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Abstract

Stochastic gradient MCMC methods, such as
stochastic gradient Langevin dynamics (SGLD),
employ fast but noisy gradient estimates to enable
large-scale posterior sampling. Although we can
easily extend SGLD to distributed settings, it suf-
fers from two issues when applied to federated
non-IID data. First, the variance of these estimates
increases significantly. Second, delaying commu-
nication causes the Markov chains to diverge from
the true posterior even for very simple models.
To alleviate both these problems, we propose con-
ducive gradients, a simple mechanism that com-
bines local likelihood approximations to correct
gradient updates. Notably, conducive gradients are
easy to compute, and since we only calculate the
approximations once, they incur negligible over-
head. We apply conducive gradients to distributed
stochastic gradient Langevin dynamics (DSGLD)
and call the resulting method federated stochastic
gradient Langevin dynamics (FSGLD). We demon-
strate that our approach can handle delayed com-
munication rounds, converging to the target pos-
terior in cases where DSGLD fails. We also show
that FSGLD outperforms DSGLD for non-1ID fed-
erated data with experiments on metric learning
and neural networks.

1 INTRODUCTION

Gradient-based Markov Chain Monte Carlo (MCMC) meth-
ods are the de facto standard to sample from Bayesian pos-
teriors. However, computing gradients exactly can be pro-
hibitive even for moderately large data sets. Following the
success of stochastic gradients in large-scale optimization
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Figure 1: Comparison between gradient estimators using
centralized (SGLD) and distributed data (DSGLD), for a
model with Bernoulli likelihood and uniform prior. We com-
puted gradients using 5 samples from a total of 30 obser-
vations generated from fair coin tosses. For DSGLD, we
simulate the federated non-IID regime splitting data between
3 equally-available shards of same size but distinct means
—0.1, 0.5 and 0.9. The confidence bars reflect one standard
deviation. DSGLD (red) shows higher variance than SGLD
(blue) even for this simple case.

and inspired by [Welling and Teh, [2011]], many MCMC
algorithms were adapted to leverage fast but noisy gradient
evaluations computed on mini-batches of data [Ma et al.|
2015]). Examples include stochastic gradient Langevin dy-
namics (SGLD) [Welling and Teh| [2011]], stochastic gra-
dient Hamiltonian Monte Carlo (SGHMC) [Chen et al.,
2014]), and Riemann manifold Hamiltonian Monte Carlo
(RMHMC) [Girolami and Calderhead, 2011]]. These meth-
ods have established themselves as popular choices for scal-
able Bayesian inference.

Complementary to data subsampling, which underlies the
use of stochastic gradients, we can also split data across
several workers and use distributed computations to scale up
MCMC [Neiswanger et al., 2014, [Scott et al., 2016 |Terenin
et al.,[2020, Wang et al.l 2015, Nemeth and Sherlockl 2018
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Mesquita et al.,2019]]. In particular,|Ahn et al.|[2014] extend
stochastic gradient MCMC using a simple estimator that
accounts for data partitions and propose distributed SGLD
(DSGLD). More specifically, DSGLD operates passing a
Markov chain between computing nodes and using only
local data to estimate gradients at each step. The gradient
estimates are then scaled accordingly to correct the bias.

Despite the popularity of stochastic gradient MCMC, no
work has considered applications to federated learning.
Notably, federated data arise independently in different
clients/devices, and communication or privacy constraints
prevent it from being disclosed to a server. As a conse-
quence, data are often partitioned in a non-IID fashion. We
argue that distributed methods such as vanilla DSGLD are
inappropriate for the non-1ID regime. In practice, this regime
significantly amplifies the variance of stochastic gradients.
illustrates this phenomenon for a simple model
with Bernoulli likelihood. In turn, this can lead to poor
mixing rates and slow convergence[Dubey et al.|[2016]. Ad-
ditionally, in federated settings, we want to avoid frequent
communication, which can introduce bias and cause DS-
GLD to diverge from the target posterior [|Ahn et al.| 2014].

To mitigate these problems, we propose conducive gradients,
a zero-mean stochastic function that aggregates approxima-
tions of each client’s likelihood factor. These approxima-
tions are computed independently on the client-side before
and communicated only once. We add our conducive gradi-
ent to the gradient estimator proposed by |Ahn et al.|[2014]
to derive a novel method, which we call federated stochastic
gradient Langevin dynamics (FSGLD). We demonstrate that
1) FSGLD converges to the true posterior in cases where DS-
GLD fails, and ii) FSGLD outperforms DSGLD in federated
non-IID scenarios.

In general, we can compute conducive gradients in con-
stant time and, since we compute the local approximations
only once, FSGLD has the same computational complexity
as DSGLD. We also provide convergence bounds for FS-
GLD and use these results to gain insight regarding how to
efficiently choose local likelihood approximations which
minimize the bound. Furthermore, we provide analysis for
DSGLD since no formal analysis is available in the liter-
ature. There are well-established analyses of convergence
for SGLD in serial settings|/Chen et al., 2015/ |Nagapetyan
et al., 2017, Baker et al., 2019\ Teh et al., 2016, |Vollmer
et al.,[2016]], which we use as a starting point due to their
relatively straightforward formulation.

We organize the remainder of this work as follows. In[Sec}
tion 2| we establish the notation and provide a brief review
of serial and distributed SGLD. In [Section 3} we introduce
the concept of conducive gradients and use it to derive a
novel SGLD algorithm tailored to federated data. In
we show convergence bounds for both our method
and DSGLD. In we show experimental results.

Finally, we discuss related work in and draw con-
clusions in Section[7}

2 BACKGROUND AND NOTATION

Let x = {z1,...,2zn} be a data set of size N and let
p(0]x) x p(9) Hfil p(z;]0) be the density of a posterior
distribution from which we wish to draw samples. Langevin
dynamics [Neal, 2011] is a family of MCMC methods which
utilizes the gradient of the log-posterior,

N
Vlog p(6]x) = Viog p(6) + Y _ Vlog p(x;]6),

i=1

to generate proposals in a Metropolis-Hastings sampling
scheme. For large data sets, computing the gradient of the
log-likelihood with respect to the entire data set x becomes
expensive. To mitigate this problem, stochastic gradient
Langevin dynamics (SGLD) [Welling and Tehl 2011] uses
stochastic gradients to approximate the full-data gradient.

Denoting by Vlogp(x(m)wt) = D pextm Viogp(x|6;)
the gradient of the log-likelihood with respect to a mini-
batch x("™) of size m, SGLD draws samples from the target
distribution using a stochastic gradient update of the form

h
01 =0+ 50(00) + (1

in which h;, is the step size, 7, is a noise variable sampled
from N (0, htI) and where

N
v(6:) = Viogp(th) + —Vlogp(x"|0:). @)

In theory, step size is annealed according to a schedule
satisfying > 7 hy = oo and Y ,o, h? < oc. Note that
as hy — 0, the Metropolis-Hastings acceptance rate goes
asymptotically to one and thus, the accept-reject step is typ-
ically ignored in SGLD. While a proper annealing schedule
yields an asymptotically exact algorithm, constant step sizes
are commonly used in practice.

2.1 DSGLD

Ahn et al.|[2014] propose DSGLD as an extension of SGLD
to distributed settings (DSGLD), where we find data x to be
partitioned into S non-overlapping shards x, each held by
a client, such that x = {x1,...,xg}. More specifically, DS-
GLD uses a modified version of the update in
which is better suited for distributed data. The main idea
is that in each iteration, a mini-batch is sampled within a
shard, say x, and the shard itself is sampled by a scheduler
with probability fs, with Zle fs=1and fs > 0 forall s.
This results in the update

h
Orp1 =01 + é”sf, (0¢) + e, 3)



in which v is an unbiased gradient estimator given by

N,
—Vlogp(x{™|0,), (@

vs, (0) = Vogp(0;) + fom

and where N, denotes the size of shard x,,, chosen
at time t. Intuitively, if a mini-batch of m data points
is chosen uniformly at random from x,, then Ny, /m
scales V log p(xg:")\ﬂt) to be an unbiased estimator for
Vlog p(xs,|0;) , while f;* further scales this gradient to
be an unbiased estimator for V log p(x|6;).

A downside of this approach is the constant communica-
tion between workers. To alleviate this problem,|Ahn et al.
[2014] propose taking multiple update steps within the same
shard before moving to another worker. Nonetheless, this
reduction in communication costs comes at the expense of
some loss in asymptotic accuracy. It is worth noting that,
while the data are distributed, we can still understand DS-
GLD chains as entirely serial procedures. In practice, how-
ever, distributed settings are naturally amenable to running
multiple chains in parallel.

3 FSGLD: FEDERATED INFERENCE
USING CONDUCIVE GRADIENTS

In DSGLD, stochastic gradient updates are computed on
mini-batches sampled within the data shard of a specific
client, which adds bias to the updates and increases vari-
ance globally. This is especially significant if for non-IID
federated data, when shards are heterogeneous and likeli-
hood contributions vastly differ between two devices. To
counteract this, we would like to make the local updates
benefit from other shards’ information, ideally without sig-
nificantly increasing either computational cost or memory
requirements. Our strategy to achieve this goal is to aug-
ment the local updates, in with an auxiliary
gradient computed on a tractable surrogate for the full-data
likelihood p(x|6).

We assume here that the surrogate, denoted as g(6), fac-
torizes over shards, such as ¢(f) =[], ¢:(#), where each
qs(0) is itself a surrogate for p(x;|6), i.e. the likelihood
w.r.t. an entire shard s. Given these surrogates, we define
the conducive gradient w.r.t. shard s as

9s(0) = Vlogq(0) — fiV log g5 (6).

Using the conducive gradient gs we define our novel update
rule as

h
Orr1 = 0: + ?t (Ust(at) + s, (@)) + e (5)

Algorithm E] describes our method, federated stochastic
Langevin dynamics (FSGLD). We discuss the validity of

our novel gradient estimator (vs + g,) in[Section 4}

Algorithm 1 FSGLD
Client-side Update(T, 6y, s)
Given: Total number of iterations T, step sizes {h;}7 ',

initial chain state 6, client number s.
for t=0...T—1do

Sample a mini-batch xgm) of size m from x,

ds + Viogp(6) + ﬁ%vbgp(xgm)w)
> DSGLD estimator
gs + —7-Viogq,(0) + Viogg(9)

> Conducive gradient
Orp1 < 0y + %(ds +95) +me

> According to Eq. (3)
end for

Reassign_chain(fy, . . ., 01)

> Send chain to server

Server-side Reassign_chain(fy, . . ., 07)
Given: Client probabilities f1, ..., fs.
Store the received chain
¢~ Categorical(fy,...

, fs)

> Choose a client at random.
Update(T, 01, c)

> Pass on chain to client c.

Remark 1 (Controlling exploration). Note that conducive
gradients can alternatively be written as

0:(6) = V1og — 1)
ds

0 ©

making it explicit that these terms encourage the exploration
of regions in which we believe, based on the approximations
q and qs, the posterior density to be high but the density
within shard s to be low. We can explicitly control the extent
of this exploration by multiplying the conducive gradient by
a constant o > (O to obtain the modified gradient estimator:

N

fom

Vlog p(x{"™0) + ags(6). (7

3.1 CHOICE OF SURROGATES ¢, ...,¢gs

The key idea in choosing g is to obtain an approximation of
p(x4|0) with a parametric form, and to choose the paramet-
ric form such that V log ¢s(6) computation is inexpensive.
It is particularly beneficial if the gradient can be computed
in a single gradient evaluation instead of iterating over all
data, of size IV, of said shard s. Exponential family distri-
butions are especially convenient for this purpose, as they
are closed under product operations, enabling us to compute
V log q(6;) in a single gradient evaluation. This keeps the



additional cost of our method negligible even when S >> m.
More specifically, with exponential family surrogates, this
cost is constant with respect to the number of clients S.

In this work, we use a simulation-based approach to com-
pute g5 by first drawing from ps; o p(xs|0) locally em-
ploying SGLD, and using the resulting samples to compute
the parameters of an exponential family approximation. To
avoid communication overhead, q1, . . . , ¢ can be computed
independently in parallel for each of the data shards and
then communicated to the coordinating server once, before
the FSGLD steps take place.

4 ANALYSIS

In this section, we analyze the convergence of both DSGLD
and the proposed FSGLD. While simple, our results reflect
the impact of heterogeneity among data shards and, addi-
tionally, our bounds for FSGLD also provide deeper insight
on our strategy for choosing the surrogates q1, . .., gs. We
provide proofs in the supplementary material.

4.1 CONVERGENCE OF DSGLD

We begin by analyzing the convergence of DSGLD un-
der the same framework used for the analysis of SGLD by
[Chen et al.| [2015] and subsequently adopted by [Dubey
et al.l [2016], who directly tie convergence bounds to the
variance of the gradient estimators. Besides certain regu-
larity conditions (see Appendix A) adopted in these works,
which we outline in the supplementary material, we make
the following assumption:

Assumption 1. The gradient of the log-likelihood of
individual elements within each shard is bounded, i.e.,
IV logp(z;10)|| < ~s, for all 6 and z; € %, and each
se{l,...,Sh

We then proceed to derive the following bound on the con-
vergence in mean squared error (MSE) of the Monte Carlo
expectation ¢ = 771 Zt 1 ¢(6;) of a test function ¢ with
respect to its expected value ¢ = [ ¢(0)p(0]x) db.

Theorem 1. Let hy = h forall t € {17 ..., T}. Under
standard regularity conditions and Assumption[I} the MSE
of DSGLD for a smooth test function ¢ at time K = hT is
bounded, for some constant C' independent of T and h, in
the following manner:

N2
E<<5—5)2<C Lo n L)
- mT hT

The bound in Theorem [I] depends explicitly on the ratio
between squared shard sizes and their selection probabilities.

This follows the intuition that both shard sizes and their
availability play a role in the convergence speed of DSGLD.

Remark 2 (SGLD as a special case). Note also that bound
for DSGLD generalizes previous results for SGLD [Dubey
et al.| |2016|]. More specifically, if we combine all shards
into a single data set x = UgXs and let vy > 1, ..., s, we
recover the bound for SGLD:

R N2 N22 1
E(d-9) <c( L +hT+h2>

Note that the constant y in the remark above is an upper-
bound on the gradient log-likelihood for any specific data
point in x.

4.2 CONVERGENCE OF FSGLD

The following result states that when g5(6) is added to the
stochastic gradient in a DSGLD setting, the resulting estima-
tor remains a valid estimator for the gradient of the full-data
log-likelihood.

Lemma 1. Assume logq1, .. .,logqs are Lipschitz contin-
uous. Given a data set x partitioned into shards x1, . .. ,Xg,
with respective sample sizes N1, ..., Ng and shard selec-
tion probabilities f1, ..., fs, the following gradient estima-
tor,

f =V log p(x{"™|0) + g,(0),

is an unbiased estimator of V log p(x|0) with finite variance.

With the validity of our estimator established, we now pro-
vide the convergence bound for FSLGD, stated in the fol-
lowing theorem.

Lemma 2. If logqi,...,logqs are everywhere differen-
tiable and Lipschitz continuous, then the average value of
IV log p(z;]0) — *1V10gqs( )||%, taken over x; € x,,
is bounded by some €2, for each 0.

Theorem 2. Let hy = h forallt € {1,...,T}. Assume
log q1, - - ., log qs are Lipschitz continuous. Under standard
regularity conditions (Appendix A) and Assumption([l] the
MSE of FSGLD(defined in Algorithm[I)) for a smooth test
function ¢ at time K = hT is bounded, for some constant
C independent of T' and h in the following manner:

E($—¢)2§C< Tzf ++h>

In other words, Theorem 2] tells us that we can counteract
the effect of data heterogeneity by choosing surrogates q,’s
that make the constants €2’s as small as possible.




Remark 3 (Revisiting the choice of ¢’s). Naturally, the
choice of qs exherts direct influence on €2. Doing so analyti-
cally is difficult, but we can get further insight if we choose
qs that achieves

minm(?x |V log p(x,|6) — Vlog qs(8)]|?, 8)
as

which itself minimizes an upper-bound for €2. Note that
reaches its minimum when qs(0) is equal to
p(xs|0). Therefore, it is sensible to choose q5 that approxi-
mates the local likelihood contributions as well as possible,
as previously described in Subsection[3.1} We provide fur-
ther details about the upper-bound in the supplementary
material.

S EXPERIMENTS

In this Section, we demonstrate the performance of our
method (FSGLD) for increasingly complex models under
the non-IID data regime, which is a defining characteristic
of federated settings.

In Subsection[5.1] we show that DSGLD quickly diverges
from the true posterior as the frequency of communication
decreases, even for very simple models. On the other hand
FSGLD easily circumvents this pathology with the help of
conducive gradients. In Subsection[5.2] we consider the task
of inferring Bayesian metric learning posteriors from highly
non-IID data. Finally, in Subsection@ we show how our
method can be employed to learn Bayesian neural networks
in a distributed fashion, comparing it against DSGLD for
both federated IID and non-IID data.

While these models are progressively more complex, we
highlight that, using simple multivariate Gaussians as the ap-
proximations qi, . . . , s to each client’s likelihood function,
we are still able to obtain good and computationally scalable
results for FSGLD. For the first set of experiments, we de-
rive analytic forms for the approximations g, which is only
possible due to the simplicity of the target model. For the
remaining experiments, we employ SGLD independently
for s =1,...,.5 and use the samples obtained to compute
the mean vector and covariance matrix that parameterize q,.
We implemented all experiments using PyTorch[H We also
show additional experiments in the supplementary material.

It is important to highlight that, due to our choice of expo-
nential family surrogates, the cost of evaluating conducive
gradients in the following experiments compares to an addi-
tional prior evaluation.

5.1 NON-IID DATA AND DELAYED
COMMUNICATION

An ideal sampling scheme would, in theory, update the
chain once at a device and immediately pass it over to an-

Thttps://pytorch.org

other device in the next iteration. However, such a short
communication cycle would result in a large overhead and
is unrealistic in federated settings. To ameliorate the prob-
lem, |Ahn et al.|[2014] proposed making a number of chain
updates before moving to another device. However, the au-
thors reported that as the number of iterations within each
client and shard increases, the algorithm tends to lose sam-
ple efficiency and effectively sample from a mixture of local
posteriors, + 25:1 p(0]xs), instead of the true posterior.
With heterogeneous data shards, the effect is particularly
noticeable. In this experiment, we illustrate the pathology
and show how FSGLD overcomes it.

Model: We consider inference for the mean vector p of
normally distributed data under the simple model

s
p(plx) o< N (af0, T) TT NV (s, T). ()
s=1
Setting: We generate S = 10 disjoint subsets x1,...,Xg

of size 200, each respectively from N (1, I) with pq uni-
formly sampled from the [—6, 6] x [—6, 6] square (the col-
ored dots in Fig[Z). We then perform inference on the overall
mean /£ using the model (9). We sample the same number
of posterior samples using both DSGLD and FSGLD with
fixed step-size h = 10~*, mini-batch size m = 10 and
fi = -+ = fs = 1/S. The first 20000 samples were
discarded, and the remaining ones were thinned by 100.

Choice of ¢,’s: We use analytic Gaussian surrogates
qs(0) = N(0|Xs, N~1I), foreach s = 1... S. Note that ¢
here is exactly likelihood function induced by the shard x;.

Results: Figure [2| shows the posterior samples as a function
of the number of local updates the method takes before pass-
ing the chain to the next device. For comparison, Figure 32
shows samples from the analytical posterior. As we can see
from the results, the proposed method (FSGLD) converges
adequately to the true posterior while DSGLD diverges to-
wards a mixture of local approximations. This discrepancy
becomes more prominent as we further increase the number
of local updates, therefore delaying communication. Figure
[3b] compares the convergence in terms of the number of pos-
terior samples. While DSGLD with a hundred local updates
converges as fast as FSGLD, it plateaus at a higher MSE.
Note that in contrast with DSGLD, FSGLD is insensitive to
the number of local updates in the current experiment.

Quantifying €2’s. states that the upper-bound

on the MSE of FSGLD deteriorates as €, . . ., e% increase.
While computing €2’s is intractable for most models, we can
approximate it in this simple case using a grid. The same
can be done for «y;’s, which govern the DSGLD bound in a
similar manner. Figure shows that €2 < ~2 for all shards
s. This phenomenon also corroborates with the results in
which show that the MSE of FSLGD converges
to much smaller values than DSGLD.
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Figure 2: Posterior samples of the global mean (black) in DSGLD and FSGLD, as a function of the number of shard-local
updates (shown in parentheses in each title). The colored dots are the data samples, different shards having different color.
FSGLD converges to the target posterior in all cases, while DSGLD approaches a mixture of local posteriors as the number
of local updates increases. For reference, shows samples from the analytical posterior.

5.2 METRIC LEARNING

Given sets of similar S and dissimilar D pairs of vectors
from X = {z,})_; € RP, metric learning concerns the
task of learning a distance metric matrix A € RP* 2 such
that the Mahalanobis distance

s = ]l = /(s — 25)7 A — 7)
is low if (2;,x;) € S and high if (z;,2;) € D.

Model: We consider inference on the Bayesian metric
learning model proposed by |Yang et al.| [2007], in which
it is assumed that A can be expressed as >, VxViV]
where vi,..., vk are the top K eigenvectors of X =
[],...,z]]. The likelihood function for each pair (z;, x;)
from S or D is given by

1
1+ exp (yij (||l

yi-|(xi,xv),A,;L~Ber( >
’ ’ — 1% — n)

where y;; equals one if (2;,2;) € S and equals zero, if
(x;,x;) € D. While having v = [y1,...,7vk] > 0is
enough to guarantee that A is positive definite and defines
distance metric, this requirement is relaxed and a diagonal
Gaussian prior is put both on ~ and p. For a more thorough
treatment, we refer the reader to the original work by |Yang
et al. [2016].

Setting: We have devised a dataset for metric learning based
on the Spoken Letter Recognitimﬂ (isolet) data, which en-
compasses 7797 examples split among 26 classes. We have

2https://archive.ics.uci.edu/ml/datasets/
isolet

created |S| = 5000 and |D| = 5000 pairs of similar and
dissimilar vectors, respectively, using the labels of the isolet
examples, i.e., samples are considered similar if they be-
long to the same class and dissimilar otherwise. To obtain a
federated non-IID dataset, we split these pairs into S = 10
data shards of identical size, in a manner that there is no
overlap in the classes used to create the sets of pairs S
and D, in each shard s = 1....S. Additionally, we created
another thousand pairs of equally split similar and dissimilar
examples that we hold out for the test.

Choice of ¢;’s: We set f1 = ... = fg = % and run both
DSGLD and FSGLD with constant step size 10~3 and mini-
batch size m = 256. We use simple Gaussian approxima-
tions for q1, . . ., gs, with mean and covariance parameters
computed numerically using three thousand samples from

1
Ber | y; ) ’
H ( |1+eXP(yij(||33i—l"j||2A_“))

(zi,.’/ﬂj)ESSU'DS

obtained running SGLD independently for each client. It
is worth highlight that these approximations are only com-
puted once at the beginning of training, and then communi-
cated to the server. Appendix F.2 shows additional results
using Laplace approximations.

Results: Figure [5] shows results in terms of average log-
likelihood as a function of the number of samples. The
results show that 7) FSGLD achieves better performance
than DSGLD both in learning and on test data; and 7) FS-
GLD is more communication-efficient than DSGLD, i.e.,
it converges faster. Furthermore, FSGLD exhibits overall
lower standard deviation.
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Figure 3: (a) Samples from the analytical posterior, for com-
parison with Figure 2. (b) Quantitative comparison of MSE
|ii — f1|? in estimating the global mean, as a function of the
number of posterior samples, showing FSGLD clearly out-
performs DSGLD. Numbers in parentheses indicate number
of successive local shard updates; for FSGLD the curves are
almost identical, independently of the number, and only one
is shown. Only FSGLD converges to [i.
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Figure 4: The constants €2” s, which govern our method (FS-
GLD), are much smaller than 7’ ’s from DSGLD, resulting
in tighter bounds. The bar plot shows grid-based approxima-
tions these for these values in the mean estimation model,
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Figure 5: Metric learning. Average log-likelihood values
as a function of the number of samples for both DSGLD and
FSGLD, measured on (a) learning data and (b) on a held-out
set of test samples.The curves show the mean and standard
deviation (error bars) for ten repetitions of the experiment,
with different random seeds. FSGLD converges faster and
to better predictions than DSGLD, both for training data
and for test data.

5.3 BAYESIAN NEURAL NETWORKS

We now gauge the performance of the proposed FSGLD for
posterior inference on a deep Multi-Layer Perceptron (MLP)
both for federated IID and for federated non-IID data.

Model: We consider an MLP with three hidden layers. The
first two hidden layers consist of 18 nodes each, and the last
one of 8. We equip all hidden nodes with the rectified linear
unit (ReLU) activation function, and we apply the Softmax
function to the output of the network. Since we employ this
network for a classification task, we use the cross-entropy
loss function.

Setting: For this experiment, we create a series of .S = 30
label-imbalanced data shards based on the SUSYF| dataset.
For the IID case, we draw the proportions 71, ... mg of pos-
itive samples in each shard s = 1, ..., S from a symmetric

3https ://archive.ics.uci.edu/ml/datasets/
SUSY
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Beta distribution with parameters a = b = 100. In this
case, each data shard is approximately balanced. For the
non-IID case, we sample the proportions from a Beta with
both parameters equal to 0.5 instead. When a = b = 0.5,
half of the shards tend to have mostly positive and the other
half tends to have mostly negative labels, enforcing diversity
between shards.

All the shards mentioned above comprise 9 x 10 samples,
and we hold out an additional balanced shard for evaluation.
We ran FSGLD and DSGLD, with even shard selection
probabilities, for 5 x 103 rounds of communication, between
which 40 shard-local updates take place. For both methods,
we adopt fixed step-size h = 10~* and use mini-batches of
size m = 50. The first 2 x 10* samples were discarded for
each method, and the remaining ones were thinned by two.

Choice of ¢,’s: Similarly to the previous experiment, we
computed the conducive terms by drawing three thousand
samples independently from densities proportional to the
local likelihoods and imposing diagonal-multivariate normal
approximations based on these samples.

Results: Table [I] shows results in terms of average log-
likelihood, evaluated on test and train data. For the non-
IID case, FSGLD significantly outperforms DSGLD on the
test set. It is worth noting the low average log-likelihood
achieved by DSGLD during training is a clear sign that it
converged to models that do not generalize well. For the IID
case, both methods perform similarly. In both cases, FSGLD
shows a steep decrease in variance.

Table 1: MLPs. Average log-likelihood for MLPs learned
with DSGLD and FSGLD. For the non-IID case, FSGLD
clearly learns better models. For the IID case, both methods
show similar performance. Results reflect the outcome of
ten repetitions (mean =+ standard deviation). For all cases,
FSGLD results in smaller standard deviation.

Homogenous = Heterogenous
(I1ID) (non-1ID)
train - -0.6940.001 -0.44+0.062
DSGLD test -0.70+0.001 -1.11£0.312
train  -0.69+0.00022  -0.67+0.03
FSGLD test -0.69+0.00022  -0.67£0.03

6 RELATED WORK

Variance reduction for stochastic optimization. Variance
reduction has been previously explored to improve the con-
vergence of stochastic gradient descent [e.g. Johnson and!
Zhang, [2013} |Defazio et al., 2014bjal]. While federated op-
timization has gained increasing attention [[Konecny et al.}
2016|], variance reduction for distributed stochastic gradient
descent has received only limited attention [De and Gold{

stein, (2016, |L1 et al., 2020] so far.

Variance reduction for serial SG-MCMC. Previous
works by [Dubey et al.| [2016], [Baker et al. [2019] have
proposed strategies to alleviate the effect of high variance in
SGLD, for serial settings. | Dubey et al.| [2016] proposed two
algorithms, SAGA-LD and SVRG-LD, both of which are
based on using previously evaluated gradients to approxi-
mate gradients for data points not visited in a given iteration.
The first algorithm, SAGA-LD, requires a record of individ-
ual gradients for each data point to be maintained. In the
second one, SVRG-LD, the gradient on the entire data set
needs to be periodically evaluated. The recently proposed
SGLD-CV Baker et al.|[2019] uses posterior mode estimates
to build control variates, which are added to the gradient
estimates to speed up convergence. Like SGLD-CV, our
algorithm can be seen as a control variate method [Ripley,
1987]], but designed for distributed (federated) settings.

Distributed/parallel SG-MCMC. In the context of dis-
tributed SGLD, [Li et al.|[2019] did some work proposing
different communication protocols and analyzing their im-
pact on convergence. Differently from our work, they do
not focus on the impact of heterogeneity among data shards,
which is key to federated settings.

7 CONCLUSION

In this work, we propose conducive gradients, a simple yet
effective mechanism that leverages approximations of each
device’s likelihood contribution and improves the conver-
gence of SGLD for federated data.

We demonstrate i) that our method converges in scenarios
where DSGLD fails, and ii) that it significantly outperforms
DSGLD in federated non-IID scenarios. Additionally, our
method can be seen as a variance reduction strategy for
DSGLD. To the best of our knowledge, this is the first
treatment of SG-MCMC for federated settings.

We also analyze the convergence of DSGLD to understand
the influence of both data heterogeneity and device avail-
ability. We also show convergence bounds for FSGLD and
discuss how it supports our choice of local likelihood surro-
gates.

Furthermore, given suitable surrogates qi, .. ., qs, such as
exponential family approximations, FSGLD can be simulta-
neously made efficient both in terms of memory and com-
putation, imposing no significant overhead compared to DS-
GLD. Nonetheless, we believe that, for very complex mod-
els, it could be useful to update the conducive terms as the
chains navigate the posterior landscape. We also leave open
the possibility of employing more expressive or computa-
tionally cheaper surrogates {q, }5_,, such as non-parametric
methods or variational approximations.
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