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Abstract

Motivated by recent developments on meta-
learning with linear contextual bandit tasks, we
study the benefit of feature learning in both the
multi-task and meta-learning settings. We focus
on the case that the task weight vectors are jointly
sparse, i.e. they share the same small set of pre-
dictive features. Starting from previous work on
standard linear regression with the group-lasso esti-
mator we provide novel oracle-inequalities for this
estimator when samples are collected by a bandit
policy. Subsequently, building on a recent lasso-
bandit policy, we investigate its group-lasso variant
and analyze its regret bound. We specialize the pro-
posed policy to the multi-task and meta-learning
settings, demonstrating its theoretical advantage.
We also point out a deficiency in the state-of-the-
art lower bound and observe that our method has
a smaller upper bound. Preliminary experiments
confirm the effectiveness of our approach in prac-
tice.

1 INTRODUCTION

Stochastic bandits [see Lattimore and Szepesvári, 2020,
Auer et al., 2002, Siegmund, 2003, Robbins, 1952, Cesa-
Bianchi, 2016, Bubeck and Cesa-Bianchi, 2012, and refer-
ences therein] are effective approaches to solve the online
learning problem constrained to partial feedback. In the last
decade they have receiving increasing attention thanks to
both their wide practical usage and the challenge of design-
ing efficient and theoretically grounded algorithms. This
methodology has been applied to a variety areas, ranging
from recommender systems [Cella and Cesa-Bianchi, 2019,
Bogers, 2010], to online auctions [Weed et al., 2016, Ned-
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elec et al., 2020] and to adaptive routing [Awerbuch and
Kleinberg, 2008], among others.

In this work we focus on linear stochastic bandits [Abbasi-
Yadkori et al., 2011, Li et al., 2010, Chu et al., 2011, Auer,
2003, Bastani and Bayati, 2020, Kim and Paik, 2019], a well
studied setting in which each arm is associated with a vector
of features, and the arm payoff is given by a linear regression
of the feature vector. A difficulty behind this problem is that
often each arm is described by many features, thus requiring
a long exploration in order to obtain an accurate estimate of
the unknown regression vector. Two main approaches have
been adopted to speedup the learning process: meta-learning
[Cella et al., 2020, Boutilier et al., 2020, Kveton et al.,
2020] and feature learning [Kim and Paik, 2019, Bastani and
Bayati, 2020, Abbasi-Yadkori et al., 2012, Gopalan et al.,
2016]. The former approach aims to compensate the need for
large samples by leveraging relationships between multiple
tasks (e.g. those corresponding to similar users). The latter
solution investigates the existence of a low-dimensional
space still satisfying the linearity assumption but requiring
much less samples than those needed when considering all
the features. Very recently, Yang et al. [2020] combined
these approaches and showed how feature learning could
improve the efficiency of linear bandits in the multi-task
framework.

Research Objectives and Challenges. Similarly to [Yang
et al., 2020] in this work we investigate the multi-task frame-
work assuming that the tasks are sparse and share the same
sparsity pattern. We will also analyze the meta-learning set-
ting and show that both problems can be solved through a
group-lasso bandit policy.
Since we deal with a bandit framework, noisy components
affecting observations are not i.i.d. but satisfy a martingale
condition [see Abbasi-Yadkori et al., 2012]. Similarly, sam-
ples are collected sequentially by a bandit policy that varies
over time, according to the already observed data. Conse-
quently, we cannot employ existing oracle inequalities for
the group-lasso [Lounici et al., 2011, Bühlmann and Van
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 De Geer, 2011], which rely on the i.i.d. assumption. More-
over, recent concentration results investigating lasso-bandit
policies [Bastani and Bayati, 2020] do not apply to our
setting, since we need to handle the norm of a vector of
sub-Gaussian random variables rather than their sum.

Previous Work. Transfer learning across bandit tasks has
been investigated in [Cella et al., 2020, Kveton et al., 2020,
Boutilier et al., 2020, Gentile et al., 2017, 2014, Deshmukh
et al., 2017, Soare, 2015, Azar et al., 2013]. Works like
[Cella et al., 2020, Soare, 2015, Gentile et al., 2014, 2017]
considered task similarities to be proportional to the eu-
clidean distance between their unknown regression vectors.
Differently, in [Kveton et al., 2020] the authors proposed a
gradient based approach to estimate the regression parame-
ter.
The problem of learning with high-dimensional context vec-
tors has caught recent attention. In [Kim and Paik, 2019,
Bastani and Bayati, 2020], they consider the true regression
vector to be specified by only a sparse and small subset of
the original set of features. Since the ordinary least square
estimator is not expected to work well in this scenario, au-
thors propose two different solutions to embed the stan-
dard lasso estimator within a bandit policy. Interestingly,
Yang et al. [2020] showed that when the sparsity assump-
tion holds jointly across different tasks, this can be lever-
aged for learning a common representation and speeding up
the exploration phase in each task. A similar joint sparse
assumption across tasks has been already investigated in
the reinforcement-learning framework by Calandriello et al.
[2014]. The main difference here is that, while they could
assume to have access to a generative model of the MDP,
in our bandit setting such assumption cannot be evaluated,
since samples are collected while learning.

Contributions and Organization. Our contributions are
threefold. Firstly, in Section 3 we give oracle inequalities
for the group-lasso estimator when the training data are not
independently sampled, but rather they are collected by a
bandit policy and their noisy components satisfy a certain
martingale-condition [Abbasi-Yadkori et al., 2012]. Sec-
ondly, relying on the proved oracle inequalities, in Section
4 we propose a group-lasso bandit policy that is inspired by
the doubly-robust lasso bandit policy [Kim and Paik, 2019].
Thirdly, In Section 5 we show how to use the introduced
policy in the multi-task and meta-learning settings. In the
latter case our upper bound is novel and highlight the bene-
fit of the proposed policy. In the former case, our approach
outperforms the state of the art solution of [Yang et al.,
2020]. We further complement our analysis by providing
a lower bound that point out a weaknesses of the existing
result in [Yang et al., 2020]. Finally, in Section 6 we present
preliminary numerical experiments which corroborate our
theoretical findings.

2 PRELIMINARIES

We begin by introducing the linear contextual bandit setting
and then present its multi-task extension, focusing on jointly
sparse regression vectors.

2.1 LINEAR CONTEXTUAL BANDITS

Let N be a positive integer and let [N ] = {1, . . . , N}. A
linear contextual bandit problem consists of a sequence of
N interactions between a learning policy π and an envi-
ronment. At each round n ∈ [N ], the policy has to pick
one arm xn ∈ Kn from a given decision set Kn ⊆ RM s.t.
|Kn| = K. Subsequently, only the reward associated to the
chosen arm xn will be observed, and no feedback will be
available for the remaining (not selected) arms. In the linear
bandit setting, the observed (instantaneous) reward satisfies
yn = x>nw + ηn, that is a linear relation with respect to
an unknown parameter w ∈ RM and subject to additive
zero-mean noise ηn which we assume throughout to be con-
ditionally sub-Gaussian.
We assume the optimal policy π∗ to know the true param-
eter w, hence at each round n ∈ [N ], π∗ picks the arm
x∗n = arg maxx∈Kn

x>w maximizing the instantaneous
reward. The objective is to minimize the pseudo-regret

R(N,w) =

N∑
n=1

(x∗n − xn)>w

which measures the gap incurred with respect to the optimal
policy. If no further assumptions hold, a standard algorithm
to face the linear bandit problem is OFUL [Abbasi-Yadkori
et al., 2011]. At each round n ∈ [N ], this method estimates
w by ridge-regression over the observed arm reward pairs,
that is ŵλ

n+1 = arg minw∈RM ‖Xnw − yn‖22 + λ ‖w‖22
where Xn is the matrix whose rows are x>1 , . . . ,x

>
n , I is

the M ×M identity matrix and yn = (y1, . . . , yn)>. Sub-
sequently, OFUL updates a confidence interval Cn centered
in ŵλ

n and containing the real parameter w with high proba-
bility. It then picks the arm xn as

xn = arg max
{
x>v : x ∈ Kn, v ∈ Cn

}
. (1)

Finally, similarly to [Kim and Paik, 2019, Assumption 2],
we make the following assumption on the sets K1, . . . ,KN .

Assumption A (i.i.d. Arms). Let Kn = {x1,n, . . . ,xK,n}.
There exist K distributions P1, . . . ,PK with support on the
unit sphere {x ∈ RM : ‖x‖2 ≤ 1} such that, for every
k ∈ [K],

xk,1, . . . ,xk,n
i.i.d.∼ Pk

.
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 2.2 SPARSE LINEAR BANDITS AND TRANSFER
LEARNING

In this work we are interested in the case where we have to
solve T > 1 different linear bandit tasks. Each task t ∈ [T ]
is fully specified by its regression vector wt ∈ Rd. Notice
that in order to have a clear notation, differently from the
above subsection we now consider d-dimensional weight
vectors. Let us introduce the following additional notation.
Let J(w) = {j ∈ [d] : wj 6= 0} be the sparsity pattern of
w, that is the subset of s = |J(w)| non-zero components
of vector w ∈ Rd. Differently from existing multi-task
and meta-learning bandit works [Cella et al., 2020, Soare,
2015, Kveton et al., 2020], here we study the advantage of
the group sparsity assumption for transfer learning among
tasks, an idea which was originally investigated in the stan-
dard supervised learning setting [see Lounici et al., 2011,
and references therein]. As we shall see, a key difficulty
when moving to the bandit setting is that samples are not
i.i.d. anymore. Indeed, they are not given in advance, but
rather incrementally collected by a policy while it is learning
(hence potentially incurring a regret). Our main assumption
is that the considered tasks are jointly sparse.

Assumption B (Jointly Sparse Tasks). The task parameters
{w1, . . . ,wT } ⊆ Rd share a common sparsity pattern of
small cardinality. That is, there is a set J ⊆ [d] such that

J(wt) ⊆ J ∀t ∈ [T ]

and, letting s = |J |, we have that s� d.

In the ideal scenario in which the set of relevant features
are known a-priori, we could consider the OFUL policy
introduced in Section 2.1. That is, we would run OFUL
on the set J of s relevant features, obtaining a per task
regret bound O(s

√
N) and computational costs of order

O(s2). In particular, when restricting to the finite-action
linear contextual bandit setting [Auer, 2003, Chu et al.,
2011] (decision sets are fixed with finite size |K| = K) a
regret bound of O(

√
KNs) would outperform the original

O(
√
KNd) result. Since in practice the set of s relevant

features is not known a-priori, we will refer to the above
policy as Oracle.

In Section 5 we will show how both the multi-task and meta-
learning problems can be reformulated as an instance of
a single bandit setting with specific group sparsity struc-
ture. Thus, in the next two sections we will consider the
single task bandit problem under group sparsity constraints.
First, in Section 3 we investigate oracle inequalities for the
corresponding group-lasso estimator considering data to be
collected in a non i.i.d. fashion. Then, using such inequali-
ties, in Section 4 we will present our group-lasso policy.

3 GROUP-LASSO INEQUALITIES WITH
MARTINGALE NOISE

Let us consider G ≤ M and let the sets G1, . . . ,GG form
a partition of the set [M ] = {1, . . . ,M}1. That is, ∀i 6=
j Gi ∩ Gj = ∅ and ∪j∈[G]Gj = [M ]. For every j ∈ [G],
we denote by |Gj | = Mj the number of features indexed
by the subset Gj . Given the matrix Xn = [x1, . . . ,xn]> ∈
Rn×M we define the Gram matrix Vn = X>nXn ∈ RM×M .
Analogously, we denote by Xn,Gj the n×Mj submatrix of
X whose columns contain only the original features indexed
by Gj , and let Vn,Gj ∈ RMj×Mj be the corresponding
Gram matrix.
For every vector w ∈ RM , we denote by wj = (wi : i ∈
Gj). Now, given a subset J ⊆ [G], let wJ = (wjI{j ∈ J} :
j ∈ J). Finally, analogously to the previous notation let us
use J(w) = {j : wj 6= 0, j ∈ [G]} and M(w) = |J(w)|.
Hence, J(w) contains the indices of the relevant groups
and M(w) is the number of such groups. Note that, if N =
M , each group is a singleton, indexing the corresponding
feature. In [Kim and Paik, 2019, Bastani and Bayati, 2020]
authors assumed the linear regression vector to be sparse.
Differently we make a group-sparsity assumption.

Assumption C (Group Sparsity). We assume that the vector
w ∈ RM associated to a linear bandit task is group-sparse,
that is, there exists a value s ≤M such that

M(w)� s.

As in the standard supervised-learning setting, at each round
n ∈ [N ] we consider the group-lasso estimator ŵn [Yuan
and Lin, 2006] which is defined as the solution of the fol-
lowing optimization problem

min
w∈RM

 1

n
‖Xnw − yn‖2 + 2

∑
j∈[G]

λn,j(δ)
∥∥wj

∥∥ ,

(2)
where λn,1(δ), . . . , λn,G(δ) are positive real parameters
that will be specified later.
The first result we present is a generalization of [Lemma
11.2 Van De Geer and Bühlmann, 2009] and [Lemma 3.1
Lounici et al., 2011] for the group-lasso case when the noise
are not i.i.d. but form a martingale difference sequence.

As we shall see, differently from [Kim and Paik, 2019] we
cannot rely on Proposition 1 of Bastani and Bayati [2020],
indeed their analysis refers to the standard lasso estimator
which in turn can build on standard sub-Gaussian concentra-
tion arguments. Below we present a complete characteriza-
tion of the oracle inequalities relying on the concentration
of the euclidean norm of a sub-Gaussian random vector.

1As we shall see in Section 5, this setting includes the jointly
sparse multitask setting by letting M = dT , the vector w be
the concatenation of vectors w1, . . . ,wT ∈ Rd, and each of the
G = d groups contain the same component across the T tasks.
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 Lemma 1 (Group-Lasso Oracle Inequality Without i.i.d.
Data). Let Fn denote the filtration up to round n− 1

Fn−1 = {x1, y1, . . . ,xn−1, yn−1,xn}.

For any n ∈ [N ] let xn ∈ RM and yn = x>nw + ηn ∈ R,
where ηn is zero-mean conditionally 1-sub-Gaussian w.r.t.

Fn−1. For any j ∈ [G] choose λn,j(δ) ≥
√

Mj

n log
(
G
δ

)
,

where δ ∈ (0, 1). Then with probability at least 1− δ

1

n
‖Xn (ŵn −w)‖2 ≤ 4

∑
j∈[G]

λn,j(δ)
∥∥(w − ŵn)j

∥∥ .
(3)

When considering the lasso estimator additional assump-
tions are usually required in order to guarantee a fast rate of
convergence towards the true vector w ∈ RM [Van De Geer
and Bühlmann, 2009, Bühlmann and Van De Geer, 2011].
In the literature two alternatives emerged among others,
the restricted eigenvalues (RE) assumption [Bickel et al.,
2009, Koltchinskii et al., 2009] and the compatibility con-
ditions (CC) [Van De Geer and Bühlmann, 2009]. In order
to get fast rates, in [Lounici et al., 2011] authors analyze
the group-lasso estimator convergence properties under the
RE assumption in the fixed-design setting (considering XN

not to be a random quantity). However, when considering
the bandit framework, XN ∈ RN×M consists of xn ∈ RM
Fn-measurable random vectors. Notably, asking a bandit
policy to collect samples satisfying the RE assumption is
too demanding. Hence, here we begin by recalling the group
lasso CC [Section 8.3.3 Bühlmann and Van De Geer, 2011]
which are weaker than the RE assumption [Van De Geer
and Bühlmann, 2009].

Definition 1 (Σ-Compatibility Conditions). Let Σ ∈
RM×M be symmetric and positive semi-definite, and let
J ⊂ [G]. We say that J satisfies the Σ-group lasso compati-
bility conditions at round n ∈ [N ], with constant φΣ(J) >
0, if ∀ ∆ ∈ RM \ {0} such that

∑
j∈Jc λn,j(δ)

∥∥∆j
∥∥ ≤

3
∑
j∈J λn,j(δ)

∥∥∆j
∥∥, it holds

‖∆J‖2 ≤
‖∆‖2Σ
nφ2

Σ(J)
,

where Jc denotes the complement of the set of indices J .

We are now ready to present the main result of this section.

Theorem 1 (Fast-rate Group Lasso Oracle Inequalities). Let
Fn denote the filtration up to round t− 1

Fn−1 = {x1, y1, . . . ,xn−1, yn−1,xn}.

For any n ∈ [N ] let xn ∈ RM and yn = x>nw + ηn ∈ R
with ηn be zero-mean conditionally 1-sub-Gaussian w.r.t.
Fn−1. Assume that the index set J := J(w) ⊂ [G] satisfies
the Σ-Compatibility conditions with matrix Σ = X>nXn

and constant φΣ(J). For any j ∈ [G] choose λn,j(δ) ≥

√
Mj

n log
(
G
δ

)
where δ ∈ (0, 1), then with probability at

least 1− δ it holds that

1

n
‖Xn (ŵn −w)‖2 ≤ 16

φ2
Σ(J)

∑
j∈J

λ2
n,j(δ), (4)

∑
j∈[G]

∥∥∥(ŵn −w)
j
∥∥∥ ≤ 16

φΣ(J)

∑
j∈J

λ2
n,j(δ)

minj∈J λn,j
. (5)

Building on this result, remarkably on the bound of Equation
(5), in the next section we will present our group-lasso
variant of the doubly-robust lasso policy of [Kim and Paik,
2019].

4 GROUP-LASSO BANDIT POLICY

While in the standard supervised regression problem the Σ-
Compatibility conditions (Definition 1) refers to the Gram
matrix Σ = X>X computed over all the i.i.d. samples, the
same does not occur in the stochastic bandit setting (see
Section 2.1). Specifically, the Gram matrix Vn = X>nXn

is not built to satisfy the compatibility conditions, hence
we cannot directly use the results of Theorem 1. Indeed,
since a bandit policy aims at choosing arms yielding maxi-
mum reward, the collected samples will tend to span only a
small region of the whole context/input space. To overcome
this obstacle, in this section we will follow the approach
introduced by Kim and Paik [2019], which differently from
Bastani and Bayati [2020] does not require to force sam-
pling all arms everyO(logN) rounds in order to collect i.i.d.
observations. Following the result in [Bastani and Bayati,
2020, Corollary 3.4], in the next lemma we show that when
xn are i.i.d. and E[xnx

>
n ] satisfies the Σ-CC with constant

φΣ(J), the same property would hold when considering
matrix Σ̂n =

∑n
i=1 xix

>
i /n.

Lemma 2 (CC with Random Matrices). Let x̂1, . . . , x̂n ∈
RM be sampled independently from a distribution P with
covariance Σ and supported on the unit sphere, and let
Σ̂n =

∑n
i=1 x̂ix̂

>
i /n be the empirical covariance. Suppose

that the set J satisfies the Σ-CC in Definition 1 with constant
φΣ(J) and let c = min

(
1
2 ,

φΣ(J)2

256M(w)

)
. If

n ≥ zN ≡ max

(
3

c2
logG,

1

c2
log

N2

δ

)
then, with probability at least 1− δ/n2, the set J satisfies
the Σ̂n-CC with constant φΣ(J)√

2
.

Following the reasoning in [Kim and Paik, 2019] we can
now develop our doubly-robust group-lasso policy πDR. At
each round n ∈ [N ] and for any arm x ∈ Kn, we denote by

πDRx (n) = P[xn = x | Fn−1]
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 the conditional probability of selecting arm x associated to
policy πDR conditioned on

Fn−1 =
{
{xi(1)}i∈K1

, y1, . . . ,

. . . , {xi(n− 1)}i∈Kn−1
, yn−1, {xi(n)}i∈Kn

}
.

Notice that differently from Fn−1, for each round n ∈ [N ]
Fn−1 contains all the different arms of Kn and not only the
one chosen xn. As done in [Kim and Paik, 2019] we can
now construct the doubly-robust pseudo reward

ŷn =
1

K

 ∑
x(i)∈Kn

x(i)>ŵn +
yn − x>n ŵn

πDRxn
(n)

 , (6)

where ŵn is the estimate of true parameter w given Fn−1.
The defined estimator satisfies E[ŷn|Fn−1] = x̂>nw inde-
pendently on the adopted ŵn where x̂n = 1

K

∑
x∈Kn

x.
Let us now introduce our last assumption.

Assumption D (Assumption 3 in [Kim and Paik, 2019]).
For each n ∈ [N ], the matrix

Σ = E
[
x̂nx̂

>
n

]
satisfies the CC (Definition 1) with constant φΣ(J).

Hence, thanks to Assumptions (A) and (D), when consider-
ing the pair

(
X̂n, ŷn

)
=
(
[x̂1, ..., x̂n]>, [ŷ1, ..., ŷn]>

)
and

applying on it the group-lasso estimator (Equation (2)) we
can leverage the Σ-CC of Lemma 2. Thus, the group-lasso
estimator ŵn would satisfy the fast-rate results of Theorem
1.
Following the result of [Kim and Paik, 2019], with the next
result we show that the considered doubly-robust pseudo
reward has constant variance, conditional on Fn−1.

Proposition 1. Let Varŷn be the conditional variance of
ŷn given Fn−1. Then Varŷ can be upper bounded by a
constant if the following conditions are met

πDRx (n) =

{
1
K if n ≤ zN
32
K

M
φΣ(J)

√
Mmin

√
logG
n if n > zN

where Mmin = minj∈JMj and zN is defined in Lemma 2.

Following the same construction adopted in Kim and Paik
[2019] for the standard lasso estimator we propose the DR
group-lasso bandit policy πDR (Algorithm 1). Basically,
πDR selects the next arm xn according to the discrete
uniform distribution U(Kn) with support Kn as long as
n ≤ zN . When n > zN it randomizes the arm selection
guaranteeing the satisfiability of Proposition 1. To do so, it
first generates a random samplemn according to a Bernoulli
distribution B(λ̃n) with mean

λ̃n = λ̃
M

φΣ(J)
√
Mmin

√
logG

n
(7)

Algorithm 1 Doubly Robust (DR) Group-Lasso Bandit

Require: λ̃, δ, zN
1: Set ŵ0 = 0.
2: for n = 1 to N do
3: if n ≤ zN then
4: Select xn ∼ U (Kn)
5: else
6: Sample mn ∼ B(λ̃n) with λ̃n as in Eq. (7)
7: if mn = 1 then
8: Select xn ∼ U(Kn)
9: else

10: Select xn = arg maxx∈Kn x>ŵn

11: end if
12: end if
13: Observe feedback yn
14: Compute ŷn according to Eq. (6) with

πDRx (n) =
λ̃1,n

K + (1− λ̃1,n)I {mn = 0}
15: Update ŵn according to Eq. (2) with parameters

λn,j(δ) =
√

Mj

n log
(
G
δ

)
∀ j ∈ [G]

16: end for

where λ̃ > 0 is a tuning parameter. Then, if mn = 1 it
picks the next arm with probability 1/K, otherwise xn =
arg maxx∈Kn x>ŵn. Recall that ŵn is computed relying
on the pair (X̂n, ŷn). We can now present the main result
of this section that is a high-probability regret bound for the
DR group-lasso policy.

Theorem 2. Fixing an horizon N > 0, let Assumptions A
and D hold true. Given the sets of indices G1, . . . ,GG satis-
fying Assumption C. Considering the linear bandit setting
specified in Section 2.1, running the policy πDR yields the
following regret upper bound with probability at least 1−2δ

R(N,w) ≤ O

(
M(w)Mmax

√
N√

Mmin

)
where we denoted Mmax = maxj∈[G]Mj .

The complete statement can be found in Section B of the
supplementary material. Differently from [Kim and Paik,
2019] it relies on the group-lasso oracle inequality proved
in Theorem 1 and not on the vanilla-lasso variant introduced
in [Bastani and Bayati, 2020].

Remark 1. Notice that by consideringG = M groups satis-
fying Gj = j ∀j ∈ [M ], the regret bound would be of order
O(s
√
N). This result is coherent with the bound obtained

in [Kim and Paik, 2019] for the simple lasso estimator.

Result Discussion. If compared to the standard ridge-
regression based bandit policy [Abbasi-Yadkori et al., 2011],
we got a reduction in terms of regret of order

√
Mmin.

As we will discuss in the next section, when consider-
ing the multi-task and meta-learning frameworks groups
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 would be homogeneous (i.e. Mj = M/T ∀j ∈ [G]).
In this special case, the regret bound would be of order
O(M(w)

√
NM/T ).

5 MULTI-TASK AND META-LEARNING

We now turn to the main goal of this paper, which is to
present a suitable solution to speedup the learning rate when
dealing with multiple tasks with common sparsity patterns.
We discuss both the setting of multitask and meta-learning.

5.1 BOUNDING THE MULTITASK REGRET

In multitask learning, we consider the problem of concur-
rently learning T linear bandit tasks each lasting for N0

rounds and specified by regression vectors w1, . . . ,wT ∈
Rd that satisfy the joint sparsity condition in Assumption B.
At each round n ∈ [N0] the learner will sequentially face all
the T tasks. When considering the generic task t ∈ [T ] our
objective is to pick the next arm xt,n ∈ Rd from a finite-set
of alternatives Ktn ⊂ Rd associated to that task. The learn-
ing objective is then to minimize the so called multi-task
regret:

R(T,N0) =

T∑
t=1

R(N0,wt) =

T∑
t=1

N0∑
n=1

(x∗t,n − xt,n)>wt,

(8)
where x∗t,n = arg maxx∈Kt

n
x>wt.

Our solution relies on the doubly-robust group-Lasso policy
πDR defined in Section 4. Hence, at each round n ∈ [N0] we
might want to solve the following set of learning problems

ŷ1,n = X̂1,nw1 + ηηη1,n

...
ŷT,n = X̂T,nwT + ηηηT,n.

(9)

There, for each task t ∈ [T ] and round n ∈ [N0] we have
X̂t,n ∈ Rn×d to be a matrix of i.i.d. components, wt ∈ Rd
and ŷt,n ∈ Rn. Finally, ηηηt,n ∈ Rn is a random vector with
conditionally independent components ηt,n with respect to
the sigma algebra

F tn−1 =
{
{xj(1)}j∈Kt

1
, y1, . . .

. . . , {xj(n−1)}j∈Kt
n−1

, yn−1, {xj(n)}j∈Kt
n

}
.

Inspired by the work of [Lounici et al., 2011] we
now show how using our bandit policy based on the
group-lasso estimator (see Algorithm 1) can boost the
performance in terms of multi-task and transfer regrets (see
Equation (8)) above, and Equation (12) below, respectively).

Reduction Scheme. Let us set the number of fea-
tures M = dT and denote with w ∈ RM the vector
obtained by stacking together w1, . . . ,wT ∈ Rd. Similarly,

ŷn represents the N = nT dimensional vector obtained

by stacking ŷ1,n, . . . , ŷT,n. We also consider X̂ ∈ RN×M
to be a block diagonal matrix consisting of T blocks,
where each block t ∈ [T ] corresponds to the design matrix
X̂t,n ∈ Rn×d associated to task t.
In the proposed reduction, Algorithm 1 will play for a
total of N = TN0 rounds. Equivalently, at each round
n ∈ [N ] we can assume Algorithm 1 to observe all T tasks
sequentially.
Finally, we will organize the M features in the following
G1, . . . ,GG groups, where G = d. Specifically, for any
j ∈ [d] the group Gj contains the same number T of
features referring to the same feature j over the different T
tasks. Hence, the multi-task learning problem reduces to
minimize the multi-task regret in Equation (8), using the
group-lasso bandit policy πDR to estimate the concatenated
vector w ∈ RM , considering the proposed groups and
matrices definitions.
We now give an equivalent version of the Σ-(CC) adapted
to the multi-task case.

Definition 2. Let Σ ∈ RM×M be symmetric and positive
semi-definite. Given the index set J ⊂ [M ], at round n ∈
[N0] the Σ-group lasso compatibility conditions are met for
the set J with constant φΣ(J) > 0, if ∀ ∆ ∈ RM \{0} such
that

∑
j∈Jc λn,j(δ) ‖∆j‖2,1 ≤ 3

∑
j∈J λn,j(δ) ‖∆j‖2,1, it

holds

‖∆J‖2 ≤
‖∆‖2Σ

nTφ2
Σ

(J)
,

where ‖∆‖2,1 =
∑
j∈[G]

∥∥∆j
∥∥.

Now, if considering the optimization problem stated in Equa-
tion (2) with regularization parameters λn,j(δ) = λn ≥√

T
n log d

δ ∀j ∈ [d] we could still leverage the regret upper
bound of Theorem 2 relative to the doubly-robust group-
Lasso bandit policy πDR. Yet, given the stated assumption
and the proposed reduction scheme, we can adopt the group-
lasso bandit policy when considering the multi-task problem.
Hence, the following corollary of Theorem 2 holds.

Corollary 1. Let us consider the multi-task bandit model,
aimed to minimize the multi-task regret in Equation (8).
Choose the groups G1, . . . ,GG as in the multitask setting
described above and let Assumptions A, B and D hold with
respect to Definition 2. Then, the multi-task regret associated
to the policy πDR satisfies

R(T,N0) ≤ Õ
(
s
√
TN0

)
(10)

with probability at least 1−2δ, where Õ(·) hides logarithmic
factors.

Result Discussion. If compared to the proof of Theorem 2,
the only difference results in the application of the oracle
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 inequalities. Indeed, at each round n ∈ [N ] the obtained
convergence rate for Equation (5) scales with respect to the
sparsity level s associated to each task weight vector. Addi-
tionally, as we mentioned at the end of the last section, all
groups have the same cardinality T , which yields a bound
of order

√
T .

The benefit given by the proposed solution can be observed
by comparing to the regret one would incur by separately
running T independent lasso-bandit policies [Kim and Paik,
2019], that is, one policy per task. In this case, the regret
bound would be of order R(T, n) ≤ O (sT

√
n) which is

bigger than the RHS of (10) by a factor
√
T .

To the best of our knowledge, [Yang et al., 2020] is the
only work which considered the same multi-task ban-
dit setting. Their regret bound is of order R(T,N0) ≤
O
(
T
√
sN0 +

√
dsTN0

)
. The second term of their bound

is never smaller than the RHS of Equation (10) as d is
assumed to satisfy d � s. The relation between the first
term and our regret bound depends on the relation between
the sparsity constant s and the number of tasks T . Yet, our
bound is worse only if s is bigger than T , which goes against
their lower-bound assumption. To conclude, we can state
that our regret bound is smaller by a multiplicative factor of
order O(

√
d/s) than the bound in [Yang et al., 2020].

We also point out that in [Yang et al., 2020] the authors
claim that their bound is optimal up to poly-logarithmic fac-
tors. This would mean that either our claim is false or that
their lower bound argument is vacuous. In the next result
we present a different and simple lower bound argument for
the multi-task setting. In the proof we also highlight two
weaknesses of the lower bound demonstration used in [Yang
et al., 2020].

Theorem 3 (Lower Bound MTL). Let us consider the multi-
task setting described in Section 2.2, where each task t ∈ [T ]
satisfies Assumptions A and B. Then the multi-task regret
(see Equation (8)) can be lower bounded as

R(T,N0) ≥ O
(
s
√
TN0

)
. (11)

Proof. We consider the simpler scenario where all T sparse
tasks (i.e. s� d) are equal to each other (which clearly sat-
isfy Assumption B). This is equivalent to consider a single
bandit task which lasts for TN0 rounds instead of N0. The
known cumulative regret lower bound for this single task
is of order O

(√
sdN0

)
> O

(
s
√
N0

)
[see Theorem 24.3

Lattimore and Szepesvári, 2020]. The claimed lower bound
directly follows by considering N0 = TN0. The underling
reasoning characterizing our bound specifically refers to
the multi-task setting where tasks cannot be assumed to be
independent. Indeed, we consider the extreme case where
they are all equal.

Remark 2. In the proof presented in [Theorem 2 Yang et al.,
2020] we found two vacuous steps. The first one is in the
contradiction argument used to prove Lemma 6 therein. In-
deed, in the contradiction they compare to the lower bound

associated to the single-task problem of [Han et al., 2020].
The problem is that, this argument would hold only if tasks
would be completely independent to each other. This is not
the case when you have multiple-tasks satisfying assump-
tions like Assumption B. Indeed, the referred single-task
lower bound considers an harder scenario where less data
are available, those associated to a single task (no data for
additional tasks are given). The second deficiency appears
in the proof of Lemma 7 in [Han et al., 2020], in a way anal-
ogous to the incorrect proof of their Lemma 6. The difference
is in the application of Lemma 8 which is now adopted to
lower bound the regret incurred in subgroups of tasks. As
before, the implicit assumption is that the considered groups
are independent to each other.

Remark 3. We want to remark that due to Assumptions A
and D the setting considered in Corollary 1 is slightly sim-
pler than the one of Theorem 3. Hence, even if the obtained
bound matches the result of Theorem 3 up to logarithmic
factors, we cannot claim the optimality of our solution.

5.2 BOUNDING THE TRANSFER REGRET

We now move on to the meta-learning problem. We can
adopt a reasoning similar to the one used for the multi-
task setting. Specifically, we consider the set of tasks not
to be observed in parallel, but to be given in sequence. Af-
ter having solved T linear bandit tasks with parameters
w1, . . . ,wT ∈ Rd satisfying Aassumption B, our objective
is to perform well on the next (T + 1)-th task which will
still satisfy the same assumption. Following the reasoning
in [Cella et al., 2020], this problem can be formulated as the
minimization of the transfer regret which is defined as

R̃(T,N0) = R(N0,wT+1) (12)

having observed ∪Tt=1F
t

N0
, which corresponds to the T

σ−algebras associated to the already completed tasks. At
each round n ∈ [N0] associated to task T + 1, we could
indeed assume to have to solve T + 1 tasks in parallel all
considered at the same round n. Hence, the following holds.

Corollary 2. Let us consider the meta-learning bandit
model, that is, the minimization of the transfer regret in
Equation (12). Choose the groups G1, . . . ,GG as in the mul-
titask setting described above and let Assumptions A, B and
D hold with respect to Definition 2. Then, the transfer regret
R̃(T,N0) associated to the policy πDR satisfies

R̃(T,N0) ≤ Õ
(
s
√
N0√
T

)
(13)

with probability at least 1−2δ, where Õ(·) hides logarithmic
factors.

Result Discussion. As before, in order to see the benefit
of the proposed solution we could compare with the
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Figure 1: Cumulative reward measured over T = 40 tasks
N0 = 50 rounds long. Each task has K = 50 arms with
d = 50 features and sparsity constant s = 5.

strategy adopting the original lasso policy [Kim and Paik,
2019] independently on each task, whose regret would
satisfy R̃(T,N0) = R(N0,wT+1) ≤ O

(
s
√
N0

)
. Hence,

coherently with the result of Corollary 1, the proposed
solution would obtain a regret reduction of a factor

√
T .

At last we wish to point out that, while in this work
we have investigated the benefit of jointly sparse multi-task
bandits starting from the lasso bandit policy presented in
[Kim and Paik, 2019], starting from the general result of
Theorem 1, we conjecture that a similar generalization
to group-lasso would hold with alternative lasso-bandit
policies [see Bastani and Bayati, 2020, Hao et al., 2020,
Ariu et al., 2020].

6 EXPERIMENTAL RESULTS

In this section we test the effectiveness of the approach pro-
posed in Section 5 when solving the multi-task problem
under group-sparsity. The theoretical bound stated in Corol-
lary 1 showed a reduction of the incurred regret of order

√
T

compared to running the vanilla lasso-bandit policy [Kim
and Paik, 2019] independently on the T tasks.

6.1 SYNTHETIC EXPERIMENTS

In the experiment displayed in Figure 1 we compare five
different policies. All the parameters associated to the
compared policies have been carefully selected over a
logarithmic scale. The Oracle policy consists of separately
running an instance of the OFUL strategy [Abbasi-Yadkori
et al., 2011] on each task where the features space is
restricted only to the shared active dimensions. The random

policy simply chooses the arm to be pulled randomly.
Considering this policy is necessary just to ensure the
designed experiment instance not to be too simple. Then,
we have the DR-lasso bandit policy [Kim and Paik, 2019]
and our group-lasso variant proposed in Section 4. We want
to highlight that the main focus of our experiment is to
compare these two lasts policies. Remarkably the benefit
brought by the considered group-lasso structure.
At last, we compare with the MLinGreedy strategy
proposed in [Yang et al., 2020, Algorithm 1]. Particularly,
referring to the notation in the above paper, at the end of
each of the m ∈ [log2 log2N0] phases, we separately run
a ridge-regression scheme on each task considering only
samples collected during the last phase. Subsequently, we
combine the obtained estimators in a matrix Zn ∈ Rd×n
whose columns consist of the previously estimated vectors.
Finally, matrices B and W in [Yang et al., 2020, Algorithm
1] are calculated via a QR decomposition of matrix Zn
truncated at s features.

Synthetic Data. We generated an environment of
tasks in agreement with Assumption B. Differently from
the single-task environment used in [Kim and Paik, 2019],
we ran T = 40 tasks in parallel, each lasting for 50 rounds.
We considered each task to be a linear bandit problem with
a 50-dimensional feature space, where only s = 5 features
contribute the reward definition. The s sparse features are
sampled according to the uniform distribution over the d
original features. As done in [Kim and Paik, 2019], we
consider K = 50 arm vectors which are sampled from a
zero mean Gaussian distribution with covariance matrix Σ
satisfying Σi,i = 1 ∀i ∈ [d] and Σi,j = 0.7 ∀i 6= j. The
noisy components characterizing rewards are drawn from
a Gaussian distribution with 0 mean and 0.05 standard
deviation. The vertical blue-lines indicates the end of the
rounds associated to each task.

Result Discussion. In Figure 1 we can observe that
the more the tasks, the higher the cumulative-reward
collected by the group-lasso policy if compared to its
vanilla lasso counterpart. The MLinGreedy strategy of
[Yang et al., 2020] collects an higher cumulative reward
than the random policy but his performance are far from
being close to the one of our DR group-lasso solution.
Finally, from a comparison with the Oracle policy we
can observe a significant gap. This points out a practical
limitation of the considered base strategy [Kim and Paik,
2019] which is independent on the multi-task setting
considered in this paper. Hence, in the future it would be
interesting to investigate a better performing algorithm.
Notice that this does not seem to be a simple task, indeed,
as remarked in [Kim and Paik, 2019] the considered policy
already outperforms alternative strategies proposed for the
sparse bandit setting.
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Figure 2: Cumulative reward measured over T = 50 tasks
N0 = 20 rounds long and averaged over 5 repetitions. Each
task has K = 30 arms with d = 20 features.

6.2 REAL-DATA EXPERIMENTS

LastFM Data. We consider the Last.FM2 dataset consisting
of 92800 artist listening records from 1892 users. First, we
apply an SVD transformation and consider the d = 20
most-relevant features for the users and the songs. Then, we
randomly pick T = 50 users/tasks, each having N0 = 20
rounds. In each round we randomly pick 29 arms (items)
whose rating was < 4, and only one whose rating was ≥ 4.
Finally, a positive binary reward is given only to the single
arm having the highest score among the K = 30 available
(scores are computed as the inner product between the user-
song features).

Result Discussion. Coherently to the results observed over
the synthetic data, in Figure 2 we can observe that the gap
between the proposed policy and the competitors increase
the more the number of tasks. This can be observed by
comparing either to the vanilla DR-Lasso policy or to the
MLinGreedy one. It is important to remark that this behavior
was not always met overall the conducted experiments as it
requires Assumption B to hold. Secondly, we can observe
that when considering real data, the MLinGreedy policy
seems to collect poor performance.

7 CONCLUSIONS

In this work we have investigated the benefit of the group-
sparsity assumption in the linear bandit setting. Building on
an existing lasso-bandit policy, we have generalized it to the
group-lasso estimator. We provided novel group-lasso ora-
cle inequalities suited for bandit collected samples, and dis-

2https://grouplens.org/datasets/hetrec-2011/

cussed its application to the above setting. We then applied
the group lasso bandit policy to multi-task and meta-learning
linear bandits problems under joint sparsity assumptions on
the task weight vectors. Specifically, in the multi-task setting
we proposed a novel and simple lower bound which high-
lights some weaknesses of the existing state-of-the-art result.
Finally, we corroborate our theoretical results with synthetic
experiments. The poor practical performance of the vanilla
policy also affected our group-lasso generalization. Hence,
we are now considering alternative base policies.
In the future it would also be valuable to study optimal poli-
cies for the group lasso and multi-task learning setting in
terms of minimax regret bound considering linear contextual
bandit tasks.
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