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Abstract

Creating representations of shapes that are invari-
ant to isometric or almost-isometric transforma-
tions has long been an area of interest in shape anal-
ysis, since enforcing invariance allows the learning
of more effective and robust shape representations.
Most existing invariant shape representations are
handcrafted, and previous work on learning shape
representations do not focus on producing invariant
representations. To solve the problem of learning
unsupervised invariant shape representations, we
use contrastive learning, which produces discrimi-
native representations through learning invariance
to user-specified data augmentations. To produce
representations that are specifically isometry and
almost-isometry invariant, we propose new data
augmentations that randomly sample these transfor-
mations. We show experimentally that our method
outperforms previous unsupervised learning ap-
proaches in both effectiveness and robustness.

1 INTRODUCTION

3D shape analysis is important for many applications, such
as processing street-view data for autonomous driving [Pyl-
vanainen et al., 2010], studying morphological differences
arising from disease [Niethammer et al., 2007], archaeology
[Richards-Rissetto et al., 2012], and virtual reality [Hagbi
et al., 2010]. Deep learning methods for shape analysis
have generally focused on the supervised setting. However,
manual annotations are expensive and time-consuming to
produce in 3D. In some cases, annotations may even be
impossible to produce, for example in biomedical imaging,
where annotating pathological specimens may be hindered
by a limited understanding of the disease. Unsupervised
learning allows us to avoid the need to produce manual
annotations.

3D data comes in many formats, each of which has advan-
tages and disadvantages, and their own methods for shape
analysis. Voxel data consists of a 3D grid of voxels, but
tends to suffer from data sparsity, low voxel resolution, and
shape learning methods tend to be computationally expen-
sive [Wei et al., 2020]. Point cloud data consists of a list of
coordinates representing points on the shape, and is gener-
ally more dense than voxel data and also more easily permits
direct transformations on the shape represented by the data.
Because of these reasons, we will focus on point cloud data
in our paper.

Previous unsupervised methods for learning shape descrip-
tors have generally used either probabilistic models [Xie
et al., 2018, Shi et al., 2020], generative adversarial net-
works (GANs) [Wu et al., 2015, Achlioptas et al., 2018,
Han et al., 2019], or autoencoders [Girdhar et al., 2016,
Sharma et al., 2016, Wu et al., 2015, Yang et al., 2018].
One approach that has been relatively unexplored for deep
learning methods but common in hand-crafted methods is to
design shape descriptors that are invariant to transforms that
preserve distances, either the extrinsic (Euclidean) distance
[Belongie et al., 2001, Johnson and Hebert, 1999, Manay
et al., 2004, Gelfand et al., 2005, Pauly et al., 2003] or
intrinsic (geodesic) distance [Elad and Kimmel, 2003, Rus-
tamov, 2007, Sun et al., 2009, Aubry et al., 2011]. Distance-
preserving transformations are called isometries, and such
transformations preserve only the underlying shape prop-
erties. In this paper, we will focus on extrinsic isometries,
which include many common transformations such as ro-
tations, reflections, and translations. Enforcing isometry-
invariance leads to more effective representations by sim-
plifying the learning problem for downstream tasks, since
we will only need to learn the task for each possible shape
and not each possible example. Furthermore, invariance also
makes our learned representations robust to the variation
in shapes. However, isometry-invariance is unable to distin-
guish between different poses of a shape, such as a when an
object bends. These poses are instead almost-isometric, and
we argue that almost-isometry invariance can capture these

Accepted for the 37th Conference on Uncertainty in Artificial Intelligence (UAI 2021).

mailto:Jeffrey Gu <jeffgy@stanford.edu>?Subject=Your UAI 2021 paper


 cases while retaining the benefits of isometry-invariance.

To learn isometry and almost-isometry invariant representa-
tions, we use contrastive learning in combination with meth-
ods that sample isometric and almost-isometric transforma-
tions to learn invariant representations in an unsupervised
fashion. Contrastive learning allows the learning of repre-
sentations that are both invariant and discriminative [Xiao
et al., 2020] through the use of instance discrimination as a
pretext task, where the model is trained to match an input to
its transformed or augmented version. However, existing iso-
metric data augmentation methods such as random rotation
around the gravity axis, which were originally proposed for
supervised point cloud learning, are not general enough to
achieve our goal of learning invariance to general extrinsic
isometries or almost-isometries. To do this, we introduce
novel data augmentations that are capable of sampling gen-
eral isometries and almost-isometries using mathematical
results on sampling from groups, for isometries, and con-
centration of measure, for linear almost-isometries. We also
propose a new smooth perturbation augmentation to capture
additional non-linear isometries.

Our focus on learning transformation-invariant representa-
tions also leads to more robust representations. Robustness
is useful for real-world applications where the data may be
noisy or have arbitrary orientation or pose, and may also of-
fer greater protection against adversarial attacks [Zhao et al.,
2020]. However, few previous unsupervised shape represen-
tation learning methods have investigated the robustness of
their methods, and those that do observe drop-offs in per-
formance on downstream tasks as the noise level increases.
Our invariance-based method is able to overcome these lim-
itations.

We show empirically that previous point cloud data aug-
mentations are insufficient for learning good representations
with contrastive learning, whereas our proposed data aug-
mentations result in much more effective representations.
We also show the quality of representations learned with
contrastive learning and our new data augmentations for
downstream shape classification. Finally, we demonstrate
that our representations are also more robust to variations
such as rotations and perturbations than previous unsuper-
vised work.

2 RELATED WORKS

Shape Descriptors Shape descriptors represent 3D
shapes as a compact d-dimensional vector with the goal
of capturing the underlying geometric information of the
shape. Many hand-crafted shape descriptors have focused
on enforcing invariance to various types of isometries, such
as extrinsic isometries (i.e. isometries in Euclidean space)
[Belongie et al., 2001, Johnson and Hebert, 1999, Manay
et al., 2004, Gelfand et al., 2005, Pauly et al., 2003] or

isometries intrinsic to the shape itself [Rustamov, 2007, Sun
et al., 2009, Aubry et al., 2011].

Unsupervised methods for learning shape descriptors follow
two major lines of research, with the first line leveraging gen-
erative models such as autoencoders [Girdhar et al., 2016,
Sharma et al., 2016, Yang et al., 2018] or generative ad-
versarial networks (GANs) Wu et al. [2016], Achlioptas
et al. [2018], Han et al. [2019] and the second line focusing
on probabilistic models [Xie et al., 2018, Shi et al., 2020].
Autoencoder-based approaches focus either on adding addi-
tional supervision to the latent space via 2D predictability
[Girdhar et al., 2016], adding de-noising [Sharma et al.,
2016], or improving the decoder using a folding-inspired ar-
chitecture [Yang et al., 2018]. GAN-based approaches lever-
age either an additional VAE structure [Wu et al., 2016],
pre-training via earthmover or Chamfer distance [Achliop-
tas et al., 2018], or using inter-view prediction as a pretext
task [Han et al., 2019]. For probabilistic methods, Xie et al.
[2018] proposes an energy-based convolutional network
which is trained with Markov Chain Monte Carlo such as
Langevin dynamics, and Shi et al. [2020] proposes to model
point clouds using a Gaussian distribution for each point.
Of these approaches, only Shi et al. [2020] focuses on pro-
ducing robust representations.

Finally, some methods do not fall under any of these three
approaches. Sauder and Sievers [2019] uses reconstruction
as a pretext task to self-supervise representation learning.
PointContrast [Xie et al., 2020] aims to learn per-point repre-
sentations using a novel residual U-Net point cloud encoder
and a per-point version of InfoNCE [Oord et al., 2018]. They
use contrastive learning to pre-train on views generated from
ScanNet [Dai et al., 2017], a dataset of 3D indoor scenes. In
contrast, our work focuses specifically on learning isometry
and almost-isometry invariant representations of shapes and
developing algorithms to sample such transformations.

Contrastive Learning Contrastive learning has its roots
in the idea of a pretext task, a popular approach in unsuper-
vised or self-supervised learning. A pretext task is any task
that is learned for the purpose of producing a good represen-
tation [He et al., 2020]. Examples of pretext tasks for 2D
image and video data include finding the relative position of
two patches sampled from an image [Doersch et al., 2015],
colorizing grayscale images [Zhang et al., 2016], solving
jigsaw puzzles [Noroozi and Favaro, 2016], filling in miss-
ing patches of an image [Pathak et al., 2016], and predicting
which pixels in a frame of a video will move in subsequent
frames [Pathak et al., 2017]. Contrastive learning can be
thought of as a pretext task where the goal is to maximize
representation similarity of an input query between positive
keys and dissimilarity between negative keys. Positive keys
are generated with a stochastic data augmentation module
which, given an input, produces a pair of random views of
the input [Xiao et al., 2020]. The other inputs in the batch



 usually serve as the negative keys. The main application
of contrastive learning has been to learn unsupervised rep-
resentations of 2D natural images [Chen et al., 2020a, He
et al., 2020, Chen et al., 2020b, Xiao et al., 2020]. We fo-
cus on using contrastive learning as an means of producing
shape-specific invariant representations for 3D point clouds.

Data Augmentation Although data augmentation has
been well-studied for 2D image data, there has been little
work studying data augmentations for point clouds. Previ-
ously examined point cloud augmentations include rotations
around the the gravity axis, random jittering, random scal-
ing, and translation [Qi et al., 2017a,b, Li et al., 2020] in the
supervised learning setting, and applying a random rotation
from 0 to 360◦ on a randomly chosen axis for unsuper-
vised pre-training [Xie et al., 2020]. Chen et al. [2020c]
proposes to generalize image interpolation data augmenta-
tion to point clouds using shortest-path interpolation. To
improve upon these hand-crafted data augmentations, Li
et al. [2020] proposes an auto-augmentation framework that
jointly optimizes the data augmentations and a classification
neural network, but is not applicable in unsupervised set-
tings. In contrast, our work focuses on generalizing previous
data augmentations such as random rotation and jittering to
much more general classes of invariant transformations, in-
cluding Euclidean isometries and almost-isometries, for the
purpose of invariant representation learning with contrastive
learning.

3 METHODS

In this section, we introduce our novel transformation sam-
pling schemes and the contrastive learning framework we
use to learn invariant representations. In Section 3.1, we
introduce sampling procedures for isometry and almost-
isometry invariant transformations, and in Section 3.2 we
show how contrastive learning can be used to learn represen-
tations that are invariant to the transformations introduced
in Section 3.1.

3.1 SAMPLING ISOMETRIC AND
ALMOST-ISOMETRIC TRANSFORMATIONS

To achieve our goal of learning isometry-invariant and
almost-isometry-invariant representations, we develop algo-
rithms that allow us to sample randomly instances of these
transformations from the set of all such transformations.

Preliminaries An isometry is a distance-distance preserv-
ing transformation:

Definition 3.1. Let X and Y be metric spaces with metrics
dX , dY . A map f : X → Y is called an isometry if for any
a, b ∈ X we have dX(a, b) = dY (f(a), f(b)).

In this paper, we will only be concerned about isometries of
Euclidean space (X = Y = Rn). Examples of Euclidean
isometries include translations, rotations, and reflections.
Mathematically, if two objects are isometric, then the two
objects are the same shape. From a shape learning perspec-
tive, isometry-invariance creates better representations by
allowing downstream tasks such as classification to learn
only one label per shape, rather than having to learn the
label of every training example.

3.1.1 Uniform orthogonal transformation

The isometries of n-dimensional Euclidean space are de-
scribed by the Euclidean groupE(n), the elements of which
are arbitrary combinations of rotations, reflections, and trans-
lations. If we normalize each point cloud by centering it at
the origin, then we only need to consider linear isometries,
which are precisely the orthogonal matrices O(n) (for more
details, see Appendix A). In the rest of the paper, we will use
orthogonal transformation and isometry interchangeably.

To ensure robustness to all orthogonal transformations
Q ∈ O(n), we would like to sample uniformly Q from
O(n). A biased sampling method may leave our algorithm
with “blind spots”, as it may only learn to be invariant to the
more commonly sampled orthogonal transformations. A the-
orem of Eaton [Eaton, 1983] shows that if a random matrix
A whose entries are distributed according to the standard
normal distribution is QR-factorized, then Q distributed
uniformly on O(n). This provides a simple algorithm for
sampling uniform orthogonal transformations, given in Al-
gorithm 1. An example transformation is shown in Figure
1.

Algorithm 1 Uniform Orthogonal sampling

Require: dimension n
Ensure: uniform orthogonal matrix Q ∈ O(n)

1: Sample A ∼ N(0, 1)n×k

2: Perform QR decomposition on A to get Q,R
3: return Q

3.1.2 Random almost-orthogonal transformation

Many transformations preserve almost all shape information
but may not be isometries. For example, the bending of a
shape or rotation of part of a shape around a joint gener-
ally change geodesic distances on the shape very little and
are thus almost-isometric transformations. Using almost-
isometries instead of exact isometries may also allow our
shape representations to account for natural variation or
small amounts of noise between two shapes that otherwise
belong to the same class of shape.

In the case of Euclidean isometries, an almost-isometric
transformation is an almost-orthogonal transformation. To
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Figure 1: Examples of our isometric and almost-isometric transformations. Each image has been normalized to be centered
at the origin and scaled so the maximum distance of any point to the origin is 1. (a): The original point cloud. (b): The point
cloud after a uniformly sampled orthogonal transform has been applied. We see that the point cloud has been rotated. (c):
The point cloud after a random RIP transformation has been applied. The point cloud has undergone both rotation and a
small amount of stretching (d): The point cloud after a smooth perturbation has been applied. We see that the point cloud
has been perturbed, particularly near the nose of the aircraft.

formally define almost-orthgonal matrices, we use the Re-
stricted Isometry Property (RIP) first introduced by Candes
and Tao [2005]:

Definition 3.2 (Restricted Isometry Property of Baraniuk
et al. [2008]). A n × N matrix A satisfies the Restricted
Isometry Property of order k if there exists a δk ∈ (0, 1)
such that for all sets of column indices T satisfying that
|T | ≤ k we have

(1− δk)‖xT ‖2 ≤ ‖ATxT ‖2 ≤ (1 + δk)‖xT ‖2 (1)

whereAT is the n×|T |matrix generated by taking columns
of A indexed by T , and xT is the vector obtained by retain-
ing only the entries corresponding to the column indices T ,
and N is an arbitrary parameter satisfying N � n.

For more details on RIP matrices, see Appendix B. To sam-
ple from the set of RIP matrices, we leverage the concen-
tration of measure result of Baraniuk et al. [2008] to create
rejection sampling algorithm:

Theorem 3.1 (Theorem 5.2 of Baraniuk et al. [2008]). Sup-
pose that n,N and 0 < δ < 1 are given. If the probability
distribution generating the n×N matrices A satisfies the
concentration inequality

Pr
(∣∣∣‖Ax‖2 − ‖x‖2∣∣∣ ≥ ε‖x‖2) ≤ 2ε−nc0(ε) (2)

where 0 < ε < 1 and c0 is a constant depending only on
ε, then there exist constants c1, c2 > 0 depending only on
δ such that RIP holds for A with the prescribed δ and any
k ≤ c1n/ log(N/k) with probability ≥ 1− e−c2n.

We note that many common distributions satisfy the concen-
tration inequality, for example Aij ∼ N

(
0, 1

n

)
Baraniuk

et al. [2008], where the concentration inequality holds with
c0(ε) = ε2/4− ε3/6.

This theorem says that with the right setting of parame-
ters, if we generate a random n × N matrix A where the
entries are chosen from a distribution satisfying the con-
centration inequality and form a new matrix Q by taking
T random columns of A, the result is an n× T RIP matrix
with high probability. This gives us a simple algorithm for
sampling RIP matrices: first we generate a random matrix
A by sampling entries from N

(
0, 1

n

)
, choosing T columns

of A without replacement and forming a new matrix Q con-
sisting of just these columns, and testing if the matrix is RIP
(that is, it satisfies Equation 5, see Appendix B), repeating
the procedure if Q is not RIP. The full algorithm is given in
Algorithm 2, and an example RIP transformation is shown
in Figure 1.

Algorithm 2 Sample Q such that σ(QTQ− I) < δ

Require: dimensions n,N, T , tolerance δ
Ensure: n× T matrix Q satisfying RIP

1: while
∥∥QTQ− In∥∥2 > δ do

2: Sample A ∼ N
(
0, 1

n

)n×N
3: Randomly choose T columns of A without replace-

ment to get n× T matrix Q
4: end while
5: return Q

3.1.3 Smooth perturbation

RIP transformations are examples of linear almost-
isometries, since they are represented by matrices. To cap-
ture some non-linear almost-isometries, we generalize the
commonly used point cloud augmentation of Gaussian per-
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Figure 2: Schematic of the contrastive learning framework as described in Section 3.2. Random data augmentations tq, tk
are sampled from the stochastic data augmentation and applied to input x to produce views vq, vk. The views are then fed
through the corresponding encoder f and then a projection head g to produce representations q, k which are then used
to calculate the contrastive loss. The module block describes how the algorithm uses the key representations as negative
examples. For example, in SimCLR [Chen et al., 2020a], the module is just the identity and the keys of all other views
are used as negative examples, whereas MoCo [He et al., 2020, Chen et al., 2020b] uses a memory bank composed of key
representations. Together, , g(f(·)) comprise E(·). For methods employing a projection head g, for downstream tasks g is
thrown away and typically the representation rq is used.

turbation [Qi et al., 2017a,b], which applies Gaussian noise
with zero mean to each point of the point cloud. To general-
ize this augmentation to capture the variation in real-world
shapes, we propose a data augmentation that generates a
smooth perturbation, inspired by [Ronneberger et al., 2015,
Çiçek et al., 2016]. We generate a smooth perturbation by
sampling P points uniformly in R3 and 3P values from
a Gaussian with zero mean and standard deviation σ. We
then use smooth interpolation to generate a perturbation
(nix, n

i
y, n

i
z) for each point pi = (xi, yi, zi) in the point

cloud, and apply the perturbation as a translation of pi to get
new points pi = (xi + nix, yi + niy, zi + niz). An example
is shown in Figure 1.

3.2 CONTRASTIVE LEARNING

The contrastive learning framework (see Figure 2) can be
summarized as follows [Xiao et al., 2020]: we first define a
stochastic data augmentation module T from which we can
sample transformations t ∼ T . Given a training example x,
two random views vq = tq(x), vk = tk(x) are generated,
where tq, tk ∼ T . We then produce representations q, k
by applying a base encoder E(·) to vq and vk. The pair
q, k+ = k1 is called a positive pair, and our goal is to
distinguish this pair from some set of negative examples
k2, . . . , kK . The model is then trained with a contrastive
loss, which allows the model to learn representations that
are invariant to the transformations in T . We use InfoNCE
[Oord et al., 2018] as our contrastive loss:

Lq = − log
exp(q · k+/τ)∑K
i=1 exp(q · ki/τ)

(3)

where the temperature τ is a tunable hyperparameter. Since
the contrastive loss forces q, k+ to be similar and q, ki 6= k+
to be dissimilar, our model learns invariance to the transfor-
mations used to generate q, k+. Many different strategies
have been used to choose the negative keys ki 6= k+, such
as using the keys of the other training examples in the mini
batch Chen et al. [2020a] or drawing them from a queue of
previously seen keys He et al. [2020], Chen et al. [2020a].

We choose momentum contrastive learning (MoCo) [He
et al., 2020, Chen et al., 2020b] as our contrastive learning
framework due to its state-of-the-art performance for 2D im-
age data and its relatively lightweight computational require-
ments, but our method is framework-agnostic and could be
used with any contrastive learning framework. To adapt
this framework for learning shape representations for point
clouds, we need a base encoder capable of producing rep-
resentations from point cloud input and shape-specific data
transformations Ti. In our method, the stochastic data aug-
mentation module T comprises the transformation-sampling
modules introduced in Section 3.1. Unlike the case of 2D
image representations, where there are canonical choices of
base encoder, there are not similar choices for point cloud
data, due to the infancy of point cloud architectures [Xie
et al., 2020]. PointNet [Qi et al., 2017a], DGCNN [Wang
et al., 2019], and a residual U-Net architecture [Xie et al.,
2020] and others have all been used in prior work. Our
framework is model-agnostic and works with any point
cloud encoder. We will discuss the choice of base encoder
more in Section 4.



 4 EXPERIMENTS

4.1 UNSUPERVISED SHAPE CLASSIFICATION
PROTOCOL

To show the quality of our learned shape representations,
we compare our method to previous work on unsupervised
shape classification. The procedure for our shape classifica-
tion experiment follows the established protocol for unsu-
pervised shape classification evaluation: first, the network is
pre-trained in an unsupervised manner using the ShapeNet
dataset [Chang et al., 2015]. Using the embeddings from
pre-training, either a 2-layer MLP [Shi et al., 2020] or lin-
ear SVM [Wu et al., 2015] is trained and evaluated on the
ModelNet40 dataset. Following previous work [Wu et al.,
2015, Shi et al., 2020], we only pre-train on the 7 major cat-
egories of ShapeNet (chairs, sofas, tables, boats, airplanes,
rifles, and cars). Other work pre-train on all 55 categories
of ShapeNet [Achlioptas et al., 2018, Yang et al., 2018, Han
et al., 2019, Sauder and Sievers, 2019], but due to the differ-
ences in the amount of data used we are unable to make a
fair comparison to these methods.

ShapeNet ShapeNet [Chang et al., 2015] dataset consists
of 57448 synthetic 3D CAD models organized into 55 cate-
gories with a further 203 subcategories, organized according
to WordNet synsets. However, we only have access to the
public version of ShapeNet, which contains the same cat-
egories but only 52472 models. For contrastive learning
pre-training we use the normalized version of ShapeNet,
where all shapes are consistently aligned and normalized to
fit inside a unit cube.

ModelNet40 ModelNet40 [Wu et al., 2015] is a shape
classification dataset consisting of 12311 3D CAD models
organized into 40 classes. We use the official ModelNet40
train and test splits of 9843 training examples of 2468 test
examples. For downstream shape classification training and
evaluation, we use the normalized and resampled version of
ModelNet40, where models are normalized to be centered
at the origin and and lie within the unit sphere and the points
resampled as in Qi et al. [2017a]. ModelNet10 is a 10-class
subset of ModelNet40.

Training We use PointNet Qi et al. [2017a] as our base
encoder. For ShapeNet pre-training using MoCo, we follow
He et al. [2020], Chen et al. [2020b] and use SGD as our op-
timizer with weight decay 0.0001, momentum 0.9, temper-
ature τ = 0.02, and latent dimension 128. Unlike He et al.
[2020], we train with only a single GPU with batch size 64
and a learning rate chosen from {0.075, 0.0075, 0.00075},
which is tuned using the final MoCo accuracy. Models are
trained until the MoCo accuracy converges, up to a limit
of 800 epochs. Convergence typically takes 200 epochs for
single transformation models but up to or even exceeding

800 epochs for multiple transformation models. We use a
cosine learning rate schedule [Chen et al., 2020a,b]. For
both pre-training and supervised classification training, we
sample 2048 points from each point cloud.

For ModelNet40 shape classification we choose to use a
two layer MLP, which is known to be equivalent to a linear
SVM, and train with a batch size of 128, and a learning rate
chosen from {0.01, 0.001}. The learning rate was selected
using a validation set sampled from the official training set
of ModelNet40. Following Shi et al. [2020], our hidden
layer has 1000 neurons.

Experimental setup Unless otherwise stated, the setting
of our data augmentation modules are as follows: for uni-
form orthogonal matrices, we set n, k = 3 to generate
3 × 3 orthogonal matrices. For random RIP matrices, we
set n = 3, N = 1000, T = 3 and δ = 0.9 (see Section
3.1.2, Algorithm 2). For the smooth perturbation data aug-
mentation, we generate 100 points according to an isotropic
Gaussian with mean 0 and standard deviation 0.02, and per-
form radial basis interpolation to get smooth noise at every
point in the point cloud, which we add to each point of the
point cloud. For Gaussian noise, we perturb each point in
the point cloud by a random perturbation sampled according
to a Gaussian with mean 0 and standard deviation 0.02.

Training with individual data augmentations Table 1
shows different versions of our method when trained with
each individual transformation. We compare our proposed
data augmentations against three existing data augmenta-
tions: random y-rotation [Qi et al., 2017a], random rotation
[Zhao et al., 2020], and point cloud jitter/Gaussian perturba-
tion [Qi et al., 2017a]. We do not investigate random scaling
or translations since their effect can always be negated by
normalization.

We first consider the linear transformations, which are the
random y-rotation, random rotation from previous works
and the uniform orthogonal transformation and random RIP
transformations we propose. Each of the earlier classes of
transformation is a subset of the later classes of transforma-
tions. We find that as the class of transformations get more
general, the performance improves. This is similar to earlier
contrastive learning work [Chen et al., 2020a], which finds
that increasing the strength of a data augmentation improves
the performance of contrastive learning. In particular, we
find that the RIP transformation performs the best, followed
by the uniform orthogonal transformation, showing that
almost-isometry invariance provides further improvement
over the more-strict isometry invariance. We also find that
our proposed transformations (uniform orthogonal, random
RIP) greatly outperform previously used transformations
for contrastive learning, and that these previous transforma-
tions are insufficient for learning good representations with
contrastive learning (c.f. Table 3).



 
Table 1: Ablation study of our model pre-trained with only
one transformation and on the 7 major ShapeNet categories
listed in Section 4.1 and evaluated using the protocol of
Section 4.1 on ModelNet40. Bolded names correspond to
our proposed data augmentations.

TYPE DATA AUGMENTATION ACCURACY

LINEAR RANDOM y-ROTATION 71.8%
RANDOM ROTATION 72.9%

UNIFORM ORTHOGONAL 83.0%
RANDOM RIP 86.3%

NON-LINEAR SMOOTH PERTURBATION 78.6%
GAUSSIAN PERTURBATION 78.7%

We find that the non-linear transformations (Gaussian pertur-
bation and smooth perturbation) perform noticeably worse
than the best linear transformations. We believe that this
is because the best linear transformations captures more
diversity in object variation. Both of the transformations in
this category perform similarly, which is likely is due to the
two transformations being similar in strength, since they are
both based on noise sampled from a Gaussian distribution
with the same standard deviation.

Training with multiple data augmentations Previous
contrastive learning literature finds that training with multi-
ple transformations is generally more effective than training
only a single transformation [Chen et al., 2020a], leading us
to examine combinations of data augmentations. When train-
ing with multiple transformations, we uniformly randomly
apply one of the transformations to each mini-batch. Due
to the large number of combinations and the fact that many
transformations are generalizations of other transformations,
we only investigate the top two linear and non-linear trans-
formations from Table 1. Additionally, we only investigate
all pairs of transformations.

Table 2 shows the results of our method trained with pairs
of data augmentation. Training was stopped for all models
at 800 epochs regardless of whether the model was con-
verged or not, due to the computational expense of training
with single GPUs. Under these conditions, we find that the
combination of the uniform orthogonal and random RIP
transformations produces the best classification accuracy.
We find that the random RIP and Gaussian perturbation and
random RIP and smooth perturbation models do not fully
converge after 800 epochs, in the sense that their instance
discrimination accuracy after MoCo pre-training is still im-
proving but not close to the accuracy achieved by the other
models (above 90%). In line with previous work, models
trained with combinations of transformations improve over
models trained with just the individual transformations in
every case where the models converge. We conjecture that
if computational resources were significantly increased, this
would also hold for the models that have not converged, and

Table 2: Comparison of our model trained with combina-
tions of augmentations mentioned in Section 4.1 and on the
7 major ShapeNet categories listed in Section 4.1 and evalu-
ated using the protocol of Section 4.1 on ModelNet40. Here,
orthogonal refers to our uniform orthogonal transformation,
RIP refers to our random RIP transformation, perturbation
refers to Gaussian perturbation, interpolation refers to our
smooth perturbation generated using interpolation. Bolded
names correspond to our proposed data augmentations. Mod-
els that did not converge after training with terminated at
the maximum number of epochs (800) are marked with a ∗.

DATA AUGMENTATIONS ACCURACY

RIP + INTERPOLATION∗ 73.0%
RIP + PERTURBATION∗ 75.9%

ORTHOGONAL + INTERPOLATION 83.6%
ORTHOGONAL + PERTURBATION 83.9%

PERTURBATION + INTERPOLATION 84.4%
ORTHOGONAL + RIP 86.4%

for even greater combinations of data augmentations.

Comparison to previous results Table 3 shows the per-
formance of our method compared to previous unsupervised
shape classification methods using the shape classification
protocol. In the table, “Ours” refers to our model trained
with the uniform orthogonal and random RIP transforma-
tions.

Our model outperforms all comparable prior unsupervised
work. This shows the importance of learning invariance to
shape-preserving transformations in shape representation
learning, as no previous unsupervised methods explicitly
consider learning invariant representations, as well as the
importance of considering broadly invariant transformations
in contrastive learning. Since most of the classes are unseen
by the model during ShapeNet pre-training, our model also
shows good ability to generalize to novel classes.

4.2 ROBUSTNESS

Our focus on learning transformation-invariant representa-
tions also leads to better representation robustness. Robust
representations allow our method to better handle the natural
variation in shapes and is useful in real-world settings where
the input shapes may not always be consistently aligned.
Additionally, robustness may also make our method more
resistant to adversarial attacks. In this section, we assess
robustness to common changes such as rotation and noise
as well as more complex transformations based on our pro-
posed data augmentations.

Experimental Setup In our first experiment, we examine
robustness to rotation. Robustness to rotation can alleviate



 
Table 3: Comparison of our method against previous unsupervised work on the shape classification protocol of Section 4.1.
The evaluation metric is classification accuracy, and MN40 and MN10 refer to the ModelNet40 and ModelNet10 datasets,
respectively. A − indicates that there is no published result for that dataset.

SUPERVISION METHOD MN40 MN10
SUPERVISED POINTNET [QI ET AL., 2017A] 89.2% –

POINTNET++ [QI ET AL., 2017B] 91.9% –
POINTCNN [LI ET AL., 2018] 92.2% –

DGCNN [WANG ET AL., 2019] 92.2% –
RS-CNN [LIU ET AL., 2019] 93.6% –

UNSUPERVISED T-L NETWORK [GIRDHAR ET AL., 2016] 74.4% –
VCONV-DAE SHARMA ET AL. [2016] 75.5% 81.5%

3D-GAN [WU ET AL., 2016] 83.3% 91.0%
POINT DISTRIBUTION LEARNING [SHI ET AL., 2020] 84.7% –

OURS 86.4% 92.8%

(a) (b) (c) (d)

Figure 3: Plots of accuracy vs variation strength for (a) rotations by a fixed angle, (b) Gaussian noise of varying standard
deviations, (c) smooth noise generated using Gaussian noise of varying standard deviations, and (d) RIP transformations
with increasing deviation δ from isometry. Each variation was applied at both train and test time for ModelNet40 shape
classification (see Section 4.1). We find that our method is fairly consistent with regards to different types of variation, with
performance only decreasing slightly as the variation or noise becomes stronger.

the need to align shapes before performing downstream
tasks as well as provide greater defense against adversarial
attacks [Zhao et al., 2020]. We apply a rotation along each
axis from 0 to 45 degrees in increments of 9 degrees to each
shape during both supervised classification training and
testing, following Shi et al. [2020]. All other experiment
details are the same as Section 4.1. For this experiment, our
model is trained with the uniform orthogonal and random
RIP transformations.

As a second experiment, we evaluate the resistance of our
method to noise, which is useful in real-world settings due
to the imprecision of sensors. For this experiment, we apply
a Gaussian perturbation with standard deviation 0 to 0.08
in increments of 0.02, and train our model with only the
Gaussian perturbation with standard deviation 0.08.

Finally, we evaluate robustness with respect to more com-

plex variations such as the data augmentations proposed
in this work. We show that our model is also robust to our
proposed transformations, which are much more difficult
than fixed-degree rotations around each axis and Gaussian
noise. For this experiment, we apply our random RIP trans-
formation with noise parameters δ (see Section 3.1.2) from
0.75 to 0.9 in increments of 0.05, and our smooth pertur-
bation with standard deviation 0.05 to 0.02 in increments
of 0.05 (see Section 3.1.3). We pre-train our models with
the RIP transformation and perturbation and interpolation
transformations, respectively.

Results Results for all experiments can be found in Fig-
ure 3. For the first experiment, we find that our method’s
accuracy actually increases slightly with the rotation angle,
unlike Figure 7 of Shi et al. [2020], where the accuracy de-
grades as the rotation angle increases. We also find that our



 method achieves higher accuracy on the robustness experi-
ment than the best unsupervised baseline Shi et al. [2020]
at all rotation angles. In the Gaussian noise experiment we
find that our method experiences only a slight decrease of
around 2% from the setting without noise to the highest
level of noise, unlike Figure 8 of Shi et al. [2020], where
the accuracy decreases significantly as the noise level in-
creases. Shi et al. [2020] achieves robustness by learning
their representations by mapping the distribution of points
to the corresponding point origin, but our method achieves
much better robustness through a much stronger constraint
of isometry-invariance on the representations. For our pro-
posed transformations, we find similar results as the noise
experiment, with only slight decreases in performance as
the noise increases, showing that our method is even robust
to much more complex variations. The lower accuracy of
the robust RIP transformation compared to the non-robust
accuracy (see Table 1) is to be expected because Zhao et al.
[2020] observes that robustness to random rotations causes a
significant decrease in classification accuracy for supervised
training, and the RIP transformation is a generalization of
random rotations.

5 CONCLUSION

In this paper we introduce a contrastive learning frame-
work to learn isometry and almost-isometry invariant shape
representations, together with novel isometric and almost-
isometric data augmentations. We show empirically that our
contrastive learning and isometry approach improves over
previous methods in both representation effectiveness and
robustness, as well as that our novel data augmentations pro-
duce much better representations using contrastive learning
than existing point cloud data augmentations.
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