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Abstract

An important achievement in the field of causal
inference was a complete characterization of when
a causal effect, in a system modeled by a causal
graph, can be determined uniquely from purely
observational data. The identification algorithms
resulting from this work produce exact symbolic
expressions for causal effects, in terms of the ob-
servational probabilities. More recent work has
looked at the numerical properties of these expres-
sions, in particular using the classical notion of the
condition number. In its classical interpretation,
the condition number quantifies the sensitivity of
the output values of the expressions to small nu-
merical perturbations in the input observational
probabilities. In the context of causal identifica-
tion, the condition number has also been shown
to be related to the effect of certain kinds of un-
certainties in the structure of the causal graphical
model.
In this paper, we first give an upper bound on the
condition number for the interesting case of causal
graphical models with small “confounded compo-
nents”. We then develop a tight characterization
of the condition number of any given causal iden-
tification problem. Finally, we use our tight char-
acterization to give a specific example where the
condition number can be much lower than that ob-
tained via generic bounds on the condition number,
and to show that even “equivalent” expressions for
causal identification can behave very differently
with respect to their numerical stability properties.

1 INTRODUCTION

Scientists have long designed controlled experiments to de-
termine cause-and-effect relationships between quantities

of interest in systems they are studying. However, in spe-
cific applications, several factors, such as considerations
of ethics and feasibility, may prevent the use of random-
ized controlled trials to determine the strength of cause-and-
effect relationships. This led to an exploration of when and
how it might be possible to measure cause-and-effect rela-
tionships from observational data alone. One well-studied
approach to this question has been in the framework of
causal DAGs, starting with the work of Pearl [1995]. The
framework models parts of the system being studied, and
domain-specific knowledge about absence of direct causal
relationships between such parts, as a directed acyclic graph
with both observed and latent vertices. The resulting for-
malization has been quite influential, and led initially to a
systematization of the original question in terms of graph
theoretic notions (such as d-separation and the back-door
criterion).

After a decade of work on causal DAGs, papers by Shpitser
and Pearl [2006, 2008] and Huang and Valtorta [2006, 2008]
(see also Tian [2002]) culminated in a sound and complete
algorithm (the ID algorithm) which decides, given a causal
DAG G with observed variables V and latent variables with
known direct influences, a set X ⊆ V of variables upon
which to intervene, and an effect set Y ⊆ (V \X), whether
the effect of an intervention on X upon Y can be deter-
mined from the joint distribution over V . In the case that
the desired interventional distribution is identifiable, the ID
algorithm gives a symbolic expression, or formula, for the
interventional distribution, denoted P (Y | do(X)), in terms
of observational distribution P (V ).

When using the ID algorithm in practice, the numerical
values of the observed marginals (P (V = v))v∈ΣV will be
input into the ID expression (or formula) output by the ID
algorithm to get a final numerical answer. Of course, in this
setting, the numerical input will most likely not be the true
observational distribution P (V ), but rather an empirical
approximation P̃ (V ). It therefore becomes important to
understand the robustness of the ID expression output by
the ID algorithm, to numerical perturbations of its input.
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 A classical notion of robustness of a function to perturba-
tions of its inputs is the condition number, ubiquitous in
numerical analysis (see, e.g, Bürgisser and Cucker [2013]).
Informally, the condition number bounds the ratio between
the relative error in the output of a function to the relative
error in the input of that function (see Definition 1 for a
precise definition). The importance of this notion of measur-
ing sensitivity of errors in numerical analysis comes from
the fact that the logarithm of the condition number of a
function f captures the loss of precision when an algorithm
employing fixed-precision floating-point arithmetic is used
to compute f [Bürgisser and Cucker, 2013, Theorem O.3].

In the context of causal identification, the condition number
has another desirable property: Schulman and Srivastava
[2016] observed that it can also be used to study errors
resulting from certain kinds of model mis-specifications.
Roughly speaking, they show that if an edge X → Y is
such that changes in X have small multiplicative effect on
any P (Y = y), then omission of the edge from the model
has small effect on the numerical output of the causal iden-
tification formula, provided that the condition number is
small. In addition to this, they also showed that on a certain
class of instances for the ID algorithm studied by Tian and
Pearl [2002], the condition number of the ID expression
output by the algorithm is not too large (O(n), where n is
the number of vertices) for all input distributions. Further,
they constructed an instance, for which, on a tailored in-
put marginal distribution, the expression output by the ID
algorithm has a “large” condition number (Ω

(
exp(n0.4)

)
).

More recent work of Sankararaman et al. [2020a,b]) has
focused on the condition number of a related (but different!)
notion of causal identification in the setting of structural
equation models [Wright, 1921, 1934].

Our Contribution Several questions regarding the condi-
tion number of causal identification in the setting of general
causal DAGs remain open: What is the condition number for
a given instance? Can one obtain more general upper bounds
than the ones shown by Schulman and Srivastava [2016]? In
this paper, we report progress on both these questions. First,
in Theorem 4, we give a general condition number bound
for causal DAGs in which all C-components are small (such
models turn out to be interesting especially in the context
of learning and testing: see Acharya et al. [2018]). In our
main technical result, Theorem 5 (along with Corollaries 10
and 11), we use ideas from numerical analysis and linear
programming duality to give a characterization of the condi-
tion number of causal identification. This characterization,
while giving an explicit method for computing the condition
number for any given instance, also allows us to demonstrate
two important subtle points about the condition number of
causal identification. The first of these, shown in Theorem 7,
is that the condition number of a given ID expression can
be smaller than that obtained using “generic” upper bounds
like the one obtained by Schulman and Srivastava [2016] or

in our own Theorem 4. The second, more important, point is
that “equivalent” ID expressions for the same interventional
distribution can have very different behavior with regards
to condition number and, hence, numerical stability. This
is described in the remarks following Theorem 7. Notably,
both these subtleties already manifest in an extremely simple
example of causal identification (see Figure 1).

Related Work As discussed above, the condition number
of causal identification has been studied by Schulman and
Srivastava [2016] in the setting of causal DAGs, and by
Sankararaman et al. [2020a,b] in the setting of structural
equation models. We are not aware of any other work on the
numerical stability of causal inference.

While the notion of relative error is more natural in the study
of numerical stability and condition numbers, the notion of
statistical or total variation distance seems to arise more
naturally in studies of finite-sample learning and testing
problems associated with causal DAGs (see, e.g., Acharya
et al. [2018] and Bhattacharyya et al. [2020]). While these
latter works do not consider the stability of causal identifi-
cation measured with respect to the total variation distance,
we note that relative error is a more demanding notion of
approximation, especially for rare events: Rel(P, P̃ ) ≤ ε
(see Section 1.1 for a formal definition) implies that the
total variation distance between P and P̃ is also at most
O(ε), and in particular, P̃ (E) = 0 for any event E for
which P (E) = 0. Thus, the notion of stability guaranteed
by a “low” condition number starts with requiring a more
demanding notion of approximation for the input, but also
in turn guarantees a stricter notion of approximation for the
output.

Notation and Terminology for Graphical Models Our
notation and terminology for graphical models is largely
taken from the work of Shpitser and Pearl [2006] and Huang
and Valtorta [2006]. We quickly summarize this notation
here, but refer to the above papers for more complete de-
scriptions. We denote sets of vertices in graphs, and the
vertices themselves, using capital letters. Given a directed
acyclic graph (DAG) G and a set of vertices S in G, Pa(S)
denotes the set of parents of S in G, while An(Y ) denotes
the set of ancestors of S (including S). A causal graphical
model is a set of observable random variables V , and a set of
latent random variables U arranged as a DAG, such that no
vertex in U has a parent. A subset S of observed vertices is
said to be C-connected if there is a path (ignoring the direc-
tions of the edges) between every pair of vertices in S that
only goes through vertices in U ; a maximal C-connected
set is a C-component.

For random variables corresponding to a set S of vertices,
we use the corresponding small letter s to denote a generic
tuple of values that the variables in S may assume. The
boldface symbol s is used when S is not a singleton, while



 the normal weight symbol s is used when S is a singleton.
In the former case, symbols such as si are used to denote the
component of s indexed by i. The manifold of probability
distributions supported by the model is given in terms of
probability kernels of the form P (Vi = vi | Pa(Vi) =
pa(Vi)), for each vertex Vi in V ∪U (of course, Pa(vi) = ∅
when vi ∈ U ), so that the global probability distribution
is P (V = v, U = u) =

∏
Vi∈V ∪U P (Vi = vi | Pa(Vi) =

pa(Vi)), where pa(Vi) denotes the partial assignment to
the parents Pa(Vi) of Vi under the full assignment v ∪ u.
The observed distribution P (V = v) is the marginal of
this distribution on the observed vertices: P (V = v) =∑

u P (V = v, U = u).

Making an intervention on a subset X of the observed ver-
tices consists of fixing the values of those vertices to some
setting x. The intervention distribution induced by such an
intervention on a set Y of observed vertices (disjoint from
X) is denoted P (Y = y | do(X = x)) and is defined by

P (Y = y | do(X = x))

=
∑

(v∪u)\(y∪x)

∏
Vi∈(V ∪U)\X

P (Vi = vi | Pa(Vi) = pa(Vi)),

(1)

and this corresponds to considering a modified graph in
which all the incoming edges into the vertices in X have
been removed. The problem of causal identification is to
obtain, whenever possible, a formula for the intervention
distribution in eq. (1) in terms of the entries P (V = v) of
the observed distribution. When such a formula exists, we
call it an ID expression for the intervention distribution in
eq. (1). The ID algorithm finds such an expression whenever
one exists [Shpitser and Pearl, 2006, Huang and Valtorta,
2006] (or terminates with a proof that no such expression
exists, in which case the intervention distribution is non-
identifiable): we reproduce the version of the ID algorithm
given by Shpitser and Pearl [2006] in algorithm 1.

1.1 DESCRIPTION OF RESULTS

We begin by setting up the notation for the condition number
in the context of causal identification. Our notation follows
that of Bürgisser and Cucker [2013]. For positive real num-

bers a and a′, we use Rel(a, a′) ··=
|a−a′|
a to denote the

relative error incurred when using a′ to approximate a. This
generalizes to n-dimensional vectors v and v′ (with positive
entries) as Rel(v, v′) ··= maxni=1 Rel(vi, v

′
i). In this paper,

we will be concerned only with probability distributions
over finite sets, so we specialize the following presentation
to this case. Let P be a probability distribution over a finite
set Ω. We can then identify P with a unique point in the
probability simplex ∆Ω defined as

∆Ω ··= {x ∈ RΩ | xω ≥ 0 ∀ω ∈ Ω and
∑
ω∈Ω

xω = 1}.

For technical reasons, we will exclude the trivial probability
distributions which assign weight 1 to a single point of
the domain Ω. Thus, we focus on distributions P in which
for every ω ∈ Ω, P (ω) < 1. We denote the set of these
distributions as ∆+

Ω .

Now, given any function f : ∆Ω → R+, and P 6= P̃ ∈ ∆+
Ω ,

we define

ζf (P, P̃ ) ··=
Rel(f(P ), f(P̃ ))

Rel(P, P̃ )
. (2)

Definition 1 (Condition number). Let f be as in the pre-
vious paragraph, and consider P ∈ ∆+

Ω . For any ε > 0,

we define the set Bε(P ) ··=
{
P̃ ∈ ∆Ω | Rel(P, P ′) ≤ ε

}
.

The condition number of f at P , denoted κ(f, P ), is defined
as

κ(f, P ) ··= lim
ε↓0

sup
P̃∈Bε(P )

ζ(P, P̃ ). (3)

The condition number of f over a subset S ⊆ ∆+
Ω is defined

as κ(f, S) ··= supP∈S κ(f, P ). When S is the relative in-
terior of ∆+

Ω , the quantity κ(f, S) is called the condition
number of f , and we denote it by κ(f).

Remark 2. Note that the definitions of ζf and κ(f, ·) given
in eqs. (2) and (3) apply, exactly as stated, even when f is
a vector valued function, as long as each coordinate of f is
non-negative.

It would be helpful to record some natural properties that
one may expect the condition number to inherit as a mea-
sure of “increase” in relative error. The following standard
fact (specialized here to our setting above) describes upper
bounds on the condition number sums, products and com-
position. We note that these upper bounds are not tight. For
completeness, we give a proof of these bounds in Supple-
mentary Material Section A.1.

Lemma 3. Fix f, g : ∆Ω → R+ and P ∈ ∆+
Ω . Assume that

f(P ), g(P ) > 0 and that f, g are differentiable at P . Then,
we have

1. κ(fg, P ), κ(f/g, P ) ≤ κ(f, P ) + κ(g, P ).

2. κ(f + g, P ) ≤ max {κ(f, P ), κ(g, P )}.
3. For h : ∆+

Ω′ → ∆+
Ω , where Ω′ is possibly different from

Ω, and P ∈ ∆+
Ω′ , κ(f ◦h, P ) ≤ κ(f, h(P )) ·κ(h, P ).

Our first result uses the above and the structure of the ID
algorithm [Shpitser and Pearl, 2006, Huang and Valtorta,
2006] to prove a new general upper bound on the condition
number of causal identification.

Theorem 4. Let G be a causal graph with n observed
vertices, in which each C-component is of size at most c.
Let X , Y be disjoint subsets of observed vertices in G such
that P (Y | do(X)) is identifiable in G. Then, the condition



 number of the ID expression for P (Y | do(X)) output by
the ID algorithm, for any strictly positive P , is at most
n · exp(O(c log c)).

This theorem is proved in Section 4. However, one might
suspect that the bounds given by the above theorem and
the techniques underlying it are sub-optimal for specific
instances. We therefore turn towards developing tools for
obtaining tighter bounds on the condition number. Our main
technical result, Theorem 5, gives an exact numerical de-
scription of the condition number of any rational function of
a discrete probability distribution, in terms of the gradient
of the function.

Theorem 5. Fix f : ∆+
Ω → R+ and P ∈ ∆+

Ω . Assume
that f(P ) > 0 and f is differentiable at P , with gradient
∇f(P ) = (dω)ω∈Ω. Then, we have

κ(f, P ) =
1

f(P )
min
γ∈R

∑
ω∈Ω

P (ω)|dω − γ|.

Remark 6. Note that the minimizing γ in the statement of
the theorem is the median of the (dω)ω∈Ω with respect to
the probability distribution P on Ω.

The proof of this theorem is given in Section 2, and is based
on some ideas from numerical analysis combined with an
application of linear programming duality. In Section 2, we
also give two corollaries (Corollaries 10 and 11) which give
potentially more convenient expressions than the one given
in Theorem 5, for studying the condition number.

Specializing to the case of causal identification, Theorem 5
already gives an algorithm, analogous to the ID algorithm,
for estimating the condition number of causal identification:
one computes (symbolically) the gradient of the causal iden-
tification expression returned by the ID algorithm, via an
automatic differentiation procedure, and then plugs in nu-
merical values into the expression for the condition number
given by Theorem 5 or one of its corollaries (Corollaries 10
and 11). However, instead of pursuing this route, we instead
exploit the characterization in these results to show that even
in an extremely simple example of causal identification, the
condition number (and therefore numerical stability) can
show some very subtle behavior.

S1

X1

S2

X2

S3

X3

S4

X4

Figure 1: A simple example

The (very simple) example we consider is the following: we
have a causal graph Mn with 2n observed vertices, labelled

S1, S2, . . . Sn andX1, X2, . . . , Xn. There is a directed edge
Si → Xi for each 1 ≤ i ≤ n. In addition, there is a
bidirected edge between Si and Si+1 for each 1 ≤ i ≤ n−1
(Figure 1 shows the case n = 4).1 We denote by X the tuple
(X1, X2, . . . , Xn), and by S the tuple (S1, S2, . . . , Sn). We
assume further that each of the Si and the Xi take values in
{0, 1}. The definition of the intervention distribution shows
that for a probability distribution P on this graph, we have

P (X = 0 | do(S = 0))

= f(P ) ··=
n∏
i=1

P (Xi = 0 | Si = 0). (4)

The above expression is a product of n terms, each of which
is a quotient of two marginals of P . Applying the product
and quotient rules (item 1) of Lemma 3 therefore implies
that κ(f, P ) ≤ 2n, for any P . However, as the next theorem
(proved in Section 3 using Theorem 5) shows, this upper
bound in not tight even when P is the uniform distribution.

Theorem 7. Consider the interventional distribution
P (X = 0 | do(S = 0)) in the causal graph Mn defined
above. There is a constant a > 0 (independent of n) such
that the condition number κ(f, P ) for the expression f in
eq. (4) for this interventional distribution is at most a

√
n,

when P is the uniform distribution.

Thus, the above example shows that even for a simple ex-
ample, the condition number of a given causal identification
expression can be much lower than that predicted by generic
upper bounds like those using Lemma 3 and Theorem 4. We
now turn to the second subtlety: the difference between
condition numbers of equivalent causal identification ex-
pressions.

Condition Numbers of “Equivalent” Expressions For
a particular instance of causal identification, there can be
several ID expressions which are equivalent in the sense that
they are all equal when evaluated on a distribution P that lies
on the manifold of probability distributions allowed by the
causal graph under study, but which are different as rational
functions. On the other hand, the errors in the perturbed
version P̃ of P that is provided to such an ID expression as
an input arise due to phenomena such as rounding to a fixed
finite precision, statistical noise, or as in one of the settings
considered by Schulman and Srivastava [2016] that was
described in the introduction, due to a mis-specification of
the causal DAG. One cannot expect such disparate sources
of errors to produce only such perturbed inputs P̃ that lie on
the manifold allowed by the causal DAG under study. The
possibility therefore arises that ID expressions that agree on
the manifold, but that are different as rational functions, can

1Each bi-directed edge is shorthand for a new latent variable
with no parents and directed edges to each endpoint of the bi-
directed edge.



 have very different behaviours when the input is perturbed,
which would reflect in their condition numbers being very
different. We illustrate this by continuing with the simple
example considered in Theorem 7, for which we see using
standard d-separation arguments that the following is an
ID expression equivalent (in the above sense) to the one in
eq. (4):

P (X = 0 | do(S = 0)) = g(P ) ··= P (X = 0 | S = 0).

Again, f and g agree on every P that lies on the mani-
fold of probability distributions allowed by the model Mn.
However, their behaviour on perturbed versions of such
a P can be widely different. Indeed, as we show in Sec-
tion 3.1, the upper bound on κ(f, P ) when P is uniform,
obtained in Theorem 7, is in fact tight up to constant factors:
there is a constant a′ > 0 such that for all large enough n,
κ(f, P ) ≥ a′

√
n. On the other hand, since g(P ) is a ratio

of two marginals of P , the sum and quotient rules (items 1
and 2) of Lemma 3 imply that κ(g, P ) ≤ 2 for all P !

We therefore see that even in such a simple example, the
condition number, and therefore the numerical stability un-
der perturbation, of equivalent ID expressions can be quite
different. This further highlights the importance of the condi-
tion number: in an application, it can serve as a criterion for
choosing between various equivalent causal identification
expressions. We hasten to add, however, that the condition
number need not be the only such criterion for choosing be-
tween equivalent intervention expressions: we discuss some
important open questions in this direction in the conclusion
section of the paper.

2 RATIONAL FUNCTIONS OF
PROBABILITY DISTRIBUTIONS

Working towards a proof of Theorem 5, we now study
the condition number of differentiable rational functions
of discrete probability distributions. We first observe that
given P ∈ ∆+

Ω and ε > 0, any member P̃ ∈ Bε(P )
can be written in terms of feasible solutions to a sys-
tem of linear inequalities. Recall from Definition 1 that
Bε(P ) ··=

{
P̃ ∈ ∆Ω | Rel(P, P ′) ≤ ε

}
.

Observation 8. Fix P ∈ ∆+
Ω and ε ∈ (0, 1). Then, P̃ ∈

Bε(P ) if and only if, for all ω ∈ Ω,

P̃ (ω) = P (ω)(1 + aωε), (5)

where the real vector (aω)ω∈Ω is an element of the set
A(ε, P ) defined by the linear inequalities:∑

ω∈Ω

aωP (ω) = 0, and (6)

ε · aωP (ω) ≤ 1− P (ω), for all ω ∈ Ω, and (7)
−1 ≤ aω ≤ 1, for all ω ∈ Ω. (8)

Further, when ε satisfies (1 + ε) · P (ω) ≤ 1 for all ω ∈
Ω, the constraint in eq. (7) can be dropped and we have
A(P ) ··= A(0, P ) = A(ε, P ).

(Here, eq. (6) captures the condition that the entries of
P̃ must also sum up to 1, while eqs. (7) and (8) capture
the condition that the entries of P̃ must be in [0, 1] with
Rel(P, P̃ ) ≤ ε.)

The above observation, though simple, allows us to con-
siderably simplify the study of condition numbers in our
setting. However, before doing so, we need to relate the con-
dition number to the derivatives of f : ∆+

Ω → R+. We now
proceed to do so, using arguments similar to those in other
numerical analysis applications (see, e.g., [Bürgisser and
Cucker, 2013, Section 14.1]). We first introduce some nota-
tion. For a differentiable function f , we denote by ∇f(P )
the gradient of f at the point P . For two n-dimensional vec-
tors a and b, a ◦ b denotes the co-ordinate-wise (or Schur)
product of a and b, i.e., the n-dimensional vector whose ith
entry is aibi, while 〈a, b〉 denotes the usual inner product.

Lemma 9. Fix f : ∆+
Ω → R+ and P ∈ ∆+

Ω . Assume
that f(P ) > 0 and f is differentiable at P , with gradient
∇f(P ). Then, κ(f, P ) = maxa∈A(P )

〈∇f(P ), a◦P 〉
f(P ) .

Proof. Given ε > 0 and a real vector a ∈ A(ε, P ), we
denote by P̃a,ε the probability distribution P̃ defined in
Equation (5). In this proof, we will be interested in limits
as ε ↓ 0, so we assume without loss of generality that
all positive ε appearing in the proof are small enough that
(1 + ε) · P (ω) ≤ 1 for all ω ∈ Ω (which is possible due to
our assumption that P (ω) < 1 for all atoms ω ∈ Ω), so that
A(ε, P ) = A(P ).

Since f is differentiable at P , we can define, for v 6= 0,
r(v) ··= (f(P + v) − f(P ) − 〈∇f(P ), v〉)/ ‖v‖∞. The
definition of the differentiability of f at P with gradient
∇f(P ) can then be written as limv→0 |r(v)| = 0, so that
we can also set r(0) = 0. Specializing to our setting, we
have, for all small enough non-negative ε,

f(P̃a,ε) = f(P ) + ε · 〈∇f(P ), a ◦ P 〉
+ εr(ε · (a ◦ P )) ‖a ◦ P‖∞ ,

(9)

where r satisfies limv→0 |r(v)| = 0. By definition, we have
Rel(P, P̃a,ε) = ε · ‖a‖∞. Using eq. (9) we then get

ζf (P, P̃a,ε) =
1

‖a‖∞ · f(P )

·
∣∣∣ 〈∇f(P ), a ◦ P 〉+ r (ε · (a ◦ P )) · ‖a ◦ P‖∞

∣∣∣.
Now, we recall that every a ∈ A(P ) satisfies ‖a‖∞ ≤ 1,
and also that limv→0 |r(v)| = 0. Using these, we therefore
get that

lim
ε→0

sup
a∈A(P )

∣∣∣∣r (ε · (a ◦ P )) ·
∥∥∥∥ a

‖a‖∞
◦ P
∥∥∥∥
∞

∣∣∣∣ = 0.



 
minimize
(rω,sω)ω∈Ω,

γ∈R

1

f(P )

∑
ω∈Ω

(rω + sω)

subject to rω − sω + γP (ω) = dωP (ω) ∀ω ∈ Ω,

rω, sω ≥ 0 ∀ω ∈ Ω

(2.a) Original dual linear program in the proof of Theorem 5

minimize
(sω)ω∈Ω,
γ∈R

1

f(P )

∑
ω∈Ω

((dω − γ)P (ω) + 2sω)

subject to sω ≥ max {0,−(dω − γ)P (ω)} ∀ω ∈ Ω.

(2.b) Simplified dual linear program in the proof of Theorem 5

Figure 2: The linear programs used in the proof of Theorem 5

Using this along with Observation 8 and the above expres-
sion for ζf (P, P̃a,ε), we get

κ(f, P ) ··= lim
ε↓0

sup
P̃∈Bε(P )

ζ(P, P̃ )

= lim
ε→0

sup
a∈A(P )

ζf (P, P̃a,ε), by Observation 8

=
1

f(P )
max
a∈A(P )

1

‖a‖∞
· |〈∇f(P ), a ◦ P 〉| .

(10)

The latter in turn equals maxa∈A(P )
〈∇f(P ), a◦P 〉

f(P ) . To see
this, notice that the expression to be maximized in eq. (10)
does not change in value when a is multiplied by any non-
zero constant, so that we can restrict the maximization, with-
out loss of generality, to a ∈ A(P ) for which ‖a‖∞ = 1.
Further, since a ∈ A(P ) if and only if −a ∈ A(P ), and the
expression to be maximized has the same value for a and
−a, we can further restrict the maximization to a ∈ A(P)
for which 〈∇f(P ), a ◦ P 〉 is non-negative.

The utility of Lemma 9 is that, combined with Observation 8,
it gives us a prescription for evaluating κ(f, P ) as a problem
of maximizing ∇f(P )(a◦P )

f(P ) over all a in the polyhedral set
A(P ). We now proceed to use standard tools from the theory
of linear programming to better understand this problem.

The Condition Number Linear Program We now prove
our main technical theorem, Theorem 5.

Proof of Theorem 5. Recall from the statement of the theo-
rem that the (dω)ω∈Ω are the coordinates of the gradient of
f . Applying Lemma 9, we see that κ(f, P ) is the solution
to the following linear program:

maximize
(aω)ω∈Ω

1

f(P )

∑
ω∈Ω

aωdωP (ω)

subject to −1 ≤ aω ≤ 1 ∀ω ∈ Ω,∑
ω∈Ω

aωP (ω) = 0.

(11)

Note that the program in (11) is a feasible and bounded
linear program (e.g., a = 0 is feasible), so that strong duality

holds. By taking its dual, we therefore get the program in
Figure 2.a which also has the objective value κ(f, P ). The
variables rω in this dual program can be eliminated using the
equality constraints, and the program therefore simplifies to
the one in Figure 2.b. The claim then follows since for any
real number A, we have |A| = A+ 2 max(0,−A).

The above theorem has two immediate corollaries.

Corollary 10. With the same notation and hypotheses as in
Theorem 5, consider the gradient∇(log f)(P ) = (δω)ω∈Ω

of log f at P , and let M denote the median of the entries of
this vector, with respect to the probability distribution P (ω).
Then, κ(f, P ) =

∑
ω∈Ω P (ω) |δω −M |.

Proof. This follows from the observation that δω = dω
f(P ) ,

and that the minimizing γ in the expression in Theorem 5
is the median of the vector (dω)ω∈Ω with respect to the
probability distribution P .

Corollary 11. With the same notation and hypotheses as in
Corollary 10, we have κ(f, P )2 ≤ Varω∼P [δω].

Proof. We begin by rewriting the result of Corol-
lary 10 as κ(f, P )2 = minM Eω∼P [|δω −M |]2 ≤
minM Eω∼P [|δω −M |2] = Varω∼P [δω]. Here, the in-
equality follows from Jensen’s inequality, while the final
equality is the definition of the variance (the minimizing M
is Eω∼P [δω] in this definition).

3 CONDITION NUMBER UPPER
BOUNDS: AN INTERESTING
EXAMPLE

In this section we prove Theorem 7, by applying Corol-
lary 11 to the ID expression in eq. (4). Recall that we
have a collection of 2n random variables S1, S2, . . . , Sn
and X1, X2, . . . Xn, each taking values in {0, 1}. We de-
note by P their joint distribution on Ω = {0, 1}2n, and
are interested in the condition number of the function
f(P ) ··=

∏n
i=1 P (Xi = 0 | Si = 0). For notational sim-

plicity, we use, for 1 ≤ i ≤ n, pi0 ··= P (Xi = 0, Si = 0),
pi1 ··= P (Xi = 1, Si = 0), pi ··= P (Si = 0) = pi0 + pi1,



 and ri ··= pi1/pi0. Now, for any x, s ∈ {0, 1}n and
b ∈ {0, 1}, we have

∂pib
∂P (X = x, S = s)

= I[xi = b, si = 0], and

∂pi
∂P (X = x, S = s)

= I[si = 0]

(12)

where I : 2Ω → {0, 1} is the indicator function for an event.
From the definition of f(P ), eq. (12), and some algebra we
get

∂ log f(P )

∂P (X = x, S = s)
= Axs −Bxs, (13)

where

Axs :=
∑
i∈[n]:
xi=0
si=0

ri
pi

and Bxs :=
∑
i∈[n]:
xi=1
si=0

1

pi
.

Combined with Corollary 11, eq. (13) then gives

κ(f, P )2 ≤ Var
(x,s)∼P

[Axs −Bxs]. (14)

We now specialize to the setting of the theorem, and fix P to
be the uniform distribution. When the pair (x, s) is sampled
according to P , we define the random variables Di(x, s),
1 ≤ i ≤ n, such that

Di(x, s) =


1 when xi = 0, si = 0,

−1 when x1 = 1, si = 0, and
0 otherwise.

(15)

When P is uniform, the Di are independent and identically
distributed, and further, each of them have expectation 0
and variance 1/2. Further, when P is uniform, we also have
pi = 1

2 and ri = 1 for all 1 ≤ i ≤ n. Thus, interpretingAxs

and Bxs also as random variables when (x, s) is sampled
from P , we get

Axs −Bxs = 2

n∑
i=1

Di. (16)

Substituting this into eq. (14) gives

κ(f, P )2 ≤ Var
(x,s)∼P

[Axs −Bxs] = 4 Var
(x,s)∼P

[

n∑
i=1

Di(x, s)]

(17)

= 4

n∑
i=1

Var
(x,s)∼P

[Di(x, s)] = 2n. (18)

Here, the equality in eq. (17) comes from eq. (16), while
the two equalities in eq. (18) come, respectively, from the
independence of the Di when P is uniform, and from a
direct calculation of their variance in this case, both of which
were argued above. We therefore get κ(f, P ) ≤

√
2n, and

this completes the proof of Theorem 7.

3.1 TIGHTNESS OF THE UPPER BOUND

We now show that the upper-bound on the condition number
derived above using Corollary 11 is tight up to constant
factors. To do this, we start with the exact characterization
derived in Corollary 10. To translate into the notation above,
that corollary yields

κ(f, P ) = E
(x,s)∼P

[|Axs −Bxs −M |] , (19)

where M is the median of quantities Axs −Bxs when the
pair (x, s) is sampled according to P . When P is uniform,
as in the computation above, we see using the representation
in eq. (16) that the distribution of Axs −Bxs is symmetric
around zero. This implies that the median M is 0, and using
the representation in eq. (16), eq. (19) simplifies to

κ(f, P ) = 2 E

[∣∣∣∣∣
n∑
i=1

Di

∣∣∣∣∣
]
, (20)

where the Di, as defined in eq. (15), are i.i.d. random vari-
ables with mean 0 and variance 1/2, whose distribution is
symmetric around 0. The central limit theorem (see, e.g.,
Williams [1991, Theorem 18.4]) applied to the sum of the
Di then implies that for any constant α > 0,

lim
n→∞

P

[∣∣∣∣∣
n∑
i=1

Di

∣∣∣∣∣ > α
√
n/2

]

= 2 lim
n→∞

P

[
n∑
i=1

Di > α
√
n/2

]
= 2P [Z > α] , (21)

where Z ∼ N (0, 1) is a standard Gaussian random vari-
able. (Here, the first equality comes from the fact that the
distribution of the Di is symmetric around 0, while the
second equality is from the central limit theorem.) Now,
we choose α > 0 such that P

[
Z > α

√
2
]
≥ 0.3. Then,

from eq. (21), there exists n0 such that for all n > n0,
P [|
∑n
i=1Di| > α

√
n] > 0.5. It follows that for all n > n0,

E [|
∑n
i=1Di|] > 0.5α

√
n. Plugging this into eq. (20), we

see that whenever n ≥ n0, κ(f, P ) ≥ α
√
n, which shows

that the upper-bound obtained in Theorem 7 is tight up to
constant factors.

4 GENERIC UPPER BOUNDS ON THE
CONDITION NUMBER

In this section we consider graphs in which the sizes of all
C-components are bounded, and prove Theorem 4.

Proof of Theorem 4. For reference, we reproduce the ID
algorithm of Shpitser and Pearl [2006] (see Algorithm 1).

2We give a brief glossary of the notation used in algorithm 1
in Supplementary Material Section A.2.



 Algorithm 1 The ID algorithm (reproduced for reference,
essentially verbatim, from Shpitser and Pearl [2006])2

function ID(y,x, P,G)
1: if x = ∅, return

∑
v\y P (v).

2: if V 6= An(Y)G,
return ID(y,x ∩An(Y)G, P (An(Y)),An(Y)G).

3: let W = (V \X) \An(Y)GX
.

if W 6= ∅, return ID(y,x ∪w, P,G).
4: if C(G \X) = {S1, . . . , Sk} (for k ≥ 2),

return
∑
v\(y∪x)

∏
i ID(si,v \ si, P,G).

else if C(G \X) = {S},
5: if C(G) = {G}, throw FAIL(G,S).
6: if S ∈ C(G), return

∑
s\y
∏
Vi∈S P (vi | v(i−1)

π ).
7: if ∃S′, S ⊆ S′ ∈ C(G),

return ID(y,x ∩ S′,
∏
Vi∈S′ P (Vi | V (i−1)

π ∩
S′, v

(i−1)
π \ S′, S′).

We recall that the ID algorithm can be viewed as oper-
ating symbolically: on input x,y and G, the algorithm
either outputs FAIL and determines the required inter-
vention to be non-identifiable, or otherwise outputs a ra-
tional function ID(y,x, P,G), in terms of entries of the
observed distribution P , such that if the (exact) numeri-
cal value of such an observed distribution P is plugged
in to the function ID(y,x, P,G), the resulting value is
P (Y = y | do(X = x)).

However, the ID algorithm produces this symbolic expres-
sion for the rational function ID(y,x, P,G) through a re-
cursive algorithm. We use the bounds from Lemma 3 to
carefully analyze the effects of various steps of this recur-
sive algorithm.

We first consider the return statements on lines 1 and 6 of
the algorithm, which do not lead to a recursive call. If the
algorithm returns immediately on line 1, item 2 of Lemma 3,
dealing with sums immediately gives

κ(ID(y,x, P,G), P ) ≤ 1, (22)

since each of the terms in the sum on line 1 trivially has
condition number at most 1.

For line 6, we similarly apply the bounds for sums along
with the product and quotient rules (item 1 of Lemma 3).
First, the sum rule, combined with the quotient rule gives
that the condition number for each of the factors in the
product on line 6 is at most 2. The product rule (followed
by the sum rule for the marginalization over the values in
s \y) then gives that if the algorithm returns directly on line
6 (without making any recursive calls), then

κ(ID(y,x, P,G), P ) ≤ 2|S| ≤ 2c, (23)

where the last inequality uses that S, being C-connected,
must be contained in a C-component of G, and must there-
fore be of size at most c.

We now consider the behavior of the algorithm under re-
cursive calls. The simplest case is of the recursive call on
line 3. In this case, there is no modification of P , and
hence we directly get κ(ID(y,x, P,G), P ) = κ(ID(y,x ∪
w, P,G), P ). For the case of the recursive call on line 2, we
note that the condition number of the map P 7→ P (An(Y))
is at most 1: this follows exactly as in eq. (22), since each
component of this map is a marginalization of P . Thus,
applying item 3 of Lemma 3 gives (with Q ··= P (An(Y))).

κ(ID(y,x, P,G), P )

≤ κ(ID(y,x ∩An(Y)G, Q,An(Y)G), Q), (24)

For analyzing the remaining recursive calls on lines 4 and 7
of the algorithm, it will be convenient to define the notion
of a full instance. We say that an input instance (y,x, P,G)
to the ID algorithm is a full instance if the following two
conditions are satisfied: 1. The set of observed vertices
T ··= G \ X is C-connected, and 2. For every vertex
u ∈ T \ Y , there is a directed path from u to some ver-
tex in Y that does not pass through any vertex in X .

We now observe two properties of full instances.

1. The instances produced by the recursive calls on line
4 of the algorithm are full instances. This follows be-
cause the Si on line 4 are C-connected by definition,
and since all the target vertices are already included
in Si (so that the second condition above is vacuously
satisfied).

2. All recursive calls from a full instance are to full in-
stances. Suppose (y,x, P,G) is a full instance. The
recursive calls on lines 2 and 7 are also easily seen
to be full instances, since, by definition, all vertices
outside X have directed paths to Y (that do not go
through X) in the original full instance. The same ob-
servation then implies that the recursive calls on lines
3 and 4 cannot occur for a full instance, since (i) W
as defined on line 3 would be empty for full instances,
and (ii) the number of C-components in G \X would
be at most 1 for a full instance, so that the conditions
for the recursive calls on lines 3 and 4 are both false.

Note that the last point also implies that any recursive call
on a full instance cannot increase the size of the X set (since
the recursive calls on lines 3 and 4 are the only ones that
can do so). Now, let ξ(`,m) ≥ 1 denote the maximum
of κ(ID(y,x, P,G), P ) over all positive P and all full in-
stances (y,x, P,G) in which the number of vertices in X is
at most m and the number of vertices outside X is at most `
(recall that by definition of a full instance, these latter set of
vertices form a C-connected set in G).

Now consider an arbitrary instance (y,x, P,G) for which
the ID algorithm makes the recursive calls on line 4. Since
all these calls are to full instances, and since each Si on line
4 is C-connected and hence of size at most c, an application



 of the product and sum rules (items 1 and 2) of Lemma 3
yields

κ(ID(y,x, P,G), P ) ≤ n · ξ(c, n). (25)

Thus, in conjunction with eqs. (22) and (23), this shows
that it suffices to understand the condition number of full
instances. Now, as argued in point 2 above, only the return
statements on lines 1, 2, 6, and 7 can occur for a full instance
(i.e., the return statements on lines 3 and 4 cannot occur).
From line 1 and eq. (22), we get that

ξ(a, 0) = 1 for all 1 ≤ a ≤ c. (26)

Equation (24) shows that the effect of line 2 on the con-
dition number for a full instance is already built into the
definition of ξ, as the latter is separately increasing in both
its arguments. The effect of line 6 has already been con-
sidered in eq. (23). The same equation also shows that
the condition number of the map P 7→

∏
Vi∈S′ P (Vi |

V
(i−1)
π ∩ S′, v(i−1)

π \ S′, S′) used in line 7 is at most 2c.
Note also that the set S′ in line 7, being C-connected, is
of size at most c. Further, for line 7 to execute, it must be
the case that X ∩ S′ 6= X (for otherwise, line 5 would
execute and the algorithm would fail, contrary to our as-
sumption that we have an identifiable instance). Thus, we
have |X ∩ S′| ≤ min {|X| − 1, c}. Using the composition
rule (item 3) of Lemma 3, and combining the effects of lines
6 and 7, we therefore get

ξ(a,m) ≤ max {2c, 2c · ξ(a,min {m− 1, c})} , (27)

for all 1 ≤ a ≤ c, and 1 ≤ m ≤ n. From eqs. (26) and (27),
we therefore get ξ(a,m) ≤ (2c)c+1, for all 1 ≤ a ≤ c, and
1 ≤ m ≤ n. Combining with eqs. (22) to (25), this gives the
claimed upper bound: κ(ID(y,x, P,G), P ) ≤ n · (2c)c+1,
when all C-components in G are of size at most c, and G
has n observed vertices.

5 CONCLUSION

This paper develops tools for understanding the numeri-
cal stability of causal inference, in terms of the condition
number. Starting from the result that causal inference is
not “too unstable” in the important special case when all
C-components are of small size, these tools are then used to
show that the condition number may behave in a non-trivial
manner even in an example as simple as the one in Figure 1.
In particular, the condition number may be much lower than
what a simple upper-bound predicts, and can also depend
crucially on which of several “equivalent” expressions are
used for estimating the causal effect in question. As alluded
to earlier, combined with techniques for automatic differen-
tiation, the tools also give a procedure for algorithmically
computing the condition number of any given instance, al-
beit with a running time that is polynomial in the size of the
table of observed marginals (which is typically exponential
in the size of the input graphical model).

These results lead to several important open problems. Per-
haps the most obvious is to improve upon the generic algo-
rithm for computing instance-specific condition numbers
alluded to above. A more open-ended question is to develop
a better understanding of how to choose between different
equivalent ID expressions. The results of this paper point to
the condition number being one of the possible criteria for
this choice. However, we also emphasize that it is not the
only criterion. For example, different expressions might also
need to be evaluated in terms of the feasibility of accurate
statistical estimation of some of the marginals or condition-
als appearing in them. Similarly, previous work has also
looked at the use of measurements of certain interventional
distributions in identification expressions for other interven-
tional expressions (see, e.g., Tian and Pearl [2000], Shpitser
and Pearl [2008]) and also at methods for simplifications of
ID expressions [Tikka and Karvanen, 2017, 2018]. It would
be very interesting to combine the tools from this paper with
the ideas developed in the above papers, in order to work
out a notion of a “best” ID expression for a given instance.
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