〈f(v), g(a)〉

As a result, the power of our architecture is no less than
the power of standard embedding models. Instead, softmax
is more natural in terms of modeling the class dependen-
cies and particularly incorporating similarity distribution,
which is one of our contributions. Unlike embedding mod-
els which are limited to modeling pairwise compatibility,
softmax models the complete conditional distribution. We
will be precisely needing the information of the complete
joint distribution to propose a superior regularizer. Besides,
the simple softmax and its standard probability interpreta-
tion will eliminate the need for fancy normalization which
otherwise is a concern for embedding models.

4.2 SIMILARITY DISTRIBUTION MATCHING

In the ZSL problem, the network output nodes correspond-
ing to unseen classes are always inactive during learning
since cross-entropy loss cannot penalize unseen classes.
Moreover, the available similarity information between seen
and unseen attributes is never utilized explicitly.

We overcome this inherent bias by regularizing the network
to reproduce a predetermined probability distribution on un-
seen classes where this probability is dictated by semantic
similarity. We propose creating unseen probability distribu-
tion based on the similarity between semantic attributes. For
each seen sample, we represent its relationship to unseen
categories by obtaining the semantic similarity (dot-product)
of its attribute with the attributes of unseen classes.

We then squash all these dot-product values by softmax
to acquire probabilities (Equation 1). While training, we

use this similarity distribution to regularize the classifier.
In particular, we enforce the predicted probability distribu-
tion on the unseen class close to the prescribed similarity
distribution.

In order to control the flatness of the unseen distribution, we
utilize temperature parameter τ in softmax [Hinton et al.,
2015]. Higher temperature results in flatter distribution over
unseen classes and lower temperature creates a more ragged
distribution with peaks on nearest unseen classes. The im-
pact of temperature τ on unseen distribution is depicted in
Figure 4.left for a particular seen class. SDM regularizer im-
plicitly introduces unseen visual features into the network
without generating fake unseen samples as in generative
methods [Mishra et al., 2018, Zhu et al., 2018, Xian et al.,
2018]. Below is the formal description of temperature soft-
max to produce similarity distribution of unseen class k for
seen class i (unseen probability distribution):

yui,k = q
exp (si,k/τ)∑
j∈U exp (si,j/τ)

where si,j , 〈ai, aj〉

(1)
where ai is the i-th column of attribute matrix A ∈ Ra×C

which includes both seen and unseen class attributes: A =[
a1 | a2 | · · · | aC

]
. And si,j is the true similarity score

between two classes i, j based on their attributes. τ and q
are temperature parameter and unseen similarity distribution
regularization factor, respectively.

The proposed method is a multi-class probabilistic classifier
that produces aC-dimensional vector of class probabilities p
for each sample xi as p(xi) = softmax

(
AT gw (xi)

)
where

AT gw (xi) is a C-dimensional vector of all similarity scores
for an input sample (Figure 1).

A natural choice to train such classifiers is the cross-entropy
loss which we later show naturally integrates our idea of
similarity distribution matching. Therefore, the optimization
problem of our framework is as:

min
W

n∑
i=1

L(xi) + λ ‖W‖2F (2)

where λ is the weight decay regularization factor, and L(xi)
is the cross-entropy loss over true probability distribution
(L), regularized by cross-entropy over probability distribu-
tion based on semantic similarity (R) for each sample as
shown below:

L(xi) = (1− α)L(xi) + αR(xi) (3)

where α ∈ [0, 1] is SDM regularization parameter. Through
R, the SDM regularizer, we want to regularize the overcon-
fidence of the classifier toward seen classes and enrich the
network with the ability to also identify unseen samples.

The regularizer term can be expanded to seen and unseen
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Figure 1: Overall workflow of the SDM classifier and architecture of the proposed MLP. Layers #1 and #2 provide the
nonlinear embedding gW(.) to map visual features to attribute space and their weights W1, W2 are learned by SGD. The
output layer with non-trainable weights A, basically calculates dot-products of semantic representation of the input and
all class attributes simultaneously. Probability distribution based on semantic similarity is shown for a sample image from
squirrel class, where the probability distribution assigned to unseen classes, rat and bat, is based on their semantic similarity
with true class squirrel.

terms as follows (omitting i subscript for simplicity):

R(x) = −
∑
k∈S

ysklog(psk)−
∑
k∈U

yuk log(puk) (4)

where ysk and yuk are probability distributions (based on se-
mantic similarity) for seen and unseen class k, respectively.
yuk is in fact the unseen similarity distribution (Equation 1)
that the model attempts to match via SDM regularizer. The
second term of Equation 4 is the KL divergence (constant
entropy term on yuk is omitted) that matches the similar-
ity distribution of unseen classes and their corresponding
predicted probability distribution.

We observe that the SDM regularizer is a weighted cross-
entropy on unseen class, which leverages similarity structure
between attributes as opposed to uniform entropy function
of DCN [Liu et al., 2018]. DCN and all prior works use
uniform entropy as a regularizer, which does not capitalize
on the known semantic similarity information between seen
and unseen class attributes.

At the inference time, our proposed SDM method works the
same as a conventional classifier, we only need to provide
the test image and the network will produce class probabili-
ties for all seen and unseen classes.

5 EXPERIMENT

We conduct a comprehensive comparison of our proposed
SDM model with the state-of-the-art discriminative methods
for GZSL settings on five benchmark datasets (Table 1). Our
model achieves competitive performance with the state-of-
the-art methods on GZSL setting for all benchmark datasets.

5.1 DATASET

The proposed method is evaluated on five benchmark ZSL
datasets. The statistics for the datasets are shown in Table 1.

Animal with Attributes (AwA1) [Lampert et al., 2014]
dataset is a coarse-grained benchmark dataset for ZSL/GSZl.
It has 30475 image samples from 50 classes of different
animals and each class comes with side information in the
form of attributes (e.g. animal size, color, place of habitat).
The attribute space dimension is 85 and this dataset has a
standard split of 40 seen and 10 unseen classes introduced
in Lampert et al. [2014]. AWA2 [Xian et al., 2017] is the
public licensed version of AWA1 with roughly the same
amount of samples and the same number of attributes and
seen/unseen classes as AWA1.

Caltech-UCSD-Birds-200-2011 (CUB) [Wah et al., 2011] is
a fine-grained ZSL benchmark dataset. It has 11,788 images



 
Dataset # Attributes # Seen Classes # Unseen Classes # Images
AwA1 85 40 10 30475
AwA2 85 40 10 37322
CUB 312 150 50 11788
aPY 64 20 12 18627
SUN 102 645 72 14340

Table 1: Statistics of five ZSL benchmark datasets

from 200 different types of birds and each class comes with
312 attributes. The standard ZSL split for this dataset has
150 seen and 50 unseen classes [Akata et al., 2016].

SUN Attribute (SUN) [Patterson and Hays, 2012] is a fine-
grained ZSL benchmark dataset that consists of 14340 im-
ages of different scenes and each scene class is annotated
with 102 attributes. This dataset has a standard ZSL split of
645 seen and 72 unseen classes.

attribute Pascal and Yahoo (aPY) [Farhadi et al., 2009]
is a small and coarse-grained ZSL benchmark dataset that
has 14340 images and 32 classes of different objects (e.g.
airplane, bottle, person, sofa, ...) and each class is provided
with 64 attributes. This dataset has a standard split of 20
seen classes and 12 unseen classes.

5.2 EVALUATION METRIC

For the purpose of validation, we employ the validation
splits provided along with the Proposed Split (PS) [Xian
et al., 2017] to perform cross-validation for hyper-parameter
tuning. The main objective of GZSL is to simultaneously
improve seen samples accuracy and unseen samples accu-
racy i.e. imposing a trade-off between these two metrics.
As the result, the standard GZSL evaluation metric is the
harmonic average of seen and unseen accuracy. This metric
is chosen to encourage the network not to be biased toward
seen classes. Harmonic average of accuracies is defined
as AH = 2ASAU

AS+AU
where AS and AU are seen and unseen

accuracies, respectively.

5.3 IMPLEMENTATION DETAILS

To evaluate SDM, we follow the popular experimental
framework and the Proposed Split (PS) in Xian et al. [2017]
for splitting classes into seen and unseen classes to fairly
compare GZSL/ZSL methods. Utilizing PS ensures that
none of the unseen classes have been used in the training
of ResNet-101 on ImageNet. The input to the model is the
visual features of each image sample extracted by a pre-
trained ResNet-101 [He et al., 2016] on ImageNet provided
by Xian et al. [2017]. The dimension of visual features is
2048. We do not fine-tune the CNN that generates visual
features unlike the model in Liu et al. [2018]. In this sense,
our proposed model is also fast and straightforward to train.

We utilized Keras [Chollet, 2015] with TensorFlow back-
end [Abadi et al., 2016] to implement our model. We
used Xian et al. [2017] proposed unseen classes for
validation (3-fold CV) and added 20% of train sam-
ples (seen classes) as seen validation samples to obtain
GZSL validation sets. We cross-validate τ ∈ [10−2, 10],
mini-batch size ∈ {64, 128, 256, 512, 1024}, q ∈ [0, 1],
α ∈ [0, 1], λ ∈ {0, 10−6, 10−5, 10−4}, hidden layer
size ∈ {128, 256, 512, 1024, 1500} and activation function
∈{tanh, sigmoid, hard-sigmoid, relu} to tune our model. To
obtain statistically consistent results, the reported accuracies
are averaged over 5 trials (using different initialization) after
tuning hyper-parameters with cross-validation. Also we ran
our experiments on a machine with 56 vCPU cores, Intel(R)
Xeon(R) CPU E5-2660 v4 @ 2.00GHZ and 2 NVIDIA-
Tesla P100 GPUs each with 16GB memory. The code is
provided in the supplementary material.
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Figure 2: Plots of seen (AS), unseen (AU ) and harmonic av-
erage (AH ) accuracies versus total probability (q) assigned
to unseen classes are shown for four datasets. The maxi-
mum obtained harmonic accuracy is also marked by (×). q
provides a flexibility to trade-off between AS , AU , and AH .

5.4 GENERALIZED ZERO-SHOT LEARNING
RESULTS

To demonstrate the effectiveness of the SDM model in GZSL
setting, we comprehensively compare our proposed method
with state-of-the-art GZSL models in Table 2. Since we use
the standard proposed split, the published results of other
GZSL models are directly comparable.

As reported in Table 2, our model achieves competitive per-
formance with state-of-the-art GZSL methods on all five
benchmark datasets and outperforms the state-of-the-art
models on AwA2 and aPY datasets. It is exciting and mo-



 AwA1 AwA2 aPY CUB SUN
Method U S H U S H U S H U S H U S H
DAP [Lampert et al., 2009] 0.0 88.7 0.0 - - - 4.8 78.3 9.0 1.7 67.9 3.3 4.2 25.1 7.2
ALE [Akata et al., 2013] 16.8 76.1 27.5 14.0 81.8 23.9 4.6 73.7 8.7 23.7 62.8 34.4 21.8 33.1 26.3
SJE [Akata et al., 2015] 11.3 74.6 19.6 8.0 73.9 14.4 3.7 55.7 6.9 23.5 59.2 33.6 14.7 30.5 19.8
LATEM [Xian et al., 2016] 7.3 71.7 13.3 11.5 77.3 20.0 0.1 73.0 0.2 15.2 57.3 24.0 14.7 28.8 19.5
SSE [Zhang and Saligrama, 2015] 7.0 80.5 12.9 8.1 82.5 14.8 0.2 78.9 0.4 8.5 46.9 14.4 2.1 36.4 4.0
ConSE [Norouzi et al., 2013] 0.4 88.6 0.8 0.5 90.6 1.0 0.0 91.2 0.0 1.6 72.2 3.1 6.8 39.9 11.6
Sync [Changpinyo et al., 2016] 8.9 87.3 16.2 10.0 90.5 18.0 7.4 66.3 13.3 11.5 70.9 19.8 7.9 43.3 13.4
ESZSL [Romera-Paredes and Torr, 2015] 6.6 75.6 12.1 5.9 77.8 11.0 2.4 70.1 4.6 12.6 63.8 21.0 11.0 27.9 15.8
DeViSE [Frome et al., 2013] 13.4 68.7 22.4 17.1 74.7 27.8 4.9 76.9 9.2 23.8 53.0 32.8 16.9 27.4 20.9
CMT [Socher et al., 2013] 0.9 87.6 1.8 8.7 89.0 15.9 1.4 85.2 2.8 7.2 49.8 12.6 8.1 21.8 11.8
f-CLSWGAN [Xian et al., 2018] 57.9 61.4 59.6 - - - - - - 43.7 57.7 49.7 42.6 36.6 39.4
RN [Sung et al., 2018] 31.4 91.3 46.7 30.0 93.4 45.3 - - - 38.1 61.1 47.0 - - -
SP-AEN [Chen et al., 2018] 23.3 90.9 37.1 - - - 13.7 63.4 13.7 34.7 70.6 46.6 24.9 38.6 30.3
SE-GZSL [Kumar Verma et al., 2018] 56.3 67.8 61.5 - - - - - - 46.7 53.3 41.5 40.9 30.5 34.9
ZSKL [Zhang and Koniusz, 2018] 18.9 82.7 30.8 - - - 10.5 76.2 18.5 21.6 52.8 30.6 20.1 31.4 24.5
DCN [Liu et al., 2018] 25.5 84.2 39.1 - - - 14.2 75.0 23.9 28.4 60.7 38.7 25.5 37.0 30.2
COSMO [Atzmon and Chechik, 2018] 52.8 80.0 63.6 - - - - - - 44.4 57.8 50.2 44.9 37.7 41.0
CRnet [Zhang and Shi, 2019] 58.1 74.7 65.4 52.6 52.6 63.1 32.4 68.4 44.0 45.5 56.8 50.5 34.1 36.5 35.3
LFGAA+SA [Liu et al., 2019] - - - 50.0 90.3 64.4 - - - 43.4 79.6 56.2 20.8 34.9 26.1
SDM-Net (Ours) 57.2 75.8 65.2 55.1 78.6 64.7 42.7 57.2 48.7 47.1 52.5 49.6 47.2 32.6 38.6

Table 2: Results of GZSL methods on ZSL benchmark datasets under Proposed Split (PS) [Xian et al., 2017]. U, S, and H
respectively stand for Unseen, Seen, and Harmonic average accuracies. Our model achieves highly competitive performance
with state-of-the-art baselines despite its simplicity.

tivating while our architecture is much simpler compared
to recently proposed CRnet and COSMO, yet, we achieve
similar or better accuracies compared to them. We have
only one simple fully connected neural network with 2 train-
able layers, compared to CRnet with K mixture of experts
followed by relation module with complex loss functions
(pairwise).

Semantic similarity distribution employed in SDM gives the
model new flexibility to trade-off between seen and unseen
accuracies during training and attain a higher value of har-
monic accuracy AH , which is the standard metric for GZSL.
Assigned unseen probability (q) enables the classifier to gain
more confidence in recognizing unseen classes, which in
turn results in considerably higher unseen accuracy AU . As
the classifier is now discriminating between more classes
we get marginally lower seen accuracy AS . However, bal-
ancing AS and AU with the cost of deteriorating AS leads
to much higher AH . This trade-off phenomenon is depicted
in Figure 2 for four datasets. The flexibility provided by
SDM is examined by obtaining accuracies for different val-
ues of q. In Figure 2.a and 2.b, by increasing total unseen
probability q, AU increases and AS decreases as expected.
From the trade-off curves, there is an optimal q where AH

takes its maximum value as shown in Figure 2. Maximizing
AH is the primary objective in a GZSL problem that can be
achieved by semantic similarity distribution matching and
the trade-off knob, q.

Moreover, SDM alleviates overconfidence in seen classes
and introduces information about unseen classes during the
training phase. Figure 3 shows the impact of α on seen (AS),
unseen (AU ), and harmonic average (AH ) accuracies. The
plots represent that conventional cross-entropy loss (α = 0)
results in almost zero unseen and harmonic average accura-

cies. This underscores the importance of similarity distribu-
tion regularization. As shown in Figure 3 for four datasets,
not only unseen accuracy but also seen accuracy benefits
from SDM, as the maximum of seen accuracy occurs at
some α greater than zero which confirms the significance
of probability distribution created by similarity values for
cross-entropy loss in GZSL setting.
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Figure 3: Plots of seen (AS), unseen (AU ) and harmonic
average (AH ) accuracies versus α. The maximum obtained
harmonic accuracy is also marked by (×).

It should be noted that both AwA1 and aPY datasets (Fig-
ures 2.a, 2.b, 3.a ,3.b) are coarse-grained class datasets. In
contrast, CUB and SUN datasets are fine-grained with hun-
dreds of classes and highly unbalanced seen-unseen split,



 

Figure 4: The impact of temperature parameter τ for AwA1
dataset. left figure: unseen probabilities (before multiplying
q) produced by temperature softmax Equation (1) for vari-
ous τ . right figure: accuracies versus τ for proposed SDM
classifier. The optimal τ is 0.2 for AWA1 dataset where the
unseen probability distribution is mostly focused on three
unseen classes, rat, bat, and bobcat.

and hence their accuracies have different behavior concern-
ing q and α, as shown in Figures (2.c 2.d 3.c, 3.d). However,
the harmonic average curve still has the same behavior and
possesses a maximum value at an optimal q and α.

5.5 INTUITION

We illustrate the intuition with AwA1 dataset [Lampert
et al., 2009]. Consider a seen class squirrel. We compute
the closest unseen classes to the class squirrel in terms of
attributes. We naturally find that the closest class is rat and
the second closest is bat, while other classes such as horse,
dolphin, sheep, etc. are not close (Figure 4.left). This is not
surprising as squirrel and rat share several attribute. It is
naturally desirable to have a classifier that gives rat higher
probability than other classes. If we force this softly, we can
ensure that classifier is not blind towards unseen classes due
to lack of any training example.

From a learning perspective, without any regularization, we
cannot hope for the classifier to classify unseen classes ac-
curately. This problem was identified in Liu et al. [2018],
where they proposed entropy-based regularization in the
form of Deep Calibration Network (DCN). DCN uses cross-
entropy loss for seen classes and regularizes the model with
entropy loss on unseen classes to train the network. Au-
thors in DCN postulate that minimizing the uncertainty
(entropy) of predicted unseen distribution of training sam-
ples, enables the network to become aware of unseen visual
features. While minimizing uncertainty is a good choice of
regularization, it does not eliminate the possibility of being
confident about the wrong unseen class. Clearly in DCN’s
approach, for the above squirrel example, the uncertainty
can be minimized even when the classifier gives high confi-
dence to a wrong unseen class dolphin on an image of seen
class squirrel. Utilizing similarity distribution matching im-
plicitly regularizes the model in a supervised fashion. The
similarity values naturally have information of how much

certainty we want for a specific unseen class. We believe
that this supervised regularization is the critical difference in
why our model outperforms DCN with a significant margin.

5.6 ILLUSTRATION OF SIMILARITY
DISTRIBUTION

Figure 4 shows the effect of τ and the assigned unseen distri-
bution on seen, unseen and harmonic accuracies for AwA1
dataset. Small τ enforces q to be concentrated on the near-
est unseen class, while large τ spread q over all the unseen
classes and basically does not introduce helpful unseen class
information to the classifier. The optimal value for τ is 0.2
for AwA1 dataset as depicted in Figure 4.right. The impact
of τ on the assigned distribution for unseen classes is shown
in Figure 4.left when seen class is squirrel in AwA1 dataset.
Unseen distribution with τ = 0.2, well represents the sim-
ilarities between seen class (squirrel) and similar unseen
classes (rat, bat, bobcat) and basically verifies the result of
Figure 4.right where τ = 0.2 is the optimal temperature.
While in the extreme cases, when τ = 0.01, distribution on
unseen classes is mostly focused on the nearest unseen class,
rat, and consequently the other unseen classes’ similarities
are ignored. Also, τ = 10 flattens the unseen distribution
which results in high uncertainty and does not contribute
helpful unseen class information to the learning.

6 CONCLUSION

We proposed a discriminative GZSL classifier with visual-to-
semantic mapping and cross-entropy loss. During training,
while SDM is trained on a seen class, it simultaneously
learns similar unseen classes through probability distribu-
tion based on semantic similarity. We construct similarity
distribution on unseen classes which allows us to learn both
seen and unseen signatures simultaneously via a simple ar-
chitecture. Our proposed similarity distribution matching
strategy along with cross-entropy loss leads to a novel regu-
larization via generalized similarity-based weighted cross-
entropy loss that can successfully tackle GZSL problem.
SDM offers a trade-off between seen and unseen accuracies
and provides the capability to adjust these accuracies based
on the particular application. We achieve competitive per-
formance with state-of-the-art methods in GZSL setting, on
all five ZSL benchmark datasets while keeping the model
simple, efficient, and easy to train.
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