
 
Partial Identifiability in Discrete Data With Measurement Error

Noam Finkelstein*,1 Roy Adams*,2 Suchi Saria1,3 Ilya Shpitser1

1Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA
2Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, Maryland, USA

3Bayesian Health, New York, New York, USA
*Equal contributions

Abstract

When data contains measurement errors, it is nec-
essary to make modeling assumptions relating the
error-prone measurements to the unobserved true
values. Work on measurement error has largely fo-
cused on models that fully identify the parameter
of interest. As a result, many practically useful
models that result in bounds on the target param-
eter – known as partial identification – have been
neglected. In this work, we present a method for
partial identification in a class of measurement er-
ror models involving discrete variables. We focus
on models that impose linear constraints on the tar-
get parameter, allowing us to compute partial iden-
tification bounds using off-the-shelf LP solvers.
We show how several common measurement error
assumptions can be composed with an extended
class of instrumental variable-type models to cre-
ate such linear constraint sets. We further show
how this approach can be used to bound causal
parameters, such as the average treatment effect,
when treatment or outcome variables are measured
with error. Using data from the Oregon Health
Insurance Experiment, we apply this method to
estimate bounds on the effect Medicaid enrollment
has on depression when depression is measured
with error.

1 INTRODUCTION

Measurement error is a problem in fields ranging from ma-
chine learning to medicine to the social and behavioral sci-
ences. In machine learning, mislabeled training data may
lead to degraded model performance [Frénay and Verley-
sen, 2013]. In medical research, incomplete patient histories
or misdiagnosed conditions may lead to biased estimates
of treatment–outcome relationships [Rothman et al., 2008,

Brakenhoff et al., 2018]. In fields such as economics and
political science, which rely heavily on survey data, factors
such as poor question design, social stigma, and recall bias
can all lead to spurious responses [Molinari, 2008, Imai
and Yamamoto, 2010]. Inferences drawn from such data
may differ in a systematic way from the truth, leading to
measurement error bias. As messy observational data is
increasingly used to make decisions and inform policy, it is
critical that we develop methods to account for measurement
error bias in a wide range of settings.

In both statistics and machine learning, methods that ac-
count for measurement error either (a) do not give formal
bias guarantees, (b) rely on validation data containing both
true values and error-prone measurements, or (c) rely on
domain-specific assumptions about how measurement er-
rors occur. As formal guarantees are desirable and valida-
tion data is frequently unavailable or costly, we focus on
the latter of these options and refer to the measurement er-
ror assumptions, collectively, as the measurement error
model. In statistics, many such measurement error models
have been proposed including the classical, Berkson’s, and
mean independent error models, all of which apply to con-
tinuous variables (see Carroll et al. [2006] and Gustafson
[2003] for reviews of such models). In machine learning,
the majority of work on measurement error has focused on
classification in the presence of label errors [Frénay and
Verleysen, 2013]. In this setting, common measurement er-
ror models include bounded error probabilities [Liu and
Tao, 2015, Natarajan et al., 2013], label independent errors
[Angluin and Laird, 1988, Ghosh et al., 2017], perfect sepa-
rability of the true class labels [Ghosh et al., 2017], or some
combination thereof.

Both the machine learning and statistics literatures have
focused primarily on measurement error models that guar-
antee full identification. That is, in the limit of infinite data,
these models guarantee that the target parameter(s) can be
narrowed to a single value. While full identifiability is a
desirable property, many common measurement error set-
tings, especially those involving discrete variables, do not
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 satisfy the necessary assumptions. In such settings, it may
instead be possible, using the available assumptions, to iden-
tify bounds on the target parameter, referred to as partial
identification [Manski, 1990]. Unfortunately, partially iden-
tifiable measurement error models remain under-studied.

We address this gap by proposing an easy to implement
method to account for measurement error in a class of par-
tially identifiable discrete variable models, many of which
cannot be handled using current methods. Our approach,
which is similar to that of Balke and Pearl [1993] and Imai
and Yamamoto [2010], is to encode the measurement error
model as a set of constraints on the target parameter and to
calculate bounds by maximizing and minimizing the target
parameter over this constraint set. We focus primarily on
measurement error models that produce linear constraints,
allowing us to write this optimization problem as a linear
program. This approach allows a practitioner to mix and
match any combination of such modeling assumptions with
little effort. This flexibility means that it is trivial to com-
pute bounds under new measurement error models, enabling
sensitivity analysis to different modeling choices.

In this work, we propose a general method for partial identi-
fication in measurement error models where the modeling
assumptions can be encoded as linear constraints on the tar-
get parameter. Our primary contribution is to define useful
classes of modeling assumptions that can be written as lin-
ear constraints and, thus, are amenable to this approach. In
Section 3, we show that this includes several common mea-
surement error assumptions arising in settings where, for
example, credible bounds on error rates are known, errors
may only occur in one direction, or errors are more likely
between certain categories than others. Additionally, in cer-
tain settings we may have access to auxiliary variables that
give additional information about the error process, result-
ing in improved bounds. In our main result (Section 4), we
show how an extended class of instrumental variable-type
models produce linear constraints, allowing us to incorpo-
rate a variety of such variables. This extended class allows
us to use classic instruments – i.e. variables that affect the
measurement only via the true value – as well as informative
variables that are not classic instruments. This includes vari-
ables that affect the measurement directly, such as question
order in a survey or surveyor gender, as well as variables
that are confounded with (rather than a cause of) the true
value.

In Section 5, we show how our method can be applied
to causal parameters, such as the average treatment effect
(ATE), when outcome, treatment, or confounding variables
are measured with error. Finally, using data from the Ore-
gon Health Insurance Experiment [Finkelstein et al., 2012],
we demonstrate our approach by estimating bounds on the
effect of Medicaid enrollment on depression when using
an error prone measurement for the outcome variable. We
use our approach to test how sensitive the observed effect

is to varying degrees of measurement error under several
different error models. In the following section, we intro-
duce the basic measurement error problem and the linear
programming approach.

2 MEASUREMENT ERROR AND THE
LP FORMULATION

Suppose that we are interested in the distribution of a dis-
crete random variable X with support in X , but instead of
observing X directly, we can only observe a discrete error-
prone measurement, denoted Y , with support in Y . With-
out any assumptions about the measurement distribution,
P (Y | X), we cannot say anything about the distribution
of X . On the opposite extreme, if P (Y | X) is known and
invertible, then P (X) is fully identifiable from observations
of Y [Rothman et al., 2008, Kuroki and Pearl, 2014]. Our
interest is in between these two extremes, where we assume
certain properties of P (X,Y ), but not the whole distribu-
tion. For example, we might assume that the measurement
is more often correct than incorrect, or that errors can only
occur in one direction. We refer to these assumptions col-
lectively as the measurement error model. Our goal is to
use a measurement error model, along with observations
of Y , to bound a scalar function η of the data distribution,
which we refer to as the parameter of interest. Common
parameters of interest include marginals or moments of P ,
such as E[X].

Our approach to bounding these parameters is to translate all
modeling assumptions into a set of distributionsM that we
assume contains P (X,Y ). We can then bound the parameter
of interest by finding its maximum and minimum over the
setM. Formally, let ∆d be the d-dimensional simplex, let
η : ∆|X |×|Y| → R be the parameter of interest, and let
M⊆ ∆|X |×|Y| be the set of distributions allowed under the
modeling assumptions. Then, assuming thatM contains the
true distribution P , we can bound η(P ) as

θL = inf
Q∈M

Q(Y )=P (Y )

η(Q) ≤ η(P ) ≤ sup
Q∈M

Q(Y )=P (Y )

η(Q) = θU .

(1)

The interval [θL, θU ] is referred to as the partial identifi-
cation bounds. If θL = θU , we say η is fully identified
under modelM. Note that we explicitly require that Q and
P match on the observed variables – i.e. Q(Y ) = P (Y )
– which we refer to as the observed data constraints. In
finite samples, we will instead constrain Q to match the
empirical distribution; however, we defer details on esti-
mation to Section 1 of the supplementary materials. Until
then, we will assume that the distribution of the observed
variables is known. Additionally, constraining Q to be inM
enforces the constraint that Q is a proper distribution (i.e.
is non-negative and sums to one) which we refer to as the
probability constraints.



 In this work, we focus entirely on parameters η that are lin-
ear in P . This includes many common parameters such as
all marginals and uncentered moments of P , notably P (X)
and E[X]. If, moreover, the modelM can be written as a
set of linear constraints, then the upper and lower bounds in
Equation 1 form linear programs (LPs) which can be solved
using any off-the-shelf LP solver. By the intermediate value
theorem, it follows that ifM can be linearly expressed, the
bounds obtained through these linear programs are sharp,
i.e. no tighter bounds can be achieved without making addi-
tional assumptions. In the remainder of the paper, we define
and operationalize several useful classes of modeling as-
sumptions that can be written as linear constraints and are
amenable to the LP approach.

3 ERROR ASSUMPTIONS

We focus first on assumptions that directly constrain the
parameters of P (X,Y ). Such assumptions, which we refer
to as measurement error constraints, arise in a number
of settings. For example, in settings where X represents
a sensitive or stigmatized characteristic, such as drug use,
and the measurement Y is obtained through participant self-
report, it may be reasonable to assume that Y is never a
false positive [Adams et al., 2019]. In the binary setting, this
assumption translates to the constraint P (X = 0, Y = 1) =
0 which, importantly, is linear in P (X,Y ). In this section,
we describe several such constraints and give an example
linear program based on a combination thereof.

For notational simplicity, let φx,y = P (X = x, Y = y) be
the (unknown) joint distribution ofX and Y . As in Section 2,
φ must satisfy the probability and observed data constraints.
That is,

∑
x,y φx,y = 1, φx,y ≥ 0 for all x and y, and∑

x φx,y = P (Y = y) for all y. Below, we provide several
useful linear measurement error constraints1.

(A0) Bounded error proportion:
∑

x 6=y φx,y ≤ ε
(A1) Unidirectional errors:

∑
y<x φx,y = 0

(A2) Symmetric error probabilities:
φx,y = φx,y′ ∀ |x− y| = |x− y′|

(A3) Error probabilities decrease by distance:
φx,y ≥ φx,y′ ∀ |x− y| > |x− y′|

(A4) Equal expectations:
∑

x,y(x− y)φx,y = 0

Assumption (A0) may be reasonable when there is suffi-
cient previous literature to specify a range of plausible error
rates, but not the exact measurement distribution (e.g., see
discussion of sensitivity analysis in Rothman et al. [2008]).
Assumption (A1) may be used to represent positive label
only data, which is common in areas such as ecology [Só-
lymos et al., 2012] and public health [Adams et al., 2019].

1Each of these constraints can be softened by adding a slack
parameter which can be fixed or varied in a sensitivity analysis.

Assumption (A2) represents a generalization of the zero-
mean measurement error assumption to discrete variables,
commonly made in settings where the errors are due to
imprecision of the instrument. Assumption (A3) may be
reasonable in settings where the values of X are ordinal
and small errors are more likely than large ones. Finally,
(A4) applies when Y represents a noisy, but unbiased mea-
surement of X . As with (A2), this may be reasonable when
errors are due to imprecision.

We can now use any combination of these assumptions to
define the measurement error model M. As an example,
suppose we are interested in bounding E[X] subject to as-
sumptions (A0) and (A2). The resulting LP is shown below.

objective:
∑
x,y

xφx,y (2)

s.t.
∑
x

φx,y = P (Y = y) ∀ y

φx,y ≥ 0 ∀ x, y∑
x6=y

φx,y ≤ ε

φx,y ≥ φx,y′ ∀ |x− y| < |x− y′|

Note that we can easily add or remove constraints fromM,
or vary parameters like ε, as a form of sensitivity analysis
(e.g., see the sensitivity analysis in Section 6).

Were multiple measurements Y ≡ {Y1, ..., YK} observed
with no assumptions made about the relationship between
them, then the observed data constraint would be expressed
on P (Y) and the target parameter would be expressed as
a linear function of the full distribution P (X,Y). Each
Yk would potentially be subject to its own measurement
error constraints, depending on what knowledge is available
about the measurement process. These constraints would
be expressed on the marginals P (X,Yk), which maintains
linearity. In the following section, we consider scenarios
where auxiliary variables, such as instrumental variables,
are also available.

4 AUXILIARY VARIABLES

In the previous section, we relied only on domain knowl-
edge about the distribution P (X,Y ) to partially identify
the target parameter. In some cases, we may have auxiliary
variables, such as additional measurements or sources of
variation in the measurement process, that give information
about P (X,Y ) [Carroll et al., 2006]. Under certain assump-
tions, such variables may be used to obtain tighter partial
identification bounds on the target parameter. For example,
suppose that a patient’s age can only affect the results of
a medical test through the true (unobserved) value. Then
variability in test results that is explained by patient age
must be attributable to variability in the true value, which



 gives us information about P (X) and, potentially, η. This
example illustrates one particularly important type of aux-
iliary variable known as an instrumental variable (IV). In
this section, we show how the linear programming approach
can be used when auxiliary variables obey the classic IV
model, and then we generalize this to a broader class of
IV-type models, allowing us to incorporate other types of
auxiliary variables.

4.1 THE CLASSIC IV MODEL

In the classic IV model2, shown as a Bayesian network
in Figure 1, the observed variable A is referred to as an
instrument for the relationship between X and Y which is,
in turn, confounded by the unobserved variable Λ [Balke
and Pearl, 1993]. Like X and Y , we will assume that A is
discrete. In contrast to the typical IV setting, we assume
X to be unobserved; however, we will call this model the
classic IV model as the assumed conditional independencies
remain unchanged. As described above, if we believe that
the age of a study participant may only affect Y through X ,
then participant age may be a valid IV.

Previous work has shown that the constraints imposed by
this model on the conditional distribution P (X,Y | A)
are linear [Fine, 1982, Balke and Pearl, 1993, Bonet, 2001,
Swanson et al., 2018]. Thus, recalling the P (A) is known,
we are able to include the classic IV model as part of
M. To express these constraints explicitly as part of an
LP, we will rely on potential outcomes. The potential out-
come variable X(a) represents the value X would have
taken had we intervened to set A = a [Rubin, 2005]. Let
X̃ = {X(a) : a ∈ A} represent the set of potential out-
come variables for X under different interventions on its
parent A and let Ỹ = {Y (x) : x ∈ X} be similarly de-
fined. The variable sets X̃ and Ỹ are referred to as response
function variables [Balke, 1995] since X̃ can be thought
of as a random function mapping values of A to values of
X . Finally, let ψ be the joint distribution over X̃ and Ỹ
such that ψx̃,ỹ = P (X̃ = x̃, Ỹ = ỹ). We will now compute
bounds for η by solving an LP parameterized by ψ rather
than φ. As observed in Balke and Pearl [1993] and Bonet
[2001], all independencies in the classic IV model are now
given by A ⊥ X̃, Ỹ which can be written

P (A = a, X̃ = x̃, Ỹ = ỹ) = P (A = a)ψx̃,ỹ. (3)

Under the causal consistency assumption [Pearl, 2009],
which can be concisely phrased as A = a∧X(a) = x =⇒
X = x, and the independence assumption in Equation (3),
ψ is connected to the conditional distribution P (X,Y | A)

2Several variations of the classic IV model have been proposed;
however, we refer to the version used in [Balke and Pearl, 1993].
For a review of others, see Swanson et al. [2018].

by the linear map

P (X=x, Y=y | A=a) = P (X(a)=x, Y (x)=y) (4)

=
∑
x̃,ỹ

I(ỹ(x)=y, x̃(a)=x)ψx̃,ỹ.

We can now enforce all constraints of the classic IV model
by replacing P (A,X, Y ) with Equation 4 in the target pa-
rameter η and the observed data constraints P (A, Y ) =∑

x P (A,X = x, Y ), which maintains linearity in ψ. Ad-
ditionally, all measurement error constraints, which are ex-
pressed on the marginal P (X,Y ) =

∑
a P (A = a,X, Y ),

can now be expressed as linear constraints on ψ by sub-
stituting ψ into these constraints according to Equation 4.
As an example, supposeM combines the classic IV model
with Assumption (A0). Then we can obtain bounds on E[X]
using the following LP:

objective:
∑
a,x̃,ỹ

x(a)P (A=a)ψx̃,ỹ (5)

s.t. ψx̃,ỹ ≥ 0∑
x 6=y,a,x̃,ỹ

I(ỹ(x)=y, x̃(a)=x)ψx̃,ỹP (A=a) ≤ ε

∑
x,x̃,ỹ

I(ỹ(x)=y, x̃(a)=x)ψx̃,ỹ = P (Y=y | A=a).

While the classic IV model has proven useful in a wide
range of applications, there remain many useful auxiliary
variables that are not covered by this model. For example,
in survey settings, the question order or perceived gender of
the surveyor can affect the observed responses, but both are
independent of the true value [Catania et al., 1996, Huddy
et al., 1997]. Question order and surveyor gender are not
classic IVs, but they can still provide information about
the relationship between X and Y . We now generalize the
linearity result for the classical IV model to a class of IV-
type models that includes this setting, as well as several
others.

4.2 GENERAL IV MODELS

Before defining our general class of IV-type models, we
establish some notation: Let G = (V,E) be a latent variable
Bayesian network where V and E represent the vertices and
edges of the network, respectively. For a variable V ∈ V,
let Pa(V ) be the parents of V in G and Ch(V ) be the
children of V in G. Equipped with this notation, we define
the following class of general IV models:

Definition 4.1 (General IV model). The latent variable
Bayesian network G = (V,E) is a general IV model if
there exists an unobserved variable Λ ∈ V such that: (1)
all descendants of Λ, denoted B, are children of Λ, (2) all
observed non-descendants of Λ, denoted A, have at most
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Figure 1: Model (a) represents the classic IV model, (b) -
(e) represent general IV models, and (f) represents a simple
model not covered by Definition 1. In all graphs, black
nodes represent observed variables and blue nodes represent
unobserved variables.

Figure 2: Illustration of a general IV model. Unobserved
variables are shown in blue. The variables in B are all chil-
dren of Λ. The variables in A are referred to as instruments,
must be observed, and cannot be children of Λ.

one child and that child is in B, and (3) all unobserved non-
descendants of Λ are parents of exactly one variable in B,
denoted B, and one variable in A, denoted A and, if A has
a child, it must be B.

In such graphs, let B be the children of Λ and let A be the
observed non-descendants of Λ, which we refer to as the
instruments. An illustration of a general IV model is shown
in Figure 2. This class of graphs trivially includes the classic
IV model in Figure 1 (a) with B = {X,Y } and A = {A},
but also extends the classic IV model in several important
ways. First, we can now include instruments for Y as shown
in Figure 1 (b). As described above, this may occur when
some aspect of the measurement process is randomized,
such as the order of responses in a survey or the gender of
an in-person surveyor (e.g., see [Catania et al., 1996, Huddy
et al., 1997]). Second, we can include multiple independent
instruments as shown in Figure 1 (c) (e.g., see [Angrist and
Keueger, 1991, Poderini et al., 2020]). Finally, this extends
the classic IV model to allow for instruments in A to be

confounded with variables in B. This includes models such
as those shown in Figures 1 (d) and (e). In particular, Figure
1 (e) can be used to represent a model where A is a proxy
for the true unobserved IV, U .

By Proposition 5 in Evans [2016], for any general IV graph
G, it is possible to find a new graph G′ that represents the
same model over {A,B} such that every instrument in G′
is randomized, according to the following procedure:

Procedure 1 (Randomize Instruments). Remove each un-
observed variable with children A ∈ A and B ∈ B, and
make A a parent of B (if it is not already).

The new graph G′ is more convenient to reason about, as
the distribution of P (B(a)) is identified as P (B | A = a).
Since we are interested in parameters of P (A,B), we can
without loss of generality reason about the modified graph
G′ rather than about the original graph G. In Section 5, we
will see that differences between G and G′ become relevant
when we consider causal parameters.

We now give our main result, which allows us to use LPs for
partial identification in general IV models with measurement
error. Let BO ⊆ B and BU ⊆ B be the set of observed and
unobserved variables in B, respectively. Then we have the
following proposition:

Proposition 1. For any graph G in the class of general
IV graphs, the constraints imposed by the observed data
P (A,BO) and the model G on P (A,B) can be represented
linearly.

Recalling that bounds can be obtained by minimizing and
maximizing a linear function of P (A,B) over constraints
imposed by the observed data and the model, this leads
directly to the corollary:

Corollary 1. For any model M comprised of a discrete
general IV model G and any number of linear measurement
error constraints, sharp bounds may be obtained for any
linear function of P (A,B) by solving an LP.

To explicitly express the set of linear constraints imposed
by a general IV model, we can generalize the response
function approach described for the classic IV model. For
each variable B ∈ B, we will define the set of potential
outcomes of B under different joint settings of its parents
in A ∪B – i.e., the response function variable for B. For-
mally, for each variable B ∈ B, let B̃ = {B(p) : p ∈
support(Pa(B)∩ (A∪B))} where support(X) is the joint
support of variables in X. Further, let B̃ = {B̃ : B ∈ B}
be the collection of all B̃. As before, let ψb̃ = P (B̃ = b̃)
denote the joint distribution over all such response func-
tion variables. Because P (A) is assumed to be known, the
only relevant independency imposed by the graph is given
by A ⊥ B̃. This is a generalization of the independence



 constraint captured in Equation (3), and can be written

P (A = a, B̃ = b̃) = P(A = a)ψb̃ ∀a, b̃. (6)

Finally, we must linearly link ψ to the observed full data
distribution P (A,B). Under causal consistency and the
assumption that all instruments have been randomized
according to Procedure 1, we have P (B(a) = b) =
P (B = b | A = a) which links the full data distribution
to a potential outcome distribution. This potential outcome
distribution, P (B(a)) is, in turn, a linear function of ψ.
In the classic IV model, this link is relatively transparent
as demonstrated in Equation 4. We will use the following
proposition to extend Equation 4 to general IV models.

Proposition 2. Consider a set of outcome variables Z ⊆ B
and a set of treatment variables T ⊆ {A,B} \ Z in a
general IV model with randomized instruments. Then

P (Z(t) = z) (7)

=
∑

v:vZ=z

P (A = vA)

· P
(
B(tPa(B),vPa(B)\T) = vB : B ∈ B

)
where for the set of values v and set of variables S, vS is
the values of S in v and

P
(
B(tPa(B),vPa(B)\T) = vB : B ∈ B

)
(8)

=
∑
b̃

ψb̃

∏
B∈B

I
(
b̃(tPa(B),vPa(B)\T) = vB

)
.

Using this proposition, we can linearly map ψ to the full
data distribution according to

P (B = b | A = a)

=
∑
b̃

ψb̃

∏
B∈B

I
(
b̃(aPa(B),bPa(B)\A) = bB

)
.

As in the classic IV model, we can enforce the constraints
of the general IV model by substituting ψ for P (A,B) in
the target parameter, observed data constraints, and mea-
surement error constraints according to this equation. For
the purposes of illustration, Section 4 of the supplementary
materials contains linear programs for the models shown in
Figures 1 (b) - (e).

In Section 2 of the supplementary materials, we present a
procedure to obtain non-sharp partial identification bounds
under any graphical model G, by relaxing the model until it
is in the class of general IV models. In addition, we provide
sharp bounds for the important case of Figure 1 (f), which
is not a general IV model.

5 CAUSAL PARAMETERS AND
CONSTRAINTS

Until now, we have focused on bounding functions of the
full data distribution P (A,B). In this section, we extend

the linear programming approach to causal parameters in-
volving the distribution of one or more potential outcome
variables. Suppose we are interested in the effect of treat-
ment T on outcome Z, i.e. in parameters of the potential
outcome distribution P (Z(t)). Measurement error on the
outcome, treatment, or observed confounders can all lead
to biased parameter estimates if unaccounted for [Rothman
et al., 2008]. In this section, we show how the constraints
presented in the previous sections can be used to bound
causal parameters in the presence of measurement error and
introduce additional linear constraints that apply specifically
to causal inference settings.

Because Procedure 1 does alter the causal model of a graph,
we cannot use any general IV graph, as we did in the previ-
ous section. Instead, to make use of Proposition 2, we limit
our attention in this section to general IV graphs with ran-
domized instruments. By Proposition 2, P (Z(t)) is linear in
ψ, and thus any linear function of P (Z(t)) can be bounded
by employing the constraints on ψ described in the previous
sections. This leads directly to the following corollary:

Corollary 2. For any modelM comprised of a discrete gen-
eral IV model G with randomized instruments and any num-
ber of linear measurement error constraints, sharp bounds
may be obtained for any linear function of P (Z(t)) by solv-
ing an LP.

A number of important causal parameters can be writ-
ten as linear functions of P (Z(t)), most notably the av-
erage treatment effect (ATE) defined as E[Z(t)− Z(t′)]
and the probability of a non-zero treatment effect defined as
P (Z(t) 6= Z(t′)).

Remark 1. Corollary 2 makes no mention of whether the
variables in Z and T are observed. As a result, sharp
bounds on causal parameters like the ATE can be obtained
even when treatment, outcome, or both are subject to mea-
surement error.

In addition to the graphical and measurement error assump-
tions discussed so far, it often makes sense to encode fur-
ther causal assumptions into the model. One especially
important causal assumption is the causal monotonicity as-
sumption, which relates potential outcomes under different
interventions. For intervention variable T and potential out-
come Z(t), the general monotonicity assumption can be
written as

(A5) Monotonicity:
P (Z(t) = z, Z(t′) = z′) = 0 ∀t′ > t, z′ < z.

Assumption (A5) can be applied to cases where it is believed
that receiving a binary treatment cannot decrease the out-
come; however, it can also be applied to the measurement
error setting to encode the assumption that increasing the
true value cannot lead to a decrease in the measurement. Ad-
ditional causal constraints – such as limits on the effect size



 or the proportion affected, or the assumption of decreasing
returns of increases in an ordinal treatment value – may be
similarly imposed. As with the measurement error assump-
tions, equality constraints can be relaxed by specifying that
the sums are bounded from above, rather than identically
equal to zero.

6 EMPIRICAL EXAMPLE: THE
OREGON HEALTH INSURANCE
EXPERIMENT

To demonstrate the LP approach, we analyzed the effect
of Medicaid enrollment on mental health outcomes using
public data from the Oregon Health Insurance Experiment
(OHIE) [Finkelstein et al., 2012]3. In 2008, the state of
Oregon expanded Medicaid coverage using a lottery to de-
termine who would become eligible for enrollment. This
randomization created a natural experiment, allowing re-
searchers to study the effects of Medicaid coverage on
healthcare usage and health outcomes. For complete de-
tails on the OHIE, see Finkelstein et al. [2012]. In one such
study, Baicker et al. [2018] found, among other things, that
Medicaid enrollment reduced depression as measured by the
Patient Health Questionnaire (PHQ-9) taken approximately
two years after the lottery.

The PHQ-9 is a nine question survey measuring various de-
pressive symptoms on a 0 to 3 point scale. The total of these
points is frequently used as a measure of overall depression,
with a score above 10 serving as a cutoff for moderate to
severe depression [Kroenke et al., 2001]. However, as a
measurement of diagnosable depression, PHQ-9 scores are
subject to various forms of measurement error. For example,
Kroenke et al. [2001] acknowledged that scores between
10 and 15 represent a “gray zone”, with much lower preci-
sion than scores above 15. Torous et al. [2015] found that
observed PHQ-9 scores were sensitive to the way the sur-
vey was administered, with average scores reported on a
mobile app 3 points higher than average scores reported to
a live surveyor. In this section, we estimate bounds on the
effect of Medicaid enrollment on depression and use our
method to test the sensitivity of these estimates to different
combinations of measurement error assumptions.

6.1 TARGET PARAMETER AND MODELING
ASSUMPTIONS

Our target parameter is the ATE of Medicaid enrollment on
the presence of moderate to severe depression as measured
by the PHQ-9 score. We restrict our analysis to single per-
son households resulting in a sample of size N = 9, 599

3The full dataset can be found at https://www.nber.
org/programs-projects/projects-and-centers/
oregon-health-insurance-experiment.

lottery enrollees. Following Kroenke et al. [2001], we cate-
gorized the PHQ-9 scores into 5 bins representing no (0-4),
mild (5-9), moderate (10-14), moderately severe (15-20),
and severe (> 20) depression. As in Baicker et al. [2018],
we treat winning the enrollment lottery as a binary instru-
mental variable for Medicaid enrollment. Let A ∈ {0, 1}
represent winning the lottery, let T ∈ {0, 1} represent Med-
icaid enrollment, let X ∈ {1, ..., 5} represent a person’s
true depression category, and let Y ∈ {1, ..., 5} represent
the measured PHQ-9 category. Then, the ATE is given by
P (X(T=1) > 2)− P (X(T=0) > 2).

For all analyses, we assume the general IV model shown
in Figure 4 where Λ represents and unobserved confounder.
Additionally, we make the following monotonicity assump-
tion reflecting the belief that enrolling in Medicaid cannot
increase depressive symptoms

P (X(T=0) = x,X(T=1) = x′) = 0 ∀ x < x′. (9)

Even with no measurement error, the ATE is only partially
identified under these assumptions. Our goal is to test the
sensitivity of partial identification bounds on the ATE to
various combinations of the following measurement error
assumptions:

(EB) P (|X(a)− Y (a)| > 0) ≤ ε ∀ a

(Exp) E[X(a)] = E[Y (a)] ∀ a

(Sym) P (X(a)=x, Y (a)=y) = P (X(a)=x, Y (a)=y′)
∀ a, |x− y| = |x− y′|

(Mon) P (X(a)=x, Y (a)=y) > P (X(a)=x, Y (a)=y′)
∀ a, |x− y| < |x− y′|

All of these assumptions are versions of the measurement
error assumptions listed earlier in Section 3. Assumption
(EB) is version (A1) and says that the total proportion of
errors is less than ε. The sensitivity parameter ε can be
thought of as a total error budget, and we vary ε across the
grid [0.00, 0.001, ..., 0.04] to test how large ε can be before
the partial identification set includes zero. Assumption (Exp)
is a version of (A2) and says that the measured PHQ-9
category is an unbiased measurement of the true depression
category. Assumption (Sym) is a version of (A2) and says
that an error of magnitude k upwards is as likely as an error
of magnitude k downwards. Finally, assumption (Mon) is
a version of (A5) and says that small errors are more likely
than large errors. Note that all assumptions were applied
under both settings of the instrumental variableA, reflecting
the belief that they apply regardless of whether the person
wins the lottery or not. Importantly, our goal in this work
is not to argue that any particular combination of these
assumptions is “correct” in the context of the OHIE, a task
we leave to subject-matter experts. Instead, our goal is to
demonstrate how these assumptions may be flexibly applied
to test the sensitivity of one’s conclusions.

https://www.nber.org/programs-projects/projects-and-centers/oregon-health-insurance-experiment
https://www.nber.org/programs-projects/projects-and-centers/oregon-health-insurance-experiment
https://www.nber.org/programs-projects/projects-and-centers/oregon-health-insurance-experiment


 

Figure 3: Partial identification bounds on the ATE of Medi-
caid enrollment on depression under different measurement
error assumptions and error budgets ε. The dark and light
blue regions represent the point estimate and 95% confi-
dence interval, respectively, for the partial identification
bounds under the weakest set of assumptions (EB only).
Confidence intervals for the other models were omitted to
avoid cluttering the plot.

T

A

X Y

Λ
Model Max. budget
EB only 1.4%
EB+Exp 2.1%
EB+Exp+Mon 2.4%
EB+Exp+Sym 2.8%

Figure 4: The figure on the left shows the assumed genral
IV model. The table on the right shows the maximum error
budgets for each measurement error model.

6.2 RESULTS

The estimated partial identification bounds under different
measurement error models and error budgets ε are shown in
Figure 3. The method used to estimate confidence intervals
is described in Section 1 of the supplementary materials.
In all cases, as ε grows, the upper bound approaches and
eventually reaches zero. A quantity of interest is the ε at
which the upper bound hits zero, which we refer to as the
maximum error budget. The maximum error budget for
each measurement error model is shown in the table in
Figure 4. Unsurprisingly, using only the (EB) assumption
resulted in the lowest maximum error budget whereas com-
bining the (EB), (Exp), and (Sym) assumptions doubled this
maximum error budget. However, no measurement error
model resulted in a maximum error budget of more than
2.8% highlighting the potential sensitivity of these results
to measurement error.

7 RELATED WORK

Measurement error occurs in many scientific settings and
there is substantial literature on identification spread across
a number of different methodological sub-disciplines. Much
of this work concerns full identification in parametric mod-
els and we refer the interested reader to Carroll et al. [2006]
and Gustafson [2003] for full treatments of these topics. In
the machine learning literature, work on measurement error
has primarily focused on measurement error models that
allow for full identification and we again refer the interested
reader to these works [Natarajan et al., 2013, Xiao et al.,
2015, Liu and Tao, 2015, Ghosh et al., 2017, Adams et al.,
2019, Shankar et al., 2019], in particular, the excellent re-
view by Frénay and Verleysen [2013]. In this section, we
review results on partial identification in measurement error
and related settings.

Several works, particularly in econometrics, have presented
partial identifiability results under various measurement er-
ror models. Horowitz and Manski [1995] considered the
setting presented in Section 2, deriving sharp bounds on
the distribution of the true value under a particular error
model where data is “contaminated” by data from another,
unknown, distribution. Molinari [2008] considered the same
setting, presenting a procedure for verifying whether a par-
ticular distribution is in the partially identified set under
a wide range of assumptions about the error distribution,
including some non-linear assumptions. Henry et al. [2014]
considered partial identifiability in a class of finite mix-
ture models which includes, as a special case, the Markov
chain model shown in Figure 1 (f), similarly proposing a
method for verifying if a distribution is in the identified
set. Our work differs from Molinari [2008] and Henry et al.
[2014] in two important ways. First, the models covered by
these methods have some overlap with those presented in
this work, but, notably, do not cover the class of models de-
scribed in Section 4. Conversely, by focusing on verification,
Molinari [2008] and Henry et al. [2014] are able to cover
certain non-linear models not covered by our approach. Sec-
ond, computing partial identification bounds based on these
methods requires performing guess-and-check which can
be costly in high-dimensional spaces. For models where the
methods do overlap with our approach, they will all produce
the same sharp bounds; however, bounds can potentially be
computed much faster via the linear programming method.

The linear programming approach we used to compute par-
tial identification bounds is inspired by the approach used
by Balke and Pearl [1993] to derive bounds on causal ef-
fects in trials with partial compliance. This approach was
first applied to the measurement error problem by Imai and
Yamamoto [2010] to partially identify the ATE in a random-
ized trial under measurement error on the treatment variable;
however, Imai and Yamamoto [2010] consider only a spe-
cific measurement error model which does not fall into the



 class of models considered here. A future direction of re-
search may be to unify the model presented in Imai and
Yamamoto [2010] with general IV models. Our work is also
related to efforts to enumerate constraints on margins of the
full data distribution implied by a latent variable Bayesian
Network [Wolfe et al., 2019, Evans, 2012, 2018]. In such
works, unobserved variables are not of primary interest and
do not have known cardinality, so no attempt is made to
bound functionals of their distribution. However, as indi-
cated by our use of results from Bonet [2001], constraints
on the observed data law can be used to derive restrictions
on unobserved variables of known cardinality.

8 DISCUSSION

In this work, we presented an approach for computing
bounds on distributional and causal parameters involving
one or more discrete variables which are subject to measure-
ment error. At the heart of this approach is the encoding
of the target parameter and modeling constraints as linear
functions of the joint distribution of all variables in the
model. The target parameter can then be maximized and
minimized, with respect to this distribution and subject to
the the modeling constraints, to produce sharp bounds for
any observed data distribution. In particular, we presented
a class of graphical models that can be linearly expressed,
and a procedure for finding a linear relaxation of models
outside this class. We applied our approach to data from the
Oregon Health Insurance Experiment, testing the sensitivity
of conclusions drawn from this data to various measurement
error assumptions.

As is generally the case, the validity of the bounds com-
puted using this method depend on the validity of the mea-
surement error model and an incorrect model may lead to
biased bounds. This is true regardless of the method used
to compute the bounds. Without validation data, it is not
generally possible to test the validity of the measurement
error constraints presented in Section 3; however, the mod-
els described in Section 4 imply certain inequalities on the
observed data distribution that can be used to falsify a model
[Bonet, 2001]. In fact, the LP approach provides a simple
way to perform this test: If the LP is infeasible, then the
model is inconsistent with the observed data distribution.
In cases where the model is not falsified, we recommend
testing the sensitivity of one’s conclusions to each individual
assumption as demonstrated in Section 6.

This work suggests several future lines of inquiry. We de-
scribed a class of graphical models that result in linear mod-
eling constraints; however, this class is certainly not exhaus-
tive and work is needed to characterize which models result
in non-trivial bounds for which target parameters. In partic-
ular, in Sections 5 and 6, we focused primarily on settings
where the treatment or outcome variables are measured with
error. Additional work is needed to extend this approach to

settings with mismeasured confounders (e.g., see [Kuroki
and Pearl, 2014]). Finally, this work focused on discrete data
and additional work is needed to extended this approach to
continuous distributions (e.g., to bound moments of these
distributions, as in Henry et al. [2014]).
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