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Abstract

Many decision-making problems under uncertainty
can be formulated as convex stochastic optimiza-
tion, which minimizes a convex objective in ex-
pectation across exponentially many probabilistic
scenarios. Despite its convexity, evaluating the ob-
jective function is #P-hard. Previous approaches
use samples from MCMC and its variants to ap-
proximate the objective function but have a slow
mixing rate. We present XOR-SGD, a stochastic
gradient descent (SGD) approach guaranteed to
converge to solutions that are at most a constant
away from the true optimum in linear number of
iterations. XOR-SGD harnesses XOR-sampling,
which reduces the sample approximation of the
expectation into queries of NP oracles via hash-
ing and projection. We evaluate XOR-SGD on two
real-world applications. The first stochastic inven-
tory management problem searches for a robust
inventory management plan in preparation for the
virus pandemics, natural disasters, etc. The second
network design problem decides an optimal land
conservation plan which promotes the free move-
ment of wild-life animals. We show that our ap-
proach finds better solutions with drastically fewer
samples needed compared to a couple of state-of-
the-art solvers.

1 INTRODUCTION

Decision-making in an uncertain world requires solving
stochastic optimization problems which optimizes the ex-
pectation of a stochastic outcome across multiple probabilis-
tic scenarios. Indeed, stochastic optimization problems have
attracted much research attention given its wide applicability
in finance, control, robotics, management science, opera-
tions research, and conservation (Sodomka et al. [2007],

Ziukov [2016], Gomes et al. [2019]). Advancements made
to address this problem will have ramifications in many
domains. In mathematical form, a stochastic optimization
problem is:

min
x

Eq⇠Pr(q) f (x,q),

s.t. 8i, hi(x) = 0 and 8 j, g j(x) 0.
(1)

In this paper, we focus on convex stochastic optimization
problems. More precisely, we require the function f (x,q)
to be convex with respect to x. g j(x) are convex functions
and hi(x) are linear. Variable q is sampled from distribu-
tion Pr(q), which is represented as a Markov random field
(MRF) in this paper. Despite our limited scope, problems in
equation 1 are still highly intractable (#P-hard). The main
source of intractability comes from the computation of the
expectation over a general probability distribution, a com-
mon operator in probabilistic inference. Computing such
an expectation is #P-complete, where #P denotes the com-
plexity class that counts the number of accepting paths of a
polynomial-time non-deterministic Turing machine.

Theorem 1. The convex stochastic optimization problem in

Equation 1 is #P-hard.

Many problems can be formulated as convex stochastic
optimizations. In this paper, we focus on attacking two
real-world problems. The first is the inventory management
problem in operations research. In this problem, managers
have to decide the amount of each material to buy at the
beginning of the season to meet the production demand. He
should buy neither too much because of the limited inven-
tory space, nor too little since a back order later would cost
more. The manager, therefore, has to place a purchase order
x, which minimizes the expected cost Eq [ f (x,q)], taking
into account of various stochastic events q , such as materials
price fluctuations, supply chain complications, virus pan-
demic, etc. Our second problem is a network design problem,
where we need to decide an optimal investment plan under
a fixed budget to increase the landscape connectivity. In
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 biodiversity conservation, increasing landscape connectivity
facilitates the free movement of wildlife animals, hence ac-
celerating their gene flows. In disaster preparation, increased
connectivity allows rescue teams to reach their sites faster.
Interestingly, a commonly used connectivity measure, the
commuting time of a random walk model, is convex (Ghosh
et al. [2008]). Therefore, the network design problem can
also be cast as a convex stochastic optimization problem.

We present XOR-SGD, a simple stochastic gradient descent
(SGD) algorithm, which is guaranteed to converge to a so-

lution that is within a vanishing constant away from the

true optimum in linear number of SGD iterations. The
linear convergence rate towards the optimum is rather sur-
prising, considering the #P-hardness of the problem and the
simpleness of the SGD. The key of XOR-SGD is to draw
a representative set of samples from Pr(q) which yield an
accurate estimation of the gradient direction. Common sam-
pling approaches, such as MCMC, cannot serve our purpose,
because of the exponentially many steps to mix. Belief Prop-
agation (BP) has difficulties in dealing with multi-modal
distributions. Recently proposed BPChain (Fan and Xue
[2020]) uses an inference chain to draw samples sequen-
tially. Nevertheless, the errors tend to propagate.

Our XOR-SGD leverages XOR-Sampling, a recently pro-
posed sampling scheme with a constant approximation guar-
antee, which reduces the sampling problem into queries of
NP oracles via hashing and projection. Indeed, XOR-SGD
requires accessing NP-oracle queries at each iteration. Nev-
ertheless, our contribution is built on the recent success of
solving NP-complete problems, where several industrial
sized problems are successfully solved by latest constraint
reasoning solvers. In another view, our contribution extends
the success of solving NP-complete problems to problems
with even higher complexity, namely, #P-hard problems.
Our key contribution is the extension of classical conver-
gence analysis of SGD on convex problems, where we show
that a constant multiplicative bound on the expectation of
the gradient direction is sufficient to bound the final result
against the true optimum (Theorem 3). Our theoretic contri-
bution does not depend on the unbiasness of the gradients,
which was a necessary condition in previous analysis.

XOR-SGD was motivated by Sample Average Approxima-

tion (SAA) (Kleywegt et al. [2002], Verweij et al. [2003]),
which is widely used to solve stochastic optimization prob-
lems. On learning probabilistic graphical models, stochas-
tic optimization is related to the Marginal Maximum-a-

posterior (MMAP) problem (Xue et al. [2016], Liu and
Ihler [2013], Marinescu et al. [2014], Mauá and de Campos
[2012], Marinescu et al. [2015], Domke [2013]). These prob-
lems can be formulated as (albeit non-convex) stochastic
optimization problems. Convergence analysis of gradient de-

scent has been studied for both convex and non-convex func-
tions (Wang et al. [2013], Dubey et al. [2016], Agarwal et al.
[2017], Lee et al. [2015], Ruder [2016], Jin et al. [2017],

Ge et al. [2015]). Recently several algorithms (Duchi et al.
[2011], Hinton et al. [2012], Kingma and Ba [2014], Duchi
et al. [2018], Allen-Zhu [2017, 2018]) were proposed to
accelerate the convergence rate of SGD. They require an
unbiased estimation of either the gradient or the momentum.
Our XOR-SGD was derived without this assumption. Proba-

bilistic inference via hashing and randomization is proposed
for both sampling (Ermon et al. [2013b], Ivrii et al. [2015]),
counting (Gomes et al. [2007a], Ding et al. [2019]), and
marginal inference problems (Ermon et al. [2013a], Kuck
et al. [2019], Chakraborty et al. [2014, 2015], Belle et al.
[2015]) with constant approximation guarantees. Inventory

management is a classic problem for supply chain manage-
ment in operations research (Ziukov [2016]) where SAA is
often used (Shapiro and Philpott [2007]), nonetheless has no
formal guarantees. Previously a few approaches have been
proposed for network design (Sheldon et al. [2012], Wu
et al. [2017]). We consider optimizing the commuting time,
which is a more challenging objective and to our knowledge,
no prior work derives algorithms with guarantees.

Experimental results reveal that XOR-SGD is effective in
optimizing constrained convex stochastic functions. XOR-
SGD outperforms competing solvers which run SGD with
either MCMC, BP or BPChain samplers on both the in-
ventory management and the network design problems
on real-world data under various conditions. In particu-
lar, XOR-SGD accessing merely 60 XOR samples finds

better solutions than SGD accessing 20,000 MCMC sam-

ples for the inventory management problem. XOR-SGD

accessing 40 XOR samples outperforms SGD accessing

20,000 MCMC samples for the network design problem.

Meanwhile, XOR-SGD runs faster than SGD with MCMC
Sampling. XOR-SGD with 40 samples takes 1 minute 40
seconds per SGD iteration, while SGD with 20,000 MCMC
samples needs 2.5 minutes for the network design problem.
See the experiments section for more details.

2 PRELIMINARIES

2.1 PROBABILISTIC MODELS

In this paper, we mainly use Markov Random Field as the
probability distribution Pr(q). MRF is a general model for
the joint distribution of multiple correlated random variables.
In a MRF, the probability Pr(q) is defined as:

Pr(q) = 1
Z

’
a2I

fa({q}a). (2)

where {q}a is a subset of variables in q that the function f
depends on. fa : {q}a !R+ is a potential function, or com-
monly referred to as a clique. fa maps every assignment of
variables in {q}a to a non-negative real value. I is an index
set and Z is a normalization constant, which ensures that the
probability adds up to one: Z = Âq2{0,1}m ’a2I fa({q}a).



 A potential function fa({q}a) defines the correlation be-
tween all variables in the subset {q}a . The structure of the
MRF or the set I can be built from domain knowledge and
potential functions can be learned from real-world data. The
focus of this paper is not on how to construct the MRF but is
how we solve problem in Equation 1 in general when Pr(q)
is given in the form shown in Equation 2.

2.2 XOR-SAMPLING

In our method, we approximate the otherwise intractable
objective in Equation 1 with the empirical mean of a finite
number of samples from Pr(q) and use SGD to minimize it.
Although widely used, MCMC based samplers are known
to have a notoriously slow mixing rate. Their variance can-
not be controlled effectively and therefore does not lead to
algorithms with provable guarantees.

Our XOR-SGD leverages recent advancements in sampling
via hashing and randomization. In particular, we embed
XOR-Sampling (Ermon et al. [2013b]) into SGD, a sam-
pling scheme which guarantees that the probability of draw-
ing a sample is sandwiched between a constant bound of the
true probability. We only present the general idea of XOR-
Sampling on unweighted functions here and refer the readers
to the paper (Ermon et al. [2013b]) for the weighted case.
For the unweighted case, assuming w(q) takes binary values,
we need to draw samples from the set W = {q : w(q) = 1}
uniformly at random; i.e., suppose |W | = 2l , then each
member in W should have 2�l probability to be sampled.
Following notations from the SAT community, we call one
assignment q0 which makes w(q0) = 1 a “satisfying as-
signment”. XOR-Sampling obtains near-uniform samples
by querying a NP oracle to find one satisfying assignment
subject to additional randomly generated XOR constraints.
Initially, the NP oracle will find one satisfying assignment
subject to zero XOR constraints, albeit not at random. We
then keep adding XOR constraints. We can prove that in
expectation, each newly added XOR constraint rules out
approximately half of the satisfying assignments at random.
Therefore, if we start with 2l satisfying assignments in W ,
after adding l XOR constraints, we will be left with only
one satisfying assignment in expectation. We return this
assignment as our first sample. Because we can prove that
the assignments are ruled out randomly, we can guarantee
that the returned assignment must be a randomly chosen
one from W . Figure 1 (right) shows an intuitive picture of
the unweighted case. See Gomes et al. [2007a,b] for details.

For the weighted case, the authors of Ermon et al. [2013b]
present a sampler with a constant approximation guaran-
tee. The idea is to discretize w(q) using points that are
geometrically far apart, transforming the weighted problem
into an unweighted one by introducing additional variables.
The discretization scheme is in the supplementary mate-
rials. XOR-Sampling draws a sample q0 with probability

Return one solution
uniformly at random 

using an exact sampler 
when #solutions is small

All solutions

1/2
solutions

1/2
solutions

1/4
solutions

1/4
solutions

1st XOR cstr.

kth XOR cstr.

2nd XOR cstr.

……

1/2k
solutions

……

Figure 1: High-level idea of XOR-Sampling. When sam-
pling uniformly at random from the set of solutions W =
{q : w(q) = 1}, XOR-Sampling repeatedly adds randomly
generated XOR constraints, each of which randomly re-
moves half of the solutions from W . Finally XOR-Sampling
returns one solution uniformly at random when the set is
small enough after adding k XOR constraints.

proportional to w(q), i.e., Pr(q0) µ w(q). Notice that XOR-
Sampling only needs unnormalized probability distribution.
Our paper uses their results through the following theorem:

Theorem 2. (Ermon et al. [2013b]) Let e > 0,b >
1, P � 2, and g = log((P + 2

p
P+1 + 2)/P). For any

a 2 Z, a > g , let c(a,P) = 1� 2g�a/(1� 1
P
� 2g�a)2

.

Let r = 2b/(2b�1), l = dlog
r
(2n/e)e,r = r

2/(1� e),k =
1/c(a,P) and bucket Bl as in Definition 1 in the supple-

mentary materials. Denote Pr
0
s
(q) as distribution of the

samples generated by XOR-Sampling(w, l,b,d ,P,a). Let

f : {0,1}n ! R+
be one non-negative function

1
satisfy-

ing hf = maxq2Bl
|f(q)|  ||f ||•. Then, with probability

at least (1� d )c(a,P)2�(g+a+1) P

P�1 , XOR-Sampling suc-

ceeds and outputs a sample q0. Upon success, each q0
is output with probability Pr

0
s
(q0), which is within a con-

stant factor of the true Pr(q0). Furthermore, the expectation

EPr(q)[f(q)], can be bounded by the sample estimate:

1
rk

EPr0s(q)[f(q)]� ehf  EPr(q)[f(q)]

 rkEPr0s(q)[f(q)]+ ehf .
(3)

1The theorem requires that f is non-negative, which was held
as an implicit assumption in paper Ermon et al. [2013b]. A mir-
rored result can be obtained when f is non-positive, at which time
rkEPr0

s
(q)[f(q)] � ehf  EPr(q)[f(q)]  1

rk EPr0
s
(q)[f(q)] +

ehf .



 The value of Theorem 2 mainly comes from the fact that the
expectation of function f , EPr(q)[f(q)] can be estimated
by the empirical mean of the samples generated by XOR-
Sampling within a constant approximation bound (Equa-
tion 3). The tail ehf is often negligible. Furthermore, there
is a way to set the hyper-parameters of XOR-Sampling
which makes ehf zero (see the supplementary materials).
Hence for the rest of the paper, we assume ehf is zero for
our derivations.

Notations For function f : Rd ! R, we call it L-smooth
if for all x,y in the convex domain dom f , f (y)  f (x)+
— f (x)T (y� x)+ L

2 ||y� x||2. Denote f
+(x) as the positive

part of function f (x). In other words, f
+(x)=max{ f (x),0}.

f
�(x) is defined similarly. For a random vector x, we define

E[x] as the element-wise expectation and the total variation
Var(x) = E[||x||22]� ||E[x]||22 where || · ||22 is the square of l2
norm.

3 XOR-SGD

In this section we propose XOR-SGD, a new stochastic
gradient descent method to solve convex stochastic opti-
mization problems. XOR-SGD converges to solutions that
are at most a constant away from the true optimum in lin-
ear number of SGD iterations. We first present XOR-SGD
for unconstrained optimization (i.e., no constraints in Equa-
tion 1), and will extend our result for constrained optimiza-
tion in the second subsection. The detailed procedure of
XOR-SGD for unconstrained optimization is shown in Al-
gorithm 1. To approximate the gradient —xEq f (xk,q) at
step k, XOR-SGD draws N samples q1, . . . ,qN from Pr(q)
using XOR-Sampling. Because XOR-Sampling has a fail-
ure rate, XOR-SGD repeatedly call XOR-Sampling un-
til all N samples are obtained successfully (line 4 – 10).
Once q1, . . . ,qN are obtained, XOR-SGD uses the empiri-
cal mean gk =

1
N

ÂN

i=1 —x f (xk,qi) as an approximation for
—xEq f (xk,q).

Due to Theorem 2, we know gk is bounded within
a constant factor of —xEq f (xk,q). More precisely, we
have 1

rk [—xEq f (xk,q)]+  [gk]+  rk[—xEq f (xk,q)]+

and 1
rk [—xEq f (xk,q)]�  [gk]�  rk[—xEq f (xk,q)]�. Us-

ing this constant approximation, we can prove that the output
of XOR-SGD in expectation converges to the true optimum
within a small constant distance at a linear speed w.r.t. the
number of SGD iterations K (our main result is stated in
Theorem 4). To prove Theorem 4, we first prove the bounds
on two terms stated in Lemma 1. Notice the inequalities in
Lemma 1 hold not only for XOR-SGD, but also for SGD
algorithms applied on arbitrary L-smooth convex functions
with constant approximate gradients.

Lemma 1. Let f : Rd ! R be a convex function and

x
⇤ = argminx f (x). In iteration k of SGD, gk is the es-

timated gradient, i.e., xk+1 = xk � tgk. If there exists a

Algorithm 1: XOR-SGD
Input: f (x,q),w(q),K,N, t, l,b,d ,P,a

1 Initialize x0 for function f (x,q)
2 for k = 0 to K do
3 i 1
4 while i N do
5 s XOR-Sampling(w(q), l,b,d ,P,a)
6 if s 6= Failure then
7 qi s

8 i i+1
9 end

10 end
11 Compute gk 1

N
ÂN

i=1 —x f (xk,qi)
12 Compute xk+1 xk� tgk

13 end
14 xK  1

K
ÂK

k=1 xk

15 return xK

constant c � 1 s.t.
1
c
[— f (xk)]+  E[g+

k
]  c[— f (xk)]+ and

c[— f (xk)]�  E[g�
k
] 1

c
[— f (xk)]�, then we have

1
c
||E[gk]||22  h— f (xk),E[gk]i  c||E[gk]||22.

1
c
hE[gk],xk� x

⇤i  h— f (xk),xk� x
⇤i  chE[gk],xk� x

⇤i.

From Lemma 1 we can see both h— f (xk),E[gk]i and
h— f (xk),xk � x

⇤i can be bounded given the constant ap-
proximation bound of the gradient. We leave the proof of
Lemma 1 to supplementary materials. Using this lemma,
we can derive the following Theorem 3, which bounds the
error of SGD on a convex optimization when the estimated
gradient gk in the k-th step resides in a constant bound of
— f (xk). Notice that previous convergence bounds on SGD
usually need the gradient estimation to be unbiased, i.e.,
E[gk] = — f (xk). We do not require this condition.

Theorem 3. Let f : Rd!R be a L-smooth convex function

and x
⇤ = argminx f (x). In iteration k of SGD, gk is the es-

timated gradient, i.e., xk+1 = xk� tgk where Var(gk) s2
.

If there exists 1  c 
p

2 s.t.
1
c
[— f (xk)]+  E[g+

k
] 

c[— f (xk)]+ and c[— f (xk)]�  E[g�
k
]  1

c
[— f (xk)]�, then

for any K > 1 and step size t  2�c
2

Lc
, let xK = 1

K
ÂK

k=1 xk, we

have

E[ f (xK)]� f (x⇤) c||x0� x
⇤||22

2tK
+

ts2

c
. (4)

Proof. (Theorem 3) By L-smooth of f , for the k-th iteration,

f (xk+1) f (xk)+ h— f (xk),xk+1� xki+
L

2
||xk+1� xk||22,

= f (xk)� th— f (xk),gki+
Lt

2

2
||gk||2.



 Because of the constant bound on gradient and ||E[gk]||22 =
E[||gk||22]�Var(gk), by taking expectation on both sides
w.r.t gk we get from Lemma 1 that

E[ f (xk+1)] f (xk)�
t

c
||E[gk]||22 +

Lt
2

2
E[||gk||22],

= f (xk)�
t

c
(E[||gk||22]�Var(gk))+

Lt
2

2
E[||gk||22],

 f (xk)�
t(2�Ltc)

2c
E[||gk||22]+

t

c
s2,

 f (xk)�
tc

2
E[||gk||22]+

t

c
s2,

where the last inequality follows as Ltc 2� c
2. Because

f is convex, still from Lemma 1 we get

E[ f (xk+1)] f (x⇤)+ h— f (xk),xk� x
⇤i� tc

2
E[||gk||22]+

t

c
s2,

 f (x⇤)+ chE[gk],xk� x
⇤i� tc

2
E[||gk||22]+

t

c
s2,

= f (x⇤)+ cE[hgk,xk� x
⇤i� t

2
||gk||22]+

t

c
s2.

We now repeat the calculations by completing the square
for the middle two terms to get

E[ f (xk+1)] f (x⇤)+
c

2t
E[2thgk,xk� x

⇤i� t
2||gk||22]+

t

c
s2,

 f (x⇤)+
c

2t
E[||xk� x

⇤||22� ||xk� x
⇤ � tgk||22]+

t

c
s2,

= f (x⇤)+
c

2t
E[(||xk� x

⇤||22� ||xk+1� x
⇤||22)]+

t

c
s2.

Summing the above equations for k = 0, . . . ,K�1, we get

K�1

Â
k=0

E[ f (xk+1)� f (x⇤)]

 c

2t
(||x0� x

⇤||22�E[||xK� x
⇤||22])+

Kt

c
s2

 c||x0� x
⇤||22

2t
+

Kt

c
s2.

Finally, by Jensen’s inequality, K f (xK) ÂK

k=1 f (xk),

K�1

Â
k=0

E[ f (xk+1)� f (x⇤)] = E[
K

Â
k=1

f (xk)]�K f (x⇤)

� KE[ f (xK)]�K f (x⇤).

Combining the above equations we get

E[ f (xK)] f (x⇤)+
c||x0� x

⇤||22
2tK

+
t

c
s2.

This completes the proof.

The bound of XOR sampling (Equation 3) assumes a non-
negative function f . In XOR-SGD, the entries of vector gk

can be both positive or negative. Therefore, the bound from

XOR-Sampling needs to be imposed on the positive and
negative parts of gk with a multiplicative factor of rk . More
precisely,

1
rk

Eq [—x f (xk,q)]+  E[gk
+] rkEq [—x f (xk,q)]+,

rkEq [—x f (xk,q)]�  E[gk
�] 1

rk
Eq [—x f (xk,q)]�.

Leveraging this bound, our main result, Theorem 4 can
be proved using Theorem 2 and 3, by replacing the objec-
tive f (x) in Theorem 3 with Eq⇠p(q) f (x,q), while noticing
Var(gk) =Varq (—x f (x,q))/N due to the sample size N.

Theorem 4. (Main) Let b,e, l,d ,P,a,r,k and Bl be

as in Theorem 2, function f (x,q) : Rd ⇥ {0,1}n ! R
be a L-smooth convex function w.r.t. x. Denote OPT =
minxEq⇠Pr(q) f (x,q) as the global optimum. Let s2 =

maxx{Var(—x f (x,q))} and e2 = maxx{||E[—x f (x,q)]||22}.

For any 1 rk 
p

2, step size t  2�r2k2

Lrk and sample size

N � 1, xK is the output of XOR-SGD and obj=Eq [ f (xK ,q)]
is the objective function value at xK. We have:

ExK
[obj]�OPT  rk||x0� x

⇤||22
2tK

+
t(s2 + e2)

N
. (5)

Theorem 4 states that in expectation, the difference in terms
of the objective function values between the output of XOR-
SGD algorithm xK and the true optimum OPT is bounded
by a term that scales inversely proportional to the number
of SGD iterations K and a tail term t(s2+e2)

N
. To tighten the

bound with fixed number of steps K, we can either conduct
more accurate XOR-Sampling scheme leading to smaller
rk (still greater than 1), or generate more samples at each
iteration to reduce the variance (increase N) in the tail term.
It should be noticed that although hard to compute, s2 and
e2 are from the input which do not depend on the algorithm.

While Theorem 4 provides a linear convergence rate guar-
antee, we expect XOR-SGD can be further accelerated if
new schemes can be developed to estimate higher moments
reliably. In such case, our method can be fit into acceler-
ated SGD algorithms such as Adagrad (Duchi et al. [2011]),
RMSprop (Hinton et al. [2012]) and Adam (Kingma and
Ba [2014]). In addition, it should be noticed that the conver-
gence rate of XOR-SGD is determined by the approximation
constant rk from XOR-sampling. By setting proper param-
eter values in Theorem 2, we can get rk =

p
2. As a conse-

quence, we can collect N samples successfully by running
XOR-Sampling around 40N times. The time complexity can
be further reduced via parallel sampling. Samples can be
obtained before each optimization step since Pr(q) does not
depend on x. Even though obtaining samples in XOR-SGD
is more expensive, we show in experiment section that our
algorithm achieves better results in less time compared to
SGD with MCMC samples.



 3.1 EXTENSION TO CONSTRAINED CONVEX
STOCHASTIC OPTIMIZATION

Now consider the constrained case as in equation 1. Writing
down the Lagrangian:

F(x,l ,µ,q) = Eq⇠Pr(q) f (x,q)+Â
i

lihi(x)+Â
j

µ jg j(x).

where we require 8 j, µ j � 0. In this paper we only consider
convex problems which satisfies the Slater’s condition. As a
consequence, strong duality holds. It implies the following
optimization

min
x

max
li,µ j

F(x,l ,µ,q) (6)

shares the same optimal solution with the optimization prob-
lem in equation 1. We modify algorithm 1 to its constrained
version (Algorithm 2), where we use alternating min-max
to solve the problem in Equation 6. In this algorithm, outer
loop optimizes over l and µ for K steps. Every time when
they are updated, in the inner loop we update x along its ap-
proximate gradient direction for M steps. The approximate
gradient direction is computed via XOR-Sampling.

Qualitatively, with big M and N, from Theorem 4 we know
that the solution of the inner loop will be close to the opti-
mal solution for any µ and l fixed by the outer loop. Due
to the Slater’s condition, F is convex in x and concave in l
and µ . Suppose the solution from the inner loop is close to
optimum, the outer loop will also converge to the optimal
values of µ and l . Hence the overall solution will be close
to optimal. We leave the theoretic characterization of the
convergence speed of the constrained algorithm as future
work. Constraints introduce additional difficulties for theo-
retic analysis. To our knowledge, the convergence speed
analysis involving inequality constraints is still an active
research area even assuming having access to unbiased gra-
dients. The stochastic optimization problem considered in
this paper attacks an even more complicated case, where we
do not have unbiased gradient estimation.

4 EXPERIMENTS

We evaluate our XOR-SGD algorithm on the inventory man-
agement (Ziukov [2016], Shapiro and Philpott [2007]) and
the network design problems (Sheldon et al. [2012], Wu
et al. [2017, 2016]). For comparison, we consider a base-
line which uses SGD while the gradients are estimated by
either Gibbs Sampling, Belief Propagation (BP) (Yedidia
et al. [2001], Murphy et al. [2013]), or Belief Propagation
Chain (BPChain) (Fan and Xue [2020]). For each setting
of both applications, to produce a sample, Gibbs sampling
first takes 100 steps to burn in, and then draws one sample
every 30 steps. We fix the number of iteration steps of both
BP and BPChain as 20, which is enough for belief propa-
gation to converge. We allow SGD with Gibbs sampling,

Algorithm 2: XOR-SGD (constrained version)
Input: f (x,q),w(q),M,K,N, t,h , l,b,d ,P,a and

constraints hi(x) = 0,g j(x) 0 for all i, j

1 Define Eq [F(x,l ,µ,q)] =
Eq [ f (x,q)]+Âlihi(x)+Â µ jg j(x)

2 Initialize x = x00, l = l0 = (li0)i=1,...,li,
µ = µ0 = (µ j0) j=1,...,l j for function F(x,l ,µ,q)

3 for k = 0 to K�1 do
4 for m = 0 to M�1 do
5 s 1
6 while s N do
7 result XOR-Sampling(w(q), l,b,d ,P,a)
8 if result 6= Failure then
9 qs result

10 s s+1
11 end
12 end
13 Compute gm 1

N
ÂN

s=1 — f (xkm,qs)+
Âlik—hi(xkm)+Â µ jk—gi(xkm)

14 Update xk,m+1 xk,m� tgm

15 end
16 Let xk =

1
M

ÂM

r=1 xkr, and set xk+1,0 = xk

17 Update li,k+1 = lik +hhi(xk)
18 Update µ j,k+1 = min{µ jk +hg j(xk),0}
19 end
20 return 1

K
ÂK

k=1 xk

BP and BPChain to draw more samples than XOR-SGD for
a fair comparison. For both applications, we use MRF as
probabilistic models for Pr(q). All experiments were con-
ducted using single core architectures on Intel Xeon Gold
6126 2.60GHz machines with 96GB RAM and a wall-time
limit of 10 hours. Please see the supplementary materials
for more details on the experiment setups.

4.1 STOCHASTIC INVENTORY MANAGEMENT

We first investigate our algorithm on the stochastic inven-
tory management problem studied in Shapiro and Philpott
[2007]. A company manager has to decide, at the beginning
of each season, how much of each materials to purchase to
meet his demand later in the production season. Assuming
there are n materials. The demand of material i is di. Let
d = (d1, . . . ,dn)T be the demand vector. At the beginning of
the season, only the distribution Pr(d) is known due to the
stochasticity down the supply chain. The demands of multi-
ple materials can be correlated because one product typically
needs many types of materials. In other words, Pr(d) cannot
be decomposed into the product of probabilities of individ-
ual demands. The manager stocks xi amount of material i

at the beginning of the season. Each unit of material i takes
storage space wi, and the total amount of pre-order is limited
by the available storage space X . At the end of the produc-



 

Figure 2: Experimental results on the inventory management problem. XOR-SGD is better than baselines in all cases. (Left)
The percentage of savings of the solutions found by XOR-SGD against other methods on 100% storage limit varying the
number of materials. XOR-SGD on average saves 10% cost. (Middle) The objective values found by all methods with 50
materials varying storage limits. (Right) The objective values found by all methods with different number of samples for
approximation in SGD. 100% storage limit and 50 materials. XOR-SGD with 60 samples outperforms other methods with
20,000 samples.

tion season, demand d will be revealed to the the manager.
We assume the cost of ordering the i-th material is ci per
unit. If the demand di > xi, then a back order is needed, of
which one unit costs bi � ci. Overall, the cost for back order
is bi(di� xi) if di > xi, and is zero otherwise. On the other
hand, if di < xi, then a holding cost of hi per unit is incurred,
leading to an additional total cost hi(xi�di). Summing it up,
the cost for material i is Gi = cixi+bi[di�xi]++hi[xi�di]+

where [a]+ denotes the maximum of a and 0. Then, the total
cost will be G(x,d) = Ân

i=1 Gi. The manager want to mini-
mize his operational cost, which translates to this problem:

min
x�0

Ed⇠Pr(d)[G(x,d)], s.t. w
T

x X . (7)

We can show G(x,d) is convex w.r.t. x. Hence the inventory
management problem is a constrained convex stochastic
optimization problem. We run the experiments varying the
number of materials n, the storage limit, and the number of
samples we use in XOR-SGD and other methods. Details
on the experimental setup are in supplementary materials.

Figure 2 shows that our algorithm XOR-SGD outper-
forms the other methods on multiple experimental se-
tups. The left figure shows the percentage reduction of
the objective values of the solutions found by XOR-
SGD against SGD with other sampling methods. In math
form, for example for Gibbs Sampling, the metric is
(ob j(Gibbs)� ob j(XOR-SGD))/ob j(Gibbs) (metrics for
other approaches are analogous). We vary the number of
materials from 10 to 100. The middle figure shows the ob-
jective values of solutions varying the storage limit. The
right figure shows the objective values varying the number
of samples. The green line in the upper picture is re-plotted
in the bottom for clarity. For the left and the middle figures,
we let XOR-SGD take 100 samples for approximation while
SGD with other sampling methods take 10,000. The exper-
iments in the right figure is with 100% storage limit and
50 different materials. We can see from the left figure that

objective optimized by XOR-SGD is on average 10 percent
better than that optimized by the baselines. With the storage
limit increasing, the middle figure shows that XOR-SGD is
always better than all baselines. From the right figure, XOR-
SGD found better solutions with 60 samples compared to
SGD with Gibbs sampling which uses 20,000 samples. In
XOR-SGD, we set hyper-parameters to guarantee rk =

p
2.

Note XOR-SGD (5.5 minutes for 60 samples) runs even
faster than SGD with Gibbs (17 minutes for 20,000 sam-
ples), even though it needs to solve NP-complete problems
to get the samples. Notice the running times of both BP and
BPChain are longer than Gibbs Sampling. Therefore XOR-
SGD is both faster and better than competing methods.

4.2 STOCHASTIC NETWORK DESIGN

Network optimization searches for the optimal plan to in-
crease the network connectivity under a given budget in
preparation of stochastic events, such as natural disasters
(Israeli and Wood [2002], Dilkina and Gomes [2010]). We
consider the expected commuting time of a random walk
defined over the network, which is studied in Ghosh et al.
[2008] as the connectivity measure, and which is argued
to be realistic among field experts (McClure et al. [2016],
Inman et al. [2013]). Given an undirected graph G = (V,E),
where |V | = m, |E| = n. Each edge e is associated with a
non-negative weight ge, known as the conductance value
of edge e, which indicates the degree of easiness to travel
along edge e. Let g = (g1, . . . ,gn)T . Natural disasters such
as earthquakes and floods typically strike one region and can
paralyze the connectivity of the road network in the given
region. Each edge e 2 E is associated with a binary ran-
dom variable qe that describes the state of the edge during
disasters. qe = 0 means that the edge is destroyed, and 1 oth-
erwise. Let q = (q1, . . . ,qn). Notice that the states of q are
correlated. The probability of q is given by Pr(q), which
may be constructed from domain knowledge or learned from



 

Figure 3: Experimental results on the network design problem. XOR-SGD is better than baselines in all cases. (Left) The
percentage of savings of XOR-SGD against other methods. XOR-SGD saves on average > 5% commuting time on all 4
benchmarks with 100% budget. (Middle) Commuting time of the solutions found by XOR-SGD and baselines varying
budgets on network “weak 20”. (Right) Commuting time found by XOR-SGD and other methods with different number of
samples used for approximation in SGD (100% budget, “weak 20”). XOR-SGD with 40 samples outperforms others with
20,000 samples.

real world data. We can make investments to improve the
conductance ge of edge e. It will take money ce to increase
one unit of ge and we have a total budget of B. Denote
A 2 Rm⇥n as an incidence matrix of graph G where each
item Ai j = 1 if the vertex vi and edge e j are incident and 0
otherwise. diag(g) is a diagonal matrix which has g on the
diagonal. Then, the weighted Laplacian matrix L of graph
G is defined as L = A diag(g)AT . From the work of Ghosh
et al. [2008] the commuting time C(g,q) can be calculated
as 4(1T

g)
(m�1)

⇣
Tr(L+11T/m)�1�1

⌘
which is convex w.r.t. g.

Here L is calculated only with edges not destroyed. We
would like to find the best network improvement plan under
the given budget, which minimizes the expected commut-
ing time averaged over all stochastic events to maximizes
the network connectivity. Let Dge be the improvement of
the conductance value at edge e and Dg = (Dg1, . . . ,Dgn)T .
Mathematically, our problem can be formulated as the fol-
lowing convex stochastic optimization:

min
Dg�0

Eq⇠Pr(q)[C(g+Dg,q)], s.t. Â
e2E

ceDge  B. (8)

We evaluate our algorithms on a real-world problem, the
Flood Preparation problem for the emergency medical ser-
vices (EMS) on road networks studied in Wu et al. [2016].
Edges of the graph represent road segments while nodes
represent either road intersections or EMS centers or loca-
tions need to be accessible in case of emergencies. Some
road segments are above the same river, which can be jointly
destroyed by e.g., floods of the river. We test our algorithm
on four benchmarks involving the weak and the strong net-
work originally evaluated in Wu et al. [2016]. The weak
network consists of 502 edges and 169 nodes. The strong
network consist of 1,562 edges and 526 nodes. The number
of vulnerable edges (i.e., qi = 0) can be either 20 or 80 for
both weak and strong network, resulting in 4 benchmarks.

Figure 3 shows that XOR-SGD outperforms other methods.
The results are similar to those for the inventory manage-

ment problem. Additional experiment details and discus-
sions are in the supplementary materials. We would like to
emphasize that XOR-SGD with 40 samples already outper-
forms other methods in Figure 3 (right). In particular, XOR-
SGD with 40 samples take 1 minutes 40 seconds, while
SGD with 20,000 Gibbs samples needs 2.5 minutes. Results
clearly show that XOR-SGD outperforms other methods
both in efficiency and in the quality of solutions.

5 CONCLUSION

We proposed XOR-SGD, a novel algorithm based on
stochastic gradient descent and XOR-Sampling, to attack
constrained convex stochastic optimization problems, which
are crucial for many decision-making applications with un-
certainty. We showed theoretically that our algorithm has a
linear convergence rate to the global optimum. Empirically,
we demonstrated the superior performance of XOR-SGD on
both the stochastic inventory management and the stochastic
network design problems. In particular, XOR-SGD access-
ing 60 XOR samples runs faster and finds better solutions
than SGD accessing 20,000 MCMC samples for the inven-
tory management problem. XOR-SGD accessing 40 XOR
samples outperforms SGD accessing 20,000 MCMC sam-
ples both in running speed and in solution quality for the
network design problem. Overall, our paper demonstrates
the power of integrating cutting-edge computer science tech-
nology with real-world problems. Our paper will also stimu-
late further academic progress in stochastic gradient descent,
probabilistic inference with hashing and randomization, and
more broadly, convex and non-convex optimizations with
insights from real-world applications. Future work includes
tightening the constant bound and accelerating the conver-
gence rate with modifications to the SGD procedure. We
will also investigate if our approach can motivate new algo-
rithms for non-convex stochastic optimization problems.
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