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Abstract

Deep learning architectures with a huge number
of parameters are often compressed using pruning
techniques to ensure computational efficiency of
inference during deployment. Despite multitude
of empirical advances, there is a lack of theoret-
ical understanding of the effectiveness of differ-
ent pruning methods. We inspect different pruning
techniques under the statistical mechanics formu-
lation of a teacher-student framework and derive
their generalization error (GE) bounds. It has been
shown that Determinantal Point Process (DPP)
based node pruning method is notably superior to
competing approaches when tested on real datasets.
Using GE bounds in the aforementioned setup we
provide theoretical guarantees for their empirical
observations. Another consistent finding in litera-
ture is that sparse neural networks (edge pruned)
generalize better than dense neural networks (node
pruned) for a fixed number of parameters. We
use our theoretical setup to prove this finding and
show that even the baseline random edge pruning
method performs better than the DPP node prun-
ing method. We also validate this empirically on
real datasets.

1 INTRODUCTION

Deep neural networks have achieved impressive results
in a wide variety of applications such as classification
[23,131]], image processing [30, 4]], natural language pro-
cessing [8, 17, 42], etc. Most of these networks use millions
and sometimes even billions of parameters which makes
inference computationally expensive and memory intensive
[8]. To address this, researchers explore pruning techniques
with the primary goal of comparing performance on real

*equal contribution

datasets. The broad scientific paradigm explored by most
pruning techniques is to empirically and heuristically deter-
mine either how to prune a network or what to prune in a
network (sometimes both). In this work, we take a step to-
wards theoretical understanding of these two prime aspects
of pruning methods.

We compare the quality of different pruning methods for
feedforward neural networks under the teacher-student
framework [37 38}, 139, [13] in the thermodynamic limit (in-
put dimension goes to infinity) using generalization error
bounds (GE), a theoretical measure of performance of ma-
chine learning models on unseen test data [46].

A fairly recent work by [34] empirically investigates a node
pruning technique where a diverse subset of nodes are pre-
served in a given layer using Determinantal Point Process
(DPP) [132} 24]. We provide theoretical guarantees for their
empirical observations thereby showing that DPP based
node pruning outperforms two standard paradigms of prun-
ing (magnitude based node pruning and random node prun-
ing). Thus, in the first part of this paper, we take a step
towards theoretical understanding of the question: how to
prune?

For the second part of this work we focus our attention to
the study by [6]. This study reviewed multiple papers across
decade on various pruning methods and closely analyzed
their empirical results to conclude that sparse models ob-
tained after edge/connection (used interchangeably) pruning
outperforms dense ones obtained after node pruning for a
fixed number of parameters. We extend our theoretical setup
and compare node and edge pruning techniques which are
within the scope of our investigation, to provide a theoreti-
cal justification of their empirical observation driven claim,
thereby addressing the question: what to prune?

Our work has multiple contributions with regard to theoreti-
cal advancements in the domain of pruning:

¢ We use GE bounds on the teacher-student framework
to compare different pruning methods within a class,
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which to the best of our knowledge, is the first theoreti-
cal advance in comparing pruning methods.

¢ We prove that DPP node pruning outperforms ran-
dom and importance node pruning methods, previously
shown by [34]] empirically.

* We also theoretically show and validate on real datasets
(MNIST and CIFAR10), that baseline random edge
pruning performs better than DPP node pruning (supe-
rior in the node pruning regime explored in this paper)
which is consistent with empirical observations from
pruning literature that sparse models outperform dense
models [6]].

2 RELATED WORK

Pruning Methods: Studies under node pruning regime re-
move entire neurons/nodes (used interchangeably hence-
forth) keeping the networks dense [17, 29} [18]]. Our work is
closely related to [34]], where a DPP sampling technique is
used to select a set of diverse neurons/nodes to be preserved
during pruning. The authors also introduce a reweighting
procedure to compensate contributions of the pruned neu-
rons in the network. Finally, they compare DIVNET (DPP
node pruning with reweighting as in [34]) with random and
importance node pruning [17] on real datasets. Seminal
studies on edge pruning [26, [16] remove unimportant net-
work weights based on the Hessian of the network’s error
function. Among others, alternative approaches include low
rank matrix factorization of the final weight layers [40] or
pruning the unimportant connections below a threshold [15].
Though dense networks can benefit from modern hardware,
sparse models outperform dense ones for a fixed number of
parameters across domains [27} 21} [14]. In a recent review
this is highlighted based on observations from investigating
81 studies on pruning techniques [6].

The various existing methods can be broadly subsumed into
a couple of categories [6]. These categories are mainly gov-
erned by the principles of pruning heuristics. First category
is the magnitude-based approaches which have been exten-
sively studied both globally and layerwise [[15, [11]]. As per
[6], magnitude-based approaches are not only good and com-
mon baselines in the literature but they also give comparable
performance to other methods such as the gradient-based
methods [27, 47]. Another category is the random pruning
which serves as an useful baseline for showing superior per-
formance of any other pruning technique. We hence show
all our theoretical results w.r.t these two categories, ran-
dom pruning and importance pruning (same in concept as
magnitude based pruning). We do not focus on any specific
algorithm within these categories but explore the general
concept for theoretical results. There are recent advances
in pruning techniques which are complementary to these
approaches, such as, being data independent [5} 43], single
shot [28} 145]] etc. However, these are beyond the scope of

our investigation.

Theoretical Advances Towards Understanding Neural
Networks: Despite promising performance in empirical
data, providing theoretical guarantees for neural networks
remains a known challenge. Researchers have explained the
training dynamics of neural network from the information
theoretic perspective [44,41]]. In another direction of work
the learning dynamics of neural networks with infinitely
wide hidden layers are explored [[19} 9} 2, 48]]. Pioneering
work by [37, 38 [39]] analyzes the generalization dynam-
ics form the statistical mechanics perspective on feacher-
student framework [12] to understand the performance of
neural networks on unseen test data. All our theoretical
analyses throughout this work closely follow [} [13]], who
analyzed results for the case where the student networks
are over parameterized, i.e., it has more number of hidden
nodes than the teacher network.

3 PRELIMINARIES

Determinantal Point Process (DPP): DPP [32]] is a prob-
ability distribution over power set of a ground set G, here
finite. DPP is a special case of negatively associated dis-
tributions [20]] which assigns higher probability mass on
diverse subsets. Formally, a DPP with a marginal kernel L
(€ RI9XI9N) is: PIY = Y] = qoilE¥)), where Y € G and
Ly is the principal submatrix defined by the indices of Y.
We use k-DPP to denote the probability distribution over
subsets of fixed size k.

DPP Node Pruning: [34] uses DPP to propose a novel node
pruning method for feedforward neural network. They de-
fine information at node i of layer [ as a!(= (al, ..., dl))),

where af; is the activity of node i of layer [ on j** input.
Here a} = g (bl), where b} = > """ wéi_laé_l is the in-
formation at node ¢ of layer [ before activation. A layer is
pruned by choosing a subset of hidden nodes using a DPP
kernel: L (= L’ + €I), where, L', = exp(—f3||al — aH’2)
and [ is a bandwidth parameter. The matrix L is of dimen-
sion n; X ny, as total number of nodes in layer [ is n;. By the
property of DPP, this procedure will keep a diverse subset
of nodes for each layer w.r.t. information obtained from the
training data. A reweighting technique (see Section 2.2 of
[134])) is then applied to outgoing edges of retained nodes to
compensate for information lost in that layer due to node
removal.

Remark: DIVNET denotes DPP node pruning with
reweighting as in [34].

Online Learning in Teacher-Student Setup [13]: We use
a two-layer perceptron which has N input units, A/ hid-
den units and 1 output unit as the teacher network to gen-
erate labels for i.i.d Gaussian input, ' = (af,...,z¥%)
where zf ~ N(0,1) Vi € {1,...,N}. Let 0* = {w*(€



Table 1: Notations used in Theorems

Notations Explanations Notations Explanations Notations Explanations
n number of inputs N dimension of the input ny number of nodes in layer
P it node in layer [ 1<i<m) aﬁj activation of v} on j7 input M number of teacher
hidden nodes
eﬁj edge from v! to v;“ wl J weight of e! j K number of student
1<i<mand1l<j<ng) 1<i<mand1l<j<n1) hidden nodes
kn number of student hidden nodes ke number of incoming edges of a v* second layer weight
kept after node pruning hidden node kept after edge pruning of teacher network

RM>N) * € RM} denote the fixed parameters of the
teacher network. The label y* of the input = (t = 1,2,...)
is given as,

M ozt

t * m

Yy = E Um9
—" (x/N

where ¢! ~ N(0,1) is the output noise, and ¢ is the sig-
moid activation function. The input and teacher generated
labels ({(z!,y),...}) are used to train a two-layer student
network with N input units, K hidden units (X > M) and 1
output unit using online SGD learning method. We consider
the quadratic training loss, i.e.,

Mﬁzilfpw($%>—wr, )

k=1

)+ad7 (1

where f = {w, v} denotes the parameter of the student
network. One of the key quantities for evaluating perfor-
mance of neural network is generalization error (GE). For
the teacher student setup the GE of teacher network f* and
student network f is denoted as €( f, f*). It is defined as,

o(F: %) = 580, £) - 6. PP,

wkwt

where ¢(z, f) = Zszl Vg ( - 3 )
age over input data distribution. In the teacher student setup
the weight of the teacher network (f*) is fixed beforehand.
Hence, from now onward we will denote the GE as a func-
tion of the student network, i.e; as e(f). [13] showed that
GE €(f) (expected error on the unseen data, for details see
S31 of [13]]) for the student network is a function of the
following order parameters,

and (-) denotes aver-

T T, * T, %
Q'k _ W; W R, — w; w, R _ w,,, W, (3)
7 N in N mn N

Intuitively, these order parameters measure the similarities
between and within the hidden nodes of teacher and student
networks. Our theoretical results assume [13]]:

(AD) If ¢ = (zq,...
Also, N — oo.

,on) is an input then z; € N(0,1).

(A2) Both the teacher and the student networks have only
one hidden layer.

(A3) K > M and K = Z - M where Z € 7.

(A4) The activation in the hidden layer is sigmoidal for both
teacher and student network.

(AS) The output € R (i.e., regression problem).

(A6) The order parameters (see section [3) satisfy the ansatz
as in (S58) - (S60) of [13]]. This ansatz intuitively states
that the every student hidden node specializes in learn-
ing a specific teacher hidden node and for each teacher
hidden node there is a student hidden node which learns
that teacher node.

(A7) No noise is added to the labels generated by the teacher
network, i.e., o = 0 in ().

4 GE OF PRUNED NETWORK IN
TEACHER-STUDENT SETUP

We compare the performance of student networks pruned
using different techniques as in Table 2] by analyzing their
GE (see Figure[T). For node and edge pruning comparison,
we choose the parameters k,, and k. (see Table such that
the total number of parameters of the networks remain same,
i.e., they satisfy,

kn ke
oy =6 )

where ¢ € [0, 1] is a constant. It is important to note that
since we assume that the number of student nodes is more
than the number of teacher nodes, which means multiple
student nodes learn the same teacher node (see Figure 3
of [[13]); also in Figure m two student hidden nodes learn
one teacher hidden node, shown in same color). From [13]],
we know that, in noiseless case (o = 0 in (T))), the student
network learns the teacher network completely when trained
till convergence, i.e., the GE becomes 0. When we prune the
student network, this GE increases, which we then analyze
for different types of pruning under certain assumptions (see
Section 3 (A1)-(A7)).



Table 2: Different pruning methods and notations for their GE. Here f denotes the pruned student network. u.a.r. and w.p.
stand for uniformly at random and with probability resepectively.

Pruning Method Procedure Retained GE without GE with
Parameters reweighting reweighting
Random Node Keep k, nodes u.ar. | k, hiddennodes | epo"dNVode(f) | effand Node(y)
Importance Node (171 ky, hidden nodes eg:”’ Node (g €£le Node £y
DPP Node see SectionEl k,, hidden nodes eDnP P Node €D7 IP ralede
Random Edge Keep an edge w.p. ¢ | ke incoming edges e,i”"d Bdge( ) €kR:"d Fdge( f)
for each hidden node per hidden node 4

4.1 COMPARING NODE PRUNING METHODS

We theoretically show that the increment in GE due to DI-
VNET is less than that for random and importance node
pruning methods, justifying the empirical findings of [34].
The proof proceeds with the following steps: (1) Theorem [I]
provides a closed form expression of the GE after DPP node
pruning. (2) Theorem shows that: (a) GE of random node
pruning is greater than GE of DPP node pruning (b) GE of
random node pruning with reweighting is greater than GE
of DIVNET (c) GE of importance node pruning is greater
than GE of DIVNET.

Theorem 1. Assume (A1) — (AT). Let k,, < M nodes are
selected by the DPP Node pruning method,

kn 1\> M-k,
6anPPNode(f) — (’U*)2 [6 (1 o Z) + 5

®)

and ol
EprPNede(fy = (M — k) X % (6)
Proof Idea of Theorem [T} Proof of the above theorem (de-
tails in the appendix C) is based on two factors: (1) Results
from [[13] assure that analyzing the order parameters is
enough to obtain closed form of GE. (2) We exploit the ob-
servation that the expected kernel of the DPP node pruning
is same as the order parameter () (see appendix B for proof
and Figure 2| E) which, following [[13], is a block diagonal
matrix with M blocks. By property of DPP, the pruning
method will retain a subset of student hidden nodes with at
most 1 hidden node from each block when k,, < M (see

Figure 2| G).

Remark 1. As the expected DPP kernel is block-diagonal
matrix, the stochasticity in subset selection via DPP does
notimpact GE when subset size is fixed and it only depends
on size of pruned subsets.

Remark 2. Our theorem uses k,, < M, however, in prac-
tice the kernel may have non-zero off-diagonal entries when
the assumption (A1) about input data is violated. As a result
the probability of sampling a subset of size k,, > M may be
nonzero.

Connection to Lottery Ticket Hypothesis: An interesting
direction of research is to find small sub-networks from an
overparameterized network with comparable performance.
The existence of such networks is hypothesized in Lottery
Ticket hypothesis [10]]. Interestingly, recent work shows that
pruning helps find such networks even without retraining
[36} 33]] and in our work we explore a sub-network in the
teacher student setup.

Note that from Eq @, when M student nodes are kept after
pruning, i.e., k,, = M, then the GE of the DPP node pruned
network is 0 which is GE of the original student network.
Hence, from the fact that X > M we can conclude that DPP
node pruning can find out the winning ticket, i.e., a small
sub-network with much less number of parameters than
the original unpruned network but with same performance
guarantee.

Theorem 2. Assume (A1) — (AT). Then for k, < M we
have,

E; [Eﬁ?nd Node(f)] > EanPP Node(f/) )

and
E; [ékR:nd Node(f)] > éanPP Node(f/) 8)

and,
eil”” Node(f/) > éanPP Node(f/>7 )

i.e., DPP node pruning outperforms random node pruning
in the above setup. Here the expectation is taken over the
the subsets of hidden nodes of size k,, chosen u.a.r.

Remark 3. Reweighting for DPP/random node pruning
follow procedure in Section 2.2 of [34].

Proof Idea of Theorem [2} In random and importance node
pruning, two student nodes which learn the same teacher
node may both survive after pruning with non-zero probabil-
ity, unlike DPP node pruning (Figure[T](B)). Hence, more
teacher nodes may remain unexplained by the student net-
work after random or importance node pruning, resulting in
increased GE (details in appendix C).

Together, Theorem [I|and 2] gives theoretical guarantees for
all empirical results of [34]]. Theorem 1 further allows us to



Teacher Network

Number of parameters
fixed after pruning:

Two teacher nodes
remain unexplained

Student Network

kn (: 2)
K(=6)

ke(=3) _
N(=10)

All teacher nodes
explained but partially

One teacher node
remain unexplained

Figure 1: (A) Two layer teacher-student framework: A teacher neural network with 3 hidden nodes (left) and a student
network with 6 hidden nodes (right). Input data (i.i.d) along with its label generated by teacher network are fed to student
network to predict. (B) Intuitive example for 3 types of pruning on student network. For k,, = 2, random node pruning
might only be able to explain 1 teacher hidden node, whereas DPP node pruning will always retain (partial) information
about 2 teacher hidden nodes, hence preforms better. Random edge pruning retains sparse information about all 3 teacher
nodes which is enough to outperform DPP node pruning. All notations follow Table E

show that DIVNET indeed satisfies the stronger version of
Lottery Ticket Hypothesis as recently explored in [36} 35]].
Importance node pruning with reweighting may be better
than DIVNET and was not explored in [34]].

4.2 COMPARING NODE AND EDGE PRUNING
METHODS

In random edge pruning method, for each student hidden
node, an incoming edge is kept with probability ¢ = lim k—A‘;
Majority of empirical studies throughout literature use ran-
dom edge or node pruning as a baseline for empirical com-
parison (see papers in [[6]) making it an obvious candidate
for our theoretical comparisons as well. It has been shown
empirically by [34] and theoretically by us that DPP node
pruning is an above baseline node pruning method. In this
section we show that baseline random edge pruning out-
performs DPP node pruning which is consistent with the
empirical observations that sparse models outperform dense
models (section 3.2 of [6]). Specifically, here we show that
GE after random edge pruning is less than GE after DPP
node pruning. Our proof proceeds as follows: (1) Theorem
[] gives a closed form expression for the GE after random
edge pruning (2) Theorem [ then shows that GE of random
edge pruning is less than GE of DPP node pruning.

Theorem 3. Assume (Al) — (A7). Consider the random
edge pruning method with parameter im k—]\? = c (here cis
a constant between 0 and 1). Then the GE eRand Edge (B [ £])
is,

M(v*)2 — arcsin + <1 — 1) arcsin ¢
™ A 1+e¢ VA 1+c
T . c

+ g — 2arC61n M] .

(10)

Remark 4. Theorem 3] gives closed form for “GE of the
expected network" after pruning instead of the “expected
GE of the network" after pruning. However, in the thermody-
namic limit (N — c0), the order parameters as in Section[3|
are highly concentrated near their expected values and the
two quantities hence become equal.

Theorem 4. Assume (A1) — (AT). Let ky, and c satisfy @),
and 0 < c < %andeéL Then

GkDPP Node (f) > 6i%and Edge (E [f])

n

(11
)

i.e., Random edge pruning outperforms DPP node pruning
in the above setup.

Proof Idea of Theorem @ When k,, < M, node pruned
student network leaves at least (M — k,,) teacher nodes



unexplained, whereas after random edge pruning, student
network can retain at least partial information about every
teacher node (see Figure[I|(B)). After a pruning routine, the
sum of partial information about all teacher nodes in an edge
pruned student network dominates the sum of information
for the explained subset of teacher nodes in a node pruned
student network.

Observations: From Theorem [2] and [ we conclude that
random edge pruning outperforms random node pruning.
Further, using Theorem 2] and the intuition that importance
edge pruning is better than random edge pruning, we ex-
pect that importance edge pruning will outperform impor-
tance node pruning. Figure 2] confirms this empirically in
the teacher student setup. These observations leads to the
conjecture that for a fixed pruning method, edge pruning
outperforms node pruning.

Conjecture 1. Assume (Al) — (AT7). Let k,, and c satisfy
®@) and Prune denotes a fixed pruning method (e.g. Rand,
Imp) which can be applied to both node and edge. Then,
Je. € (0,1] such that for 0 < ¢ < ¢,

elljjune Node (f) > Efrune FEdge (f) ) (12)

Together, Theorem 3] ] and Conjecture[T]are consistent with
empirical observations of [6]: sparse networks after edge
pruning perform better on the unseen test data than dense
networks after node pruning with fixed number of parame-
ters. To the best of our knowledge, [6] based their claims
from empirical observations of pruning studies in which
the pruned networks were not reweighted. This motivated
our choice of comparing GE for DPP node pruning and
random edge pruning without any reweighting. However,
with reweighting from [34]], GE of DPP node pruning will
be less than GE of random edge pruning, highlighting the
impact of reweighting proposed by [34] (proof and details
in appendix C).

We find that GE analysis on teacher-student setup is flexible
for various pruning methods and this framework can be
extended to theoretically understand other pruning methods
which are outside the scope of this work.

S EXPERIMENTS

5.1 SIMULATIONS

We run the DPP node, random edge/node, and importance
edge/node pruning simulations under the teacher-student
setup. For all the simulations, we sampled the 800000 i.i.d
input samples from N(0,1) as training data and 80000
as testing data. Following notations from Table [1| we set
M = 2 K = 6, N = 500, and v* = 4. The first
layer teacher network weights w* and all the student net-
work parameters § = {w, v} were drawn independently

from N(0,1) as initialization. We choose learning rate
n = 0.50, and it is scaled to LN for w and  for v.
We run the simulations for both noiseless (¢ = 0 in (I))
and noisy (o = 0.25) output labels. For comparisons be-
tween node and edge pruning, we use the node-to-edge ratio
[1:83,2:166,3 : 250,4 : 333,5 :417,6 : 500] to
keep the number of parameters the same, given N = 500,
K = 6, and M = 2. In addition, we run the same simula-
tion with K = 5 and M = 20, see Figure Iz]D For other
simulation details and results, see appendix F. Note that no
pruning method undergoes reweighting for reported simu-
lation results which we therefore use to verify and validate
our theoretical results without reweighting.

Key Observations:

¢ The expected kernel of the DPP node pruning and the
(@ matrix are the same which we exploit for Theorem

[T] (Figure 2E.F).

e For k, = 2 and M = 2, DPP node pruning chooses
exactly one node from each of the diagonal block of
the kernel (see Figure [2JG) which validates Theorem I}

e DPP node pruning outperforms random and impor-
tance node in both noisy and noiseless case (see Figure
[2C) which confirms Theorem 2]

* Random edge pruning is better than DPP node pruning
for c < % with Z = 4 and M = 5 in both noisy and
noiseless cases (see Figure 2D), validating Theorem 4]

* We see Conjecture [I] holds for random, importance
edge and node pruning (see Figure [2A,B)

5.2 REAL DATA

In this section, we compare DIVNET by [34] with random
edge pruning with reweighting, and importance edge prun-
ing with reweighting on the MNI ST [25] and CIFAR10 [22]]
datasets. We used the exact same network architectures as
in Table 1 of [34] for MNIST and CIFAR1DO, respectively.
Note that, for the real data we consider network structures
with multiple layers. Following [34]], we performed all prun-
ing methods on the first layer. We compare the number of
parameters as k, = k”(di"hpiw — ho where k. is the num-
ber of edges kept for each node in edge pruning, and &,
is the number of nodes kept in the hidden layer for node
pruning; dinpui, 11, and ho represent the dimension of the
input, size of the first hidden layer, and size of the second
hidden layer, respectively. As in [34], hy = ho. We trained
our model until the training error reaches predefined thresh-
olds (Table 1 in [34]) and then perform the pruning. For
hyperparameters and other details, see appendix F.

Remark: Note that we have not presented the results com-
paring different node pruning methods among themselves
as they were already discussed in [34].
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Figure 2: Simulation results in teacher student setup, M = 2 and K = 6 for (A-G). (A-B) Edge pruned networks perform
better than node pruned networks in all 3 types of pruning methods (random (A), importance (B)), validating Conjecture|[I]
(C) DPP Node pruning performs better than importance and random node pruning (Theorem [2)) (D) Baseline random edge
pruning beats DPP node pruning (Theorem ). For (D), M = 5 and K = 20. (E) The kernel of DPP node pruning is same
as @ (F) Order parameters, () (same as (E)) and R of the unpruned student network. (G) When only keeping 2 nodes, DPP

node pruned student network keeps one from each block shown in (G).

Key observations:

* Baseline random edge pruning method outperforms
DIVNET across all percentages of parameters retained
in the network for CIFAR10 dataset shown in Fig[3| B.
However, for MNIST dataset, DIVNET performs better
than random edge intitally but if > 40% of parameters
are retained in the network random edge outperforms
DIVNET (see Fig[3] A).

» Importance edge pruning performs better than both DI-
VNET and the baseline random edge pruning method
on both the real data sets which highlighting the poten-
tial of magnitude based pruning method (see Fig[3| A
and B).

6 DISCUSSION AND FUTURE WORK

Our work takes the first step to develop theoretical com-
parison for empirical observations of pruning methods in
feed forward neural networks. We identify the usefulness of
teacher-student setup for providing theoretical guarantees
of pruning methods. We then use this setup to theoretically
show that DIVNET should indeed outperform random and
importance node pruning techniques. We further show that
random edge pruning outperforms DPP node pruning provid-
ing a theoretical proof for the popular empirical observation:
sparse (edge pruned) networks perform better than dense
(node pruned) pruned networks for fixed number of parame-
ters. Finally, we also are able to show that DIVNET satisfies
a stronger version of the Lottery Ticket Hypothesis. Our
work consolidates the understanding of a particular class of
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Figure 3: Comparing different edge pruning methods with DPP Node pruning method on the MNIST (A) and CIFAR10
(B) dataset. Horizontal axis represents the percentage of remaining parameters in 1°¢ layer after pruning. The vertical axis
shows corresponding test error. Both magnitude based edge pruning method (importance pruning) and baseline random edge
pruning method outperforms DPP Node pruning which confirms TheoremE] and the conjecture proposed in [6].

node and edge pruning theoretically.

When comparing two neural networks, using the number
of parameters may not always be the optimal choice, in-
stead, measuring the capacity and expressiveness of neural
networks [3]] can provide new insights. All our theoreti-
cal results have been proved on single hidden layer neural
networks which gives future scope of extending them to
multiple hidden layer networks. However, our empirical re-
sults hold for neural networks with multiple hidden layers
suggesting the possibility of generalization of our results.

Throughout this work, we focus only on pruning methods in
which a feedforward pre-trained neural network is pruned
once without retraining. We choose this class for two pri-
mary reasons: (1) it is feasible to make theoretical compar-
isons with closed form solutions of GE, and, (2) with some
assumptions, it has been shown by recent studies [36}(33L135]]
that every sufficiently over-parameterized network contains
a sub network that, even without training, achieves com-
parable accuracy to the trained large network. This proven
conjecture is even stronger than the Lottery Ticket Hypothe-
sis [[LO]. Hence, comparing performance of pruning methods
within the aforementioned class in the teacher-student setup
allowed us explore the existence of such a sub network.

We compare our theoretical results with random pruning
and importance pruning which subsumes ideas underlying
vast majority of pruning techniques and do not focus on
any specific algorithm. A more specific algorithm based
justification can also be an extension (may not always be
trivial however) of this paradigm.

We introduce the teacher-student setup for proving results
related to pruning methods which can further be extended
to prove other empirical results in the pruning domain. Such
theoretical insights can also be used as a means to guide
development of theory-motivated new and better pruning
algorithms on other neural network architectures like CNNs
and RNNSs in future work.
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