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Abstract

Most recent few-shot learning (FSL) methods are
based on meta-learning with episodic training.
In each meta-training episode, a discriminative
feature embedding and/or classifier are first con-
structed from a support set in an inner loop, and
then evaluated in an outer loop using a query set
for model updating. This query set sample centered
learning objective is however intrinsically limited
in addressing the lack of training data problem in
the support set. In this paper, a novel contrastive
prototype learning with augmented embeddings
(CPLAE) model is proposed to overcome this limi-
tation. First, data augmentations are introduced to
both the support and query sets with each sample
now being represented as an augmented embed-
ding (AE) composed of concatenated embeddings
of both the original and augmented versions. Sec-
ond, a novel support set class prototype centered
contrastive loss is proposed for contrastive proto-
type learning (CPL). With a class prototype as an
anchor, CPL aims to pull the query samples of the
same class closer and those of different classes fur-
ther away. This support set sample centered loss is
highly complementary to the existing query cen-
tered loss, fully exploiting the limited training data
in each episode. Extensive experiments on sev-
eral benchmarks demonstrate that our proposed
CPLAE achieves new state-of-the-art.

1 INTRODUCTION

Deep convolutional neural networks (CNNs) [[Krizhevsky
et al..[2012} He et al.,2016]] have witnessed tremendous suc-
cesses in many visual recognition tasks. However, the pow-
erful learning ability of CNNs depends on a large amount
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of manually labeled training data. In practice, sufficient
manual annotation is often too costly and may even be infea-
sible (e.g., for rare object classes). This has severely limited
the usefulness of CNNs for real-world applications. Many
attempts have been made recently to mitigate such a limita-
tion from the transfer learning perspective, resulting in the
popular research line of few-shot learning (FSL) [Li et al.,
2003}, 2006]. FSL aims to transfer knowledge learned from
abundant seen class samples to a set of unseen classes (only
with few shots per class).

Most recent FSL methods are based on meta-learning
[Vinyals et al.| 2016 [Snell et al., 2017} [Finn et al.l 2017}
Sung et al.||2018]. That is, they learn an algorithm or model
across a set of sampled FSL training/seen tasks, with the
objective of making it generalizable to any unseen test tasks.
To that end, an episodic training strategy is adopted, i.e.,
the seen tasks are arranged into learning episodes, each of
which contains n classes and k labeled samples per class to
simulate the setting for the unseen test tasks. In each episode,
the meta-training data is further split into a support set and
a query set. Part of the CNN model (e.g., feature embedding
subnet, classification layers, or parameter initialization) to
be meta-learned is first obtained in an inner loop using the
support set. It is then evaluated in an outer loop using the
query set for model updating.

These meta-learning based FSL methods differ mainly in
which part of the model is meta-learned. Among them, those
meta-learning a feature embedding or distance metric have
dominated the state-of-the-art. In particular, many of them
[Allen et al.l 2019} |Li et al., 2019b}, |Afrasiyabi et al.| 2020,
Ye et al., 2020, Zhang et al.,2020] are based on the prototyp-
ical network (ProtoNet) [Snell et al.; 2017] for its simplicity
and competitive performance with various extensions. Con-
cretely, given a feature embedding network learned from
the preceding episode, these ProtoNet-based methods first
compute one prototype per class as the support set class
mean; these prototypes are then used as a nearest neighbour
classifier in the outer loop on the query set to update the
feature embedding. In other words, the meta-learning loss is
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Figure 1: Feature visualization of the same meta-test episode for three FSL models using the UMAP algorithm [Mclnnes
et al., 2018]]. PN denotes ProtoNet, which is the prototypical network proposed in [Snell et al.; 2017]]. Both PN and PN+AE
take a query-centered view, while our CPL takes a prototype-centered view. The Davies-Bouldin index (DB index) [Davies
and Bouldin, |1979] is used to measure the intra-class variation, which takes a lower value when the data clustering structure

is clearer/better.

query centred aiming to make sure that each query sample
is close to its corresponding class prototype whilst being
further away from other prototypes.

However, this design has severe limitations in addressing a
fundamental challenge in FSL, i.e., the lack of support set
samples. By definition, each class is only represented by
few shots, i.e., n is very small. This problem is actually ex-
acerbated by taking a query-centred only meta-learning loss
(with prototype based class representation) that considers
the relationship between each query against the k prototypes
individually rather than collectively as a distribution.

In this paper, to address the lack of support set sample prob-
lem, we propose a novel contrastive prototype learning with
augmented embeddings (CPLAE) model for FSL. Our pro-
posed CPLAE has two new components: (1) Augmented
embedding (AE) — each sample in the support/query set
and its three augmented versions are integrated to obtain
an augmented embedding. Data augmentation is commonly
used in training a CNN for improving its generalization
to unseen test data. It has also been considered for FSL
[Gidaris et al., 2019, |Su et al., 2020, Mangla et al., [2020].
Rather than using augmentation for auxiliary tasks as in
existing works, we concatenate the feature embeddings of
both the original and augmented versions of each sample to
form a richer AE space for meta-learning. (2) Contrastive
prototype learning (CPL) — Similar to [Allen et al.,[2019}
Li et al.; 2019b, |Afrasiyabi et al.| 2020, |Ye et al.| [2020,
Zhang et al., 2020]], our CPLAE is also based on ProtoNet
for meta-learning a feature embedding. Differently, instead
of using only query sample centered learning objectives, we
additionally introduce a novel support sample centered loss
to make full use of the limited training data in each episode.
Our CPL loss is a supervised contrastive loss [Khosla et al.,
2020] adapted to FSL. More specifically, each prototype is

used as an anchor with query set samples of the same class
used as positives and all other query samples as negatives.
Contrary and yet complementary to the existing query cen-
tered loss that constrains the support set distribution, this
support set prototype centered loss regularizes the query
set distribution. Combining both losses results in a better
embedding space where different classes are more separable
(see Figure [I). CPL and AE are integrated seamlessly in
our CPLAE in that different AE concatenation orders are
applied to the anchor and negatives/positives to further boost
the generalization ability of the learned embedding.

Our main contributions are: (1) For the first time, we identify
the limitations of existing embedding-based meta-learning
methods in dealing with scarce training samples for FSL,
caused by adopting only query centered learning objectives.
(2) As aremedy, we propose a novel CPLAE model com-
posed of two components (i.e., AE and CPL). Combining
AE and supervised contrastive learning seamlessly, our CPL
loss enforces a support set centered constraint on the query
set sample distribution, thus being complementary to exist-
ing query centered losses and effectively making full use
of the limited training data. (3) Extensive experiments on
several benchmarks demonstrate that our proposed CPLAE
achieves new state-of-the-art.

2 RELATED WORK

Few-Shot Learning. Most recent FSL methods follow the
meta-learning paradigm. They can be roughly divided into
four groups: (1) Embedding/Metric-based methods learn
shared task-agnostic embedding spaces/distance metrics
or learn task-specific metrics. The former methods either
learn an embedding space where a fixed metric (e.g., cosine
[Vinyals et al., |2016] or Euclidean distance [Snell et al.,



2017]) can be used, or learn a distance metric (e.g., CNN-
based relation modules [Sung et al., 2018, [Wu et al.,[2019],
ridge regression [Bertinetto et al., [2019]], and graph neu-
ral networks [Satorras and Estrach, [2018|, [Kim et al., {2019,
Yang et al., 2020])). The latter methods learn task-specific
metrics [[Yoon et al.l 2019, L1 et al., 20194l Qiao et al.,
2019} Ye et al.,|2020, |Simon et al., 2020] which can adapt
to each unseen new task. (2) Optimization-based methods
[Ravi and Larochelle, 2017, Munkhdalai and Yul 2017, [Finnl
et al., 2017, Nichol et al., 2018, [Rusu et al., 2019} |Lee et al.|
2019] aim to meta-learn an optimizer. Specifically, MAML
[Finn et al.,|2017]] was proposed to learn a good model ini-
tialization with seen class data and then quickly adapt it
on novel class tasks. Reptile [Nichol et al., |2018] further
simplified MAML, and MetaOptNet [Lee et al., |2019] en-
hanced MAML by replacing the linear classifier with an
SVM. (3) Hallucination-based methods [Hariharan and Gir{
shickl 2017, [Zhang et al.| 2019, |Li et al.| 2020] aim to learn
generators from seen class samples, which are then applied
during meta-testing by hallucinating new samples/features
using the few shots from unseen classes. (4) Prediction-
based methods [Q1 et al., 2018 |Qi1ao et al., 2018} |Gidaris
and Komodakis| 2019, (Guo and Cheung} 2020] directly
learn to utilize a few labeled samples to predict the parame-
ters of neural networks for few-shot classification.

The state-of-the-art FSL results are mostly achieved by
methods from the first group [Allen et al., [2019| |Li et al.,
2019b, |Afrasiyabi et al.| 2020, |Ye et al.| 2020, Zhang et al.,
2020]], especially those based on ProtoNet [Snell et al.|
2017]]. Our CPLAE is also an embedding-based method
based on ProtoNet. However, armed with augmented em-
bedding (AE) and additionally introducing a support set pro-
totype centered loss, our model is more capable of dealing
with the limited training data in FSL, resulting in superior
performance (see Sec. ).

Data Augmentation for FSL. Several recent works [Hsu
et al.,|2019, Khodadadeh et al.,|2019}|Antoniou and Storkey,
2019, |Qi1n et al.,|2020\ \Gidaris et al., 2019, |Su et al., 2020,
Mangla et al.| [2020]] have utilized data augmentation for
meta-learning based FSL. [Hsu et al., 2019, Khodadadeh
et al.,[2019, |Antoniou and Storkey, 2019, |Qin et al., 2020]
focus on unsupervised FSL, where augmented data samples
and their original version are used to form pseudo classes
to enable supervised episodic training. For supervised FSL,
[Gidaris et al., 2019} Su et al., 2020, Mangla et al., |2020]
take a multi-task learning framework where augmented data
are used for auxiliary self-supervised pretext tasks (e.g., pre-
dicting the rotation angle). Our CPLAE is also a supervised
FSL model, but the way data augmentation is used is very
different from that in [|Gidaris et al.l 2019, |Su et al., 2020,
Mangla et al.,[2020]. Specifically, for each sample, we con-
duct three kinds of image deformations and then input the
four images (together with the original one) into a feature
embedding network to obtain a concatenated augmented

embedding (AE) space with higher dimensionality than the
original embedding space. Different orders of concatenation
are further used to formulate our contrastive prototype learn-
ing (CPL) loss/objective to boost the generalization ability
of the learned embedding.

Contrastive Learning. Contrastive learning (CL) has re-
cently achieved great success in self-supervised learning
[van den Oord et al., [2018| Tian et al.l 2019} |Chen et al.,
2020l [He et al.| 2020]] where augmented data creates pseudo
classes so that supervised learning can be applied. This
has been recently extended to supervised CL [Khosla et al.,
2020] where given an instance as anchor, all other instances
(original and augmented) of the same classes are positives
and the rest as negatives. Our CPL loss is essentially also
a supervised CL loss. However, there are vital differences:
our anchors are prototypes from the support set and crit-
ically CL is seamlessly combined with the proposed AE
with different embedding concatenation orders applied to
the anchor and positives/negatives respectively to challenge
the generalization ability of the learned embedding. Note
that ProtoTransfer [Medina et al.| [2020] also exploits CL
for FSL, but under the unsupervised setting only, rather than
our supervised FSL problem.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

Let C, denote a set of seen classes and C,, a set of unseen
classes, where C; N C,, = 0. We are given a large sam-
ple set Dy = {(x,yi)|y; € Cs,a = 1,---, Ny} from Cs,
and a few-shot sample set D,, = {(x;,v:)|yi € Cu,i =
1,--+,N,} from C,, where z; is the i-th image in D (or
D), y; is the class label of x;, and N (or N,,) is the number
of images in D, (or D,,). Particularly, for the k-shot sample
set Dy, N,, = k|Cy| (i.e., each class has k labeled images).
A test set D; from C, is also given, where D, N D; = {.
The goal of few-shot learning (FSL) is to predict the labels
of test images in D, by exploiting D, and D,, for training.

3.2 FSL WITH AUGMENTED EMBEDDINGS

Most FSL methods [Finn et al., 2017, [Snell et al., 2017,
Satorras and Estrach| 2018 |Sung et al.l 2018 [Lee et al.|
2019, |Kim et al.;, 2019, |Ye et al., [2020] adopt episodic train-
ing on the set of seen class samples D, and evaluate their
models over few-shot classification tasks (i.e., episodes)
sampled from the unseen classes C,,. To form an n-way k-
shot episode e = (S, Q), we first randomly sample a set of
n classes C from C, (or C,,), and then generate a support set
S = {(xs,yi)|ly; € C,i = 1,--- ,n x k} and a query set
Q= {(zi,y)lyi €Cii=1,--- ,nxq} (SNQ =) by
sampling k support and g query samples from each class in
C, respectively.
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Figure 2: Illustration of our proposed CPLAE model. For each original episode, we conduct three data augmentation methods
to generate its three extended episodes. Concretely, samples/embeddings with the subscript or: denote the original ones,
while samples/embeddings with the subscripts augi, augs, and augs are obtained by Horizontal Flip, Vertical Flip, and
Rotation 270°, respectively. With the augmented embeddings by sample-wise integration, we devise two supervised losses:
(1) A standard FSL loss is defined over the augmented embeddings. (2) By shuffling the concatenation order of augmented
queries, a novel CPL loss is defined with prototypes as anchors.

We adopt Prototypical Network (ProtoNet) [Snell et al.,
2017] as our baseline, which has a feature embedding net-

work and a non-parametric nearest-neighbor classifier. Pro-
toNet thus only meta-learns the parameters of the embed-
ding network. In each episode, it computes the mean feature
embedding of support samples for each class ¢ € C as the

prototype p.:

pe=p X fole) T =e)

(zi,y:)€ES

ey

where f, denotes the embedding network parameterized by
¢ with an output dimension D, and I denotes the indicator
function with its output being 1 if the input is true or 0
otherwise. Once the class prototypes are obtained from the
support set, the distance of each query set sample to these
prototypes are computed to construct a query centered cross-
entropy loss for meta-learning fy.

To deal with the lack of training data in each episode, we
first apply three data augmentation gV, ¢, and ¢ (e.g.,
horizontal flip, vertical flip, and rotations) to each image x;
in S U Q and obtain the corresponding feature embeddings
fq(f)(xi) = fs(gV(z;)) (G = 1,2,3). Together with the
feature embedding of the original image, our augmented
embedding can be obtained by concatenating the four em-
beddings (see Figure2):

Fotws) = A (folw), £ @), 1@, 10 @0) . @)

where A is an integration function. In this work, we employ
the self-attention mechanism [Lin et al., 2017}, [Vaswani et al.,
to update the four input vectors, followed by channel-
wise concatenation in order, resulting in a 4 D-dimensional
augmented embedding. We thus have f,(z;) € R*P. In this
AE space, our prototype for each class ¢ € C is obtained as:

Pomp 3 Julw) Ti=o)

(zi,y:)€S

3

For each query sample, by computing the distances to the
prototypes, we can formulate the few-shot classification loss
over each episode as:

g SR dow). Bu))
ZCEC exp(_d(f¢(xz)7 f)c))

“
where d(-, -) denotes the Euclidean distance between two
embeddings. Note that this is a conventional FSL loss for-
mulated from a query-centered view. The distribution of
the full query set with respect to each prototype is not ex-
ploited to regularize the learned feature embedding. This
can be achieved by a contrastive prototype learning (CPL)
loss formulated from a support-set prototype-centered view.

Lfsl:1 Z

(z4,yi)€EQ



3.3 CONTRASTIVE PROTOTYPE LEARNING

Our CPL loss is a supervised contrastive learning loss.
Different from the conventional un-/self-supervised CL
loss, our CPL utilizes the class labels of samples in each
episode to construct a few-shot supervised contrastive learn-
ing model with augmented embeddings. As illustrated in
Figure 2] our main idea of CPL is that: for each class ¢ € C,
we take the prototype p. as the anchor, with queries from
class c being positive examples and queries from the other
classes being negative examples.

Following the common practice in CL where positive ex-
amples contain augmented versions of the same training
instance/sample, we also adopt augmentation to enrich the
training data. However, there is a vital difference: we use the
same set of augmentations but vary their concatenation or-
der to produce more nuanced perturbations in the AE space.
Concretely, we shuffle the order of the three augmentations
and obtain a shuffled augmented embedding f,,(x;) of each
query sample z; € Q for CPL:

Fotws) = A (Falw) 15 @), 150 @), 10 @) . (5)

Note that the shuffling is only applied to the query sam-
ples, not to the support samples/anchors. Also note that in
the shuffled concatenation, the original image’s embedding
fs(x;) remain in the first place of f4(z;). We found em-
pirically that once that is fixed, how exactly the other three
embeddings are shuffled makes little difference (see the
supplementary material for more details).

For each class ¢ € C, let P = {(z;,5:) € Qly; =
¢, = 1,---,q} denote the set of positive examples. We
then compute the similarity between the anchor/prototype
Pc and each z; in P as follows:

sim®* = exp(cos(Be, h(fs(@)))/T).  (6)

where h(-) is a small neural network projection head that
maps representations/emdeddings to the space where the
contrastive loss is applied (as in [Chen et al.,2020]), cos(-, -)
computes the cosine similarity between two vectors, and
T is the temperature parameter. For each positive example
(z,v;) € P, we first randomly sample m (m < ¢) query
samples from each of the other classes to form the set of
negative examples M(c) = {(zt,y:) € Qlyr # c,t =
1,---,m(n — 1)}. We then obtain the similarities for all

)

negative examples:

i (7€9)
Simg,; " = g

(Itayt)eM(C)

exp(cos(f)c,h(f¢(mt)))/T). @)

The contrastive loss used for CPL is finally given by:

. 0S
Szm(p. )

L= ac> Y —log

(pos) :
cEC (zs,y)ePle SN |+ SUm

(neg) "

®)

Algorithm 1 CPLAE for FSL

Input: Our CPLAE model Mg (© is the set of parameters)
The seen class training set D,
The hyper-parameters A\, T', m
Output: The learned Mg
1: for all iteration =1, 2, - - -, MaxIteration do
2:  Sample an n-way k-shot episode e from D;
3:  Obtain fu(x) as the augmented embedding for each
sample « from e with Eq. (2));
4: Compute Ly with Eq. @#);
Obtain f¢(x) as the shuffled augmented embedding
for each query sample z from Q with Eq. (§);
Compute L., with Eq. (8);
Compute the total 1oss Lyotq With Eq. (9));
Compute the gradients V yso Liotar;
9:  Update Mg using stochastic gradient descent;
10: end for
11: return the found best Mg.

® D

From this formulation, it is clear that compared to the pop-
ular unsupervised CL [Chen et al., 2020f], our CPL loss
is supervised in that it utilizes the class labels of samples.
Compared with existing supervised contrastive losses such
as triplet loss [Schroff et al., 2015]], its improved version
N-pair loss [[Sohn, |2016]], and the more recent supervised
CL loss [Khosla et al.,[2020], our CPL loss has two main dif-
ferences: (1) Our CPL is designed for FSL which takes class
prototypes as anchors, while [Schroff et al., 2015, [Sohn)
2016} Khosla et al.,[2020] take samples as anchors. (2) The
contrastive learning is conducted in an AE space with per-
turbations on the concatenation orders of the augmented
feature embeddings to boost the generalization ability of the
learned feature embedding.

3.4 LEARNING OBJECTIVES FOR CPLAE

In each training iteration, we randomly sample one n-way k-
shot g-query episode e = (S, Q). For each instance/sample
in e, we apply three different data augmentation methods on
it, and then integrate the obtained four feature embeddings
into one augmented embedding. The few-shot classifica-
tion loss L ¢, is computed with the augmented embeddings
according to Eq. (). Moreover, for all query samples, we
shuffle the integrating order of their augmented embeddings
and compute the CPL loss L.; in Eq. (). The total learning
objective for the proposed Contrastive Prototype Learning
with Augmented Embeddings (CPLAE) model is finally
stated as follows:

Ltotal = Lfsl + )\chh (9)

where ) is used to balance the importance of the FSL and
CPL losses. In this work, A is empirically set to 0.1. Our full
CPLAE algorithm is outlined in Algorithm|[I] Once learned,



Table 1: Comparative results of standard FSL on the two benchmark datasets. The average 5-way few-shot classification
accuracies (%, top-1) along with the 95% confidence intervals are reported.

minilmageNet tieredIlmageNet
Method Backbone 5-way 1-shot  5-way 5-shot  5-way 1-shot < 5-way 5-shot
MatchingNet [Vinyals et al.[2016] Conv4-64  43.56 +£0.84  55.31 £0.73 - -
ProtoNet! [Snell et al.|[2017] Conv4-64 52.79 £ 0.45 71.23 £0.36 53.82 £0.48 71.77 £0.41
MAM [Finn et al.|[2017] Conv4-64  48.70+1.84 63.104+0.92 51.67+1.81 70.30+0.08
RelationNet [[Sung et al.}[2018] Conv4-64  50.40+0.80 65.30+0.70 54.48+0.93  71.324+0.78
IMP [Allen et al.;[2019] Conv4-64  49.60 +£0.80  68.10 +0.80 - -
DN4 [Li et al.|[2019b] Conv4-64  51.24+0.74  71.02+0.64 - -
DN PARN [Wu et al.|[2019] Conv4-64  55.224+0.84  71.55 4+ 0.66 - -
PN+rot [Gidaris et al.|[2019] Conv4-64  53.63 £0.43 71.70 £ 0.36 - -
CC+rot [Gidaris et al.|[2019] Conv4-64  54.834+0.43 71.86+0.33 - -
Centroid [Afrasiyabi et al.|[2020] Conv4-64  53.14+1.06 71.4540.72 - -
Neg-Cosine [Liu et al.|[2020] Conv4-64  52.84 £0.76 70.41 £ 0.66 - -
FEAT [Ye et al.|[2020] Conv4-64  55.154+0.20 71.61 £0.16 - -
CPLAE (ours) Conv4-64 56.83+044 74.31+0.34 58.23+049 75.12+0.40
ProtoNetT [Snell et al.[[2017] Conv4-512  53.52+0.43 73.34+0.36  55.524+048  74.07+0.40
MAML [Finn et al.| 2017 Conv4-512  49.33£0.60 65.174+0.49 52.844+0.56 70.91 +0.46
Relation Net [Sung et al.|[2018] Conv4-512  50.86 £0.57 © 67.32+0.44 54.69+0.59  72.714+0.43
PN-+rot [Gidaris et al.| 2019] Conv4-512  56.02+0.46 74.00+£0.35 - -
CC+rot [Gidaris et al.|[2019] Conv4-512 56.27 +0.43 74.30 £0.33 - -
CPLAE (ours) i Conv4-512 57.46 +0.43 75.69+0.33 61.56+-0.50 80.03+0.38
ProtoNetT [Snell et al.[[2017] ResNet-12  62.41 4+ 0.44 80.49 4+ 0.29 69.63 4+ 0.53 84.82 £ 0.36
TADAM [Oreshkin et al.|[2018] ResNet-12  58.50 4+ 0.30  76.70 4 0.38 - -
MetaOptNet [Lee et al.|[2019] ResNet-12  62.64 +0.61 78.63+0.46 65.994+0.72 81.56 +0.63
MTL [Sun et al.|[2019] ResNet-12  61.204+1.80 75.50+0.80 65.62+1.80 80.61 + 0.90
AM3 [Xing et al.|[2019] ResNet-12 65.21 £0.49 75.20+0.36 67.23+0.34  78.95+0.22
Shot-Free [Ravichandran et al.|2019] ResNet-12  59.04 + 0.43 77.64 £+ 0.39 66.87 +£0.43 82.64 +0.43
Neg-Cosine [Liu et al.}[2020] ResNet-12  63.85 £+ 0.81 81.57 £ 0.56 - -
Distill [Tian et al.|[2020] ResNet-12.  64.82 +0.60 82.144+043 71.524+0.69 86.03+0.49
DSN-MR [Simon et al.|[2020] ResNet-12 64.60 £0.72  79.51 £0.50 67.39+0.82  82.85+0.56
DeepEMD [Zhang et al.|[2020] ResNet-12  65.91 +£0.82 82.414+0.56 71.16£0.87 86.03 +0.58
FEAT [Ye et al.|[2020] ResNet-12.  66.78 £0.20 82.05+0.14 70.80+0.23 84.79+0.16
CPLAE (ours) ResNet-12 67.46 £0.44 83.22+0.29 72.23+0.50 87.35+0.34

with the optimal model found by our CPLAE algorithm, we
randomly sample multiple n-way k-shot meta-test episodes
from C,, for performance evaluation.

4 EXPERIMENTS
4.1 DATASETS AND SETTINGS

Datasets. We select three widely-used benchmarks for eval-
uation: minilmageNet [Vinyals et al., 2016], tieredImageNet
[Ren et al., 2018, and CUB-200-2011 [Wabh et al.| 2011].
The minilmageNet dataset contains 100 classes from
ILSVRC-12 [Russakovsky et all [2015]], with each class
having 600 images. We split it into 64 training classes,
16 validation classes, and 20 test classes, as in [Ravi and
Larochelle} |2017]]. The tieredImageNet dataset is a larger
subset of ILSVRC-12, which consists of 608 classes and
779,165 images in total. We split it into 351 training classes,
97 validation classes, and 160 test classes, as in [Ren et al.,

2018]]. Different from the aforementioned two, CUB-200-
2011 is a fine-grained classification dataset consisting of
11,778 images from 200 different bird classes. The 200
classes are divided into 100, 50, 50 classes for training, vali-
dation and testing, respectively. All images of the datasets
are resized to 84 x 84 before being inputted into the feature
embedding networks (i.e., CNNs).

Evaluation Protocols. We make evaluation under 5-way
5-shot/1-shot as in previous works. Each episode has 5 ran-
domly sampled classes from the test split, each of which
contains 5 shots (or 1 shot) and 15 queries. We thus have
n =5,k = 5or 1, and ¢ = 15. Note that since data aug-
mentations can be performed easily (in a fully unsupervised
way), we also adopt the augmented embeddings for all im-
ages during evaluation, and keep the integration order as in
Eq. @) (i.e., no shuffling is involved). We report average 5-
way classification accuracy (%, top-1) over 2,000 meta-test
episodes along with the 95% confidence interval.



Feature Embedding Networks. We adopt three backbones
as the feature extractors fg: Conv4-64 [Vinyals et al.,{2016],
Conv4-512, and ResNet-12 [He et al., [2016]. They all take
the same input image size of 84 x 84. Particularly, both
Conv4-64 and Conv4-512 consist of 4 convolutional lay-
ers: the first three layers are exactly the same but the last
layer has different numbers of out channels in the two back-
bones. Since we use an average pooling layer after the last
convolutional layer for each backbone, the output feature
dimensions of Conv4-64, Conv4-512, and ResNet-12 are 64,
512, and 640, respectively. We pre-train all three backbones
on the training split of each dataset to accelerate the training
process, as in [Zhang et al., 2020, |Ye et al., 2020} |Simon
et al.,|2020]]. With the pre-trained backbones, our CPLAE is
then applied in the meta-training stage. For ResNet-12, the
stochastic gradient descent (SGD) optimizer is employed
with the initial learning rate of le-4, the weight decay of
5e-4, and the Nesterov momentum of 0.9. For Conv4-64 and
Conv4-512, the Adam optimizer [Kingma and Ba, [2015]] is
adopted with the initial learning rate of le-4.

Implementation Details. In all experiments, our CPLAE
is trained for 100 epochs with 100 episodes per epoch, and
the learning rate is halved every 20 epochs. The hyper-
parameters are selected according to the validation perfor-
mance of our algorithm. Particularly, for each class ¢ € C,
we sample 6 negative examples (i.e., m = 6) from each
class in C \ {c} for every positive example. While com-
puting the similarity between the anchor and each positive
example in Eq. (6], the temperature 7" is set to 1.

4.2 MAIN RESULTS

For comprehensive comparison, we select a variety of
latest/state-of-the-art FSL methods [ Ye et al., 2020, |Zhang
et al., 2020, Stmon et al., 2020, Tian et al., 2020, Liu
et al.} 2020, |Afrasiyabi et al.,|2020] as well as the strongest
SSL+FSL method CC+rot [Gidaris et al., 2019] as the com-
petitors, in addition to the classic/representative baselines
(e.g., ProtoNet and MAML). The comparative results of
standard/conventional FSL on the minilmageNet [Vinyals
et al., |2016] and tieredImageNet datasets are provided in
Table E} Note that we re-implement our main baseline (i.e.,
ProtoNet [[Snell et al., 2017]], denoted with T) with the same
hyper-parameters during meta-training for fair comparison.
We can see that: (1) With the same backbone (out of the
three ones), our CPLAE achieves new state-of-the-art on all
datasets under both 1-shot and 5-shot settings, validating
the effectiveness of CPL with augmented embeddings (AE).
This suggests that our CPLAE has the strongest generaliza-
tion ability thanks to the introduction of AE and the use of
prototype centered contrastive learning. (2) Impressively,
our CPLAE with Conv4-64 even outperforms the state-of-
the-art competitors with Conv4-512 in all cases. Since the
performance achieved by our CPLAE even surpasses that

Table 2: Comparative results for fine-grained FSL on CUB
and cross-domain FSL on minilmageNet — CUB. The train-
ing/validation/test of CUB is the same as that used by FEAT
[Ye et al.,2020].

Method 5-way 1-shot 5-way 5-shot
CUB:

MatchingNet 61.16 £0.89 72.86 £0.70
ProtoNet' 63.72£0.22 81.50£0.15
MAML 55.92+£0.95 72.09+0.76
RelationNet 62.45+£0.98 76.11 £0.69
FEAT 68.87 4+ 0.22 82.90+0.15
CPLAE (ours) 69.77 + 0.50 84.57 +0.33
minilmageNet — CUB:

MatchingNet 42.62 £0.55 56.53 £ 0.44
ProtoNet' 50.51 +0.56  69.28 £ 0.40
MAML 43.59 £0.54 54.18 £0.41
RelationNet 49.84 £0.54 68.98 £ 0.42
FEAT 51.52 £0.54 70.16 +0.40
CPLAE (ours) 51.67+0.45 71.59 +0.40

of the strongest competitor CC+rot [Gidaris et al., [2019]]
that also utilised data augmentation but with a stronger
backbone, our results validate our novel way of using aug-
mentation (self-attention + concatenation) and highlight the
importance of support-centered meta-learning loss. (3) The
improvements obtained by our CPLAE over the baseline
ProtoNet! range from 2.3% to 6.0%, providing direct evi-
dence that both the proposed augmented embeddings and
contrastive prototype learning bring significant benefits to
FSL (further evidence is provided in ablation study shortly).

We further conduct experiments on CUB-200-2011 (CUB)
[Wah et al.,[2011]] and minilmageNet — CUB to evaluate
our CPLAE model under the fine-grained FSL and cross-
domain FSL settings, respectively. CUB is a fine-grained
dataset of birds, which has 200 classes and 11,788 images
in total. We follow [Ye et al.,|2020]] and split CUB into 100
training classes, 50 validation classes, and 50 test classes.
For cross-domain FSL on minilmageNet — CUB, the 100
training classes are from minilmageNet while the 50 valida-
tion and 50 test classes (using the aforementioned split for
fine-grained FSL) are from CUB. On both datasets, we use
Conv4-64 as the feature extractor. The comparative results
under 5-way 1-shot/5-shot settings are shown in Table[2} We
can see that our CPLAE model achieves the best results, val-
idating the effectiveness of CPLAE under both fine-grained
and cross-domain FSL settings.

4.3 FURTHER EVALUATION

Ablation Study. Our full CPLAE model is trained with two
losses: the FSL loss L ¢4 and the CPL loss L, (see Eq. @I)).
For L ¢4, we adopt an augmented embedding for each sam-
ple, which is obtained by integrating four feature vectors



Table 3: Ablation study results for our full CPLAE model
(including AE and CPL) on the minilmageNet dataset.
Conv4-64 is used as the feature extractor.

Table 5: Comparison to different SSL losses on the
minilmageNet dataset (with Conv4-64 being the backbone).
Notations: PT — SSL based on pretext tasks; CL.— SSL via
contrastive learning.

Method 5-way 1-shot  5-way 5-shot

ProtoNet' 52.79+0.45 71.23+0.36 Method S-way 1-shot _ 5-way S-shot
ProtoNet'+AE 55.89 £0.43  73.43+0.35 ProtoNet'+AE 55.89 +£0.43  73.43+0.35
ProtoNet' +AE+CPL  56.04 + 0.44 73.75 £ 0.35 ProtoNet' +AE+PT  55.62 + 0.45 73.24 4+ 0.35
(no shuffling) ProtoNet'+AE+CL  55.61 £ 0.44 73.52 +0.53
ProtoNet'+AE+CPL 56.83 +0.44 74.31+0.34 CPLAE 56.83+044 74.31+0.34

Table 4: Comparison among different choices of the data
augmentation methods on the minilmageNet dataset. Only
the 5-way 5-shot setting is considered, and Conv4-64 is used

Table 6: Comparison to CPL alternatives on the
minilmageNet dataset (with Conv4-64 being the backbone).

as the feature extractor.

Horizontal Vertical Rotation Rotation Rotation

Data Augmentation Methods

Flip Flip  90°  180° 2700 >-wayS-shot
X X X X X 71.23 + 0.36
v v 72.96 + 0.35
v v v 73.41 +0.35
v v v 73.34 £ 0.35
v v /  73.43+0.35
v v v 73.40 + 0.34
v v v 73.34+0.34
v v v 73284035

v v v 72.62 £ 0.35

v v v 73144035

v v v 7290+ 035

v v v 73144035

v v v v T277£0.36
v v v v 73.10 £ 0.35

(one from the original image and three from its augmented
ones). For L.,;, we devise a novel supervised contrastive
loss with the shuffling operation of query samples. To
demonstrate the contribution of each main component, we
conduct ablative experiments on minilmageNet in Table 3]
where Conv4-64 is adopted as the backbone. Four meth-
ods are compared: (1) ProtoNet!: our re-implementation
of ProtoNet [Snell et al., 2017]]. (2) ProtoNet!+AE: Pro-
toNet trained with augmented embeddings (i.e., trained
with only L in Eq. (E[)). (3) CPLAE (no-shuffling): Our
CPLAE model trained with the total loss in Eq. (9) but with-
out the shuffling operation. (4) CPLAE: our full CPLAE
model. The ablation study results in Table[3|show that the
augmented embeddings lead to 2-3% improvements (see
ProtoNet'+AE vs. ProtoNet"), and our proposed CPL fur-
ther improves the performance by about 1% (see CPLAE
Vs. ProtoNetT+AE). In addition, the comparison CPLAE vs.
CPLAE (no shuffling) demonstrates the importance of the
shuffling operation for our CPL.

Alternative Augmentation Strategies. In Table 4] we
compare different choices of the data augmentation meth-
ods for our augmented embeddings. We select five com-
mon image deformation methods and use their combina-

Method 5-way 1-shot 5-way 5-shot
ProtoNet'+AE 55.89 +0.43 73.43 £0.35
CPLAE (w/o Proto, w/o Proj) 56.18 £0.44 73.15+0.35
CPLAE (w/o Proto, w/ Proj)  56.24 +0.43 73.35+£0.35
CPLAE (w/ Proto, w/o Proj)  56.31 £0.44 73.6240.34
CPLAE (w/ Proto, w/ Proj) 56.83 +0.44 74.31 £0.34

tions as the alternative data augmentation strategies. Note
that the first row of Table [] involves no data augmenta-
tion (i.e., ProtoNet"), and the rest results are obtained by
ProtoNet'+AE. Particularly, the second row means that we
only use two deformation methods (i.e., the dimension of
augmented embeddings in this case is 3D), and the last two
rows use four methods (i.e., the integrated embeddings are
of 5D). The comparative results in Table 4| show that the
combination of Horizontal Flip, Vertical Flip, and Rotation
270° is the best, and FSL using three deformation methods
outperforms FSL using two or four.

Alternative SSL Losses. Our supervised contrastive learn-
ing loss Ly, is inspired by the previous self-supervised
learning (SSL) and contrastive learning (CL) works. To
verify the effectiveness of our CPLAE model with the
CPL loss, we compare it to two alternative models with
SSL losses. (1) ProtoNet'+AE+PT: an SSL loss based
on the pretext task (PT) is added into ProtoNet'+AE by
predicting the augmented embeddings are shuffled or not.
(2) ProtoNet!+AE+CL: the conventional unsupervised con-
trastive loss is applied to ProtoNet!+AE. Specifically, for
each query sample, since we have two augmented embed-
dings by integration with different orders, we take each one
as the anchor in turn. Naturally, the other one is treated as
the positive example, while all of the rest are negative ex-
amples. The comparative results in Table [5|demonstrate that
our proposed CPL is the best choice for FSL.

Alternative Contrastive Learning Losses. The main dif-
ferences between our proposed contrastive prototype learn-
ing (CPL) and the conventional supervised triplet loss
[Schroff et al., 2015] (or its improved version N-pair loss
[Sohn, 2016]) are in two aspects: (1) Our CPL chooses
class prototypes as anchors, but the triplet/N-pair loss takes
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Figure 3: Visualizations of data distributions of the same meta-test episode from the minilmageNet dataset using the UMAP
algorithm [MclInnes et al., 2018 for five FSL models (from left to right): ProtoNet', ProtoNet'+AE, CPLAE (w/o Proto,
w/o Proj, no shuffling), CPLAE (no shuffling), and our CPLAE. Only the 5-way 5-shot setting is considered, and Conv4-64

is used as the feature extractor.

Table 7: Results obtained by varying the number of negative
examples for our full CPLAE model on minilmageNet (with
Conv4-64 as the backbone).

Method 5-way 1-shot  5-way 5-shot
CPLAE (m = 3) 56.63 +£0.44  73.88+£0.34
CPLAE (m =6) 56.83+£0.44 74.31+0.34
CPLAE (m =9) 56.66 £0.43  74.08£0.34
CPLAE (m =12) 56.78+£0.44  74.20+£0.30
CPLAE (m =15) 56.63+0.44  74.234+0.34

each sample to be the anchor in turn. (2) Our CPL adopts
a projection head which maps the embeddings into a latent
space, but such projection is not considered in the triplet/N-
pair loss. Therefore, we conduct a group of experiments to
find out the contribution of the prototype-based anchors and
projection head in Table[6] Methods with ‘Proto’ use pro-
totypes as anchors and those with ‘Proj’ use the projection
head when computing L.,,;. We can observe that our novel
integration of contrastive learning into FSL, i.e., CPLAE (w/
Proto, w/ Proj), achieves the best results.

Results by Varying the Number of Negative Exam-
ples. We have mentioned in Section 3.3 of the main pa-
per that for each positive example belonging to class c, we
randomly sample m (m < ¢ = 15) negative examples
from each of the other classes. In this section, we thus con-
duct experiments by selecting m from {3,6,9,12, 15} on
minilmageNet with Conv4-64 as the backbone. As shown in
Table[/] we can see that our CPLAE model is insensitive to
the number of negative examples used for CPL in general.
Specifically, when m = 6, the results are slightly better
than those of other alternatives. We thus set m = 6 in our
algorithm for all experiments.

4.4 VISUALIZATION RESULTS

Based on augmented embeddings, Our CPLAE model takes
the class prototypes as anchors and the shuffled embed-
dings of query samples as positive/negative examples. In
Figure [3] we visualize the data distributions of the same

meta-test episode obtained by five FSL models: ProtoNet',
ProtoNet'+AE, CPLAE (w/o Proto, w/o Proj, no shuffling),
CPLAE (no shuffling), and our CPLAE. We can observe
that: (1) CPLAE (no shuffling) leads to better data clustering
structure than CPLAE (w/o Proto, w/o Proj, no shuffling),
which suggests that the prototype-based anchors and the
projection head are effective. (2) CPLAE with shuffling is
better than CPLAE (no shuffling), which indicates the neces-
sity of using the shuffling operation for CPL. More visual
results can be found in the supplementary material.

S CONCLUSION

We have proposed a novel contrastive prototype learning
with augmented embedding (CPLAE) model to address the
lack of training data problem in FSL. Different from exist-
ing embedding-based meta-learning methods, we introduce
both data augmentation to form an augmented embedding
space and a support set prototype centered loss to com-
plement the conventional query centered loss. Extensive
experiments on three widely used benchmarks demonstrate
that our CPLAE achieves new state-of-the-art. This work
shows for the first time that contrastive learning is effective
under the supervised and few-shot learning setting.
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