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Abstract

The defining challenge for causal inference from
observational data is the presence of ‘confounders’,
covariates that affect both treatment assignment
and the outcome. To address this challenge, prac-
titioners collect and adjust for the covariates, hop-
ing that they adequately correct for confounding.
However, including every observed covariate in
the adjustment runs the risk of including ‘bad con-
trols’, variables that induce bias when they are
conditioned on. The problem is that we do not al-
ways know which variables in the covariate set are
safe to adjust for and which are not. To address
this problem, we develop Nearly Invariant Causal
Estimation (NICE). NICE uses invariant risk mini-
mization (IRM) [Arj19] to learn a representation of
the covariates that, under some assumptions, strips
out bad controls but preserves sufficient informa-
tion to adjust for confounding. Adjusting for the
learned representation, rather than the covariates
themselves, avoids the induced bias and provides
valid causal inferences. We evaluate NICE on both
synthetic and semi-synthetic data. When the co-
variates contain unknown collider variables and
other bad controls, NICE performs better than ad-
justing for all the covariates. Code is available at
github.com/claudiashi57/nice.

1 INTRODUCTION

Consider the following causal inference problem.

We want to estimate the effect of sleeping pills on lung dis-
ease using electronic health records, collected from multiple
hospitals around the world. For each hospital e and patient
i, we observe whether the drug was administered T

e

i
, the pa-

tient’s outcome Y
e

i
, and their covariates X

e

i
, which includes

comprehensive health and socioeconomic information. The

different hospitals serve different populations, so the distri-
bution of the covariate X

e is different across the datasets.
But the causal mechanism between sleeping pills T

e and
lung disease Y

e remains the same across hospitals. The data
in this example are observational. One challenge to causal
inference from observational data is the presence of con-

founding variables that influence both T and Y (Rosenbaum
and Rubin, 1983; Pearl, 2000). To account for confounding,
we try to find them among the covariates X and then adjust
for them, e.g., using a method like G-computation (Robins,
1986), backdoor adjustment (Pearl, 2009), or inverse propen-
sity score weighting (Austin, 2011). The selected covariates
are called the adjustment set.

To ensure that we have adjusted for all confounding vari-
ables, we might include every covariate in the adjustment
set. However, naively adjusting for all covariates runs the
risk of including “bad controls” (Bhattacharya and Vogt,
2007; Pearl, 2009; Cinelli and Hazlett, 2020), variables that
induce bias when they are adjusted for. In the example, a
health condition caused by lung disease would be a bad
control. It is causally affected by the outcome.

How can we exclude bad controls from the adjustment set?
One approach is to select confounders through a causal
graph (Pearl, 2009). We ask a domain expert to construct
a causal graph or a class of equivalent graphs. We then
select the confounders for the causal adjustment. However,
in practice, we may have thousands of covariates in the
dataset. It may be too difficult to construct a graph with
thousands of nodes.

Another approach is to restrict the adjustment set to those
that are known to be pre-treatment covariates (Rosenbaum,
2002; Rubin, 2009). However, this approach can lead us to
include covariates that are predictive of treatment assign-
ment but not the outcome. If the record is sufficiently rich,
this information can lead to near-perfect prediction of treat-
ment, which is a problem for causal inference. Specifically,
this creates an apparent violation of overlap, the requirement
that each unit had a non-zero probability of receiving treat-
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 ment (D’Amour et al., 2020). Practically, near-violations of
overlap can lead to unstable or high-variance estimates of
treatment effects (Ding et al., 2017).

But these methods, and their challenges, suggest a new
approach for causal estimation — we want a representation
of the covariates that contains sufficient information for
causal adjustment, excludes bad controls, and helps provide
low-variance causal estimates. This paper presents a method
to find such a representation.

Problem. We now state the problem plainly. We want
to do causal inference with data collected from multiple
environments, as in the hospitals’ example above. The
observed covariates are rich — including all the causal par-
ents of the outcome. There are no unobserved confounders,
but identifiability (Pearl, 2000) or strong ignorability
(Rosenbaum and Rubin, 1983) is not guaranteed, due to
the possible existence of bad controls. We do not know
which covariates are safe to adjust for. The main question
is: how can we use the multiple environments to find a
representation of the covariates for valid causal estimation?

To address this question, we develop nearly invariant causal
estimation (NICE), an estimation procedure for causal in-
ference from observational data where the data comes from
multiple datasets. The datasets are drawn from distinct en-
vironments, corresponding to distinct distributions of the
covariates.

NICE applies Invariant Risk Minimization (IRM) (Arjovsky
et al., 2019) for causal adjustment. IRM is a framework for
solving prediction problems. The goal is produce a predictor
that is robust to changes in the deployment domain. The
IRM procedure uses data from multiple environments to
learn an invariant representation F(T,X), a function such
that the outcome Y and the representation of the treatment
and covariates F(T,X) have the same relationship in each
environment. Predictors built on top of this representation
will have the desired robustness.

The main insight that enables NICE is that the IRM in-
variant representation also suffices for causal adjustment.
Informally, a representation is invariant if and only if it is
informationally equivalent to the causal parents of the out-
come Y (Arjovsky et al., 2019). For example, an invariant
representation of the medical records will isolate the causal
parents of lung disease. Assuming no mediators — variables
on the causal path between the treatment and outcome —
in the covariate set, the causal parents of Y constitute an
adjustment set that suffices for causal adjustment, minimally
impacts overlap, and that excludes all bad controls. Hence,
adjusting for an invariant representation is a safe way to
estimate the causal effect.1

Contributions. This paper develops NICE, an estimation

1To keep the exposition simple, we defer the discussion of
mediators to the appendix.

procedure that leverages data from multiple environments to
do causal inference. It articulates the theoretical conditions
under which NICE provides unbiased causal estimates and
evaluates the method on synthetic and semi-synthetic causal
estimation problems.

2 RELATED WORK

Estimating the treatment effect from observational data con-
sists of identification and estimation. The motivating prob-
lem is related to identification — we do not know what
covariates to adjust for.

In the introduction, we discussed two widely applied
adjustment approaches: selecting covariates basing on a
causal graph (Pearl, 2000) and restricting to covariates that
are known to be pre-treatment (Rosenbaum, 2002; Rubin,
2009). Another approach to select the adjustment set is
through causal discovery.

Causal discovery methods aim to recover causal relation-
ships or causal direction from data (Murphy, Mian, et al.,
1999; Spirtes et al., 2000; Shimizu et al., 2006; Glymour
et al., 2019; Shortreed and Ertefaie, 2017; Peters et al.,
2016; Mooij et al., 2016; Heinze-Deml et al., 2018). In
particular, NICE shares the same setup as invariance based
causal discovery methods. Peters et al. (2016), Heinze-Deml
et al. (2018), and Pfister et al. (2019) leverage multiple
environments to find the causal predictors of the target
variable in the linear, non-linear, and time series settings.

Causal discovery assumes that the observed covariates
correspond to well-defined variables in the causal graph
(e.g., no measurement issues). The representation learning
approach of NICE does not require this assumption. Further,
even in the case where this assumption holds, causal
discovery methods are designed to conservatively select
parents of Y . In practice, they often fail to select many
actual parents. In § 5.2, we show that while the causal
discovery method (Peters et al., 2016) is better at stripping
out bad controls, it also discards confounders, which leads
to poor estimation quality.

With identification, we can then estimate the treatment effect.
There is extensive literature on different statistical estima-
tors (Austin, 2011; Glynn and Quinn, 2010; VanderWeele
and Shpitser, 2011; Funk et al., 2011) and machine learning
methods adapted for causal inference (Hill, 2011; Athey
and Imbens, 2016; Beck et al., 2000; Hartford et al., 2017;
Shalit et al., 2016; Louizos et al., 2017; Yoon et al., 2018;
Shi et al., 2019). All these estimators and methods assume
identification and focus on improving the finite sample esti-
mation quality. In contrast, NICE considers a setting where
identification is not guaranteed.

NICE uses the principle of invariance to solve a causal
inference problem. A thread of related work uses the same
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Figure 1: If the composition of X
e is unknown, the

treatment effect cannot be identified. (cn=confounder,
cl=collider, pa=parents, an=ancestors, de=descendants)

principle to tackle different problems.

The principle of invariance is: if a relationship between X

and Y is causal, then it is invariant to perturbations that
changes the distributions of X . Conversely, if a relationship
is invariant to many different perturbations, it’s likely be
causal (Haavelmo, 1943; Bühlmann, 2018). This principle
inspired a line of causality-based domain adaptation and
robust prediction work.

Rojas-Carulla et al. (2018) apply the idea for causal transfer
learning, assuming the conditional distribution of the target
variable given some subset of covariates is the same across
domains. Magliacane et al. (2018) relax that assumption.
Peters et al. (2016) and Heinze-Deml et al. (2018) apply
this principle for causal variable selection from multiple
environments. Zhang et al. (2020) recast the problem of
domain adaptation as a problem of Bayesian inference on
the graphical models. Arjovsky et al. (2019) advocate a
new generalizable statistical learning principle that is based
on the invariant principle. Rosenfeld et al. (2020) critically
examined the generalizability of the proposed principle and
its implementations.

These works focus of robust prediction. NICE focuses
causal estimation. NICE is complementary as it studies
the idea of applying domain adaptation methods for causal
estimation. In particular, we focus on the application of
IRM for treatment effect estimation.

3 NEARLY INVARIANT CAUSAL
ESTIMATION

We observe multiple datasets. Each dataset is from an envi-
ronment e, in which we observe a treatment T

e, an outcome
Y

e, and other variables X
e, called covariates. Assume each

environment involves the same causal mechanism between
the causal parents of Y

e and Y
e, but otherwise might be

different from the others, e.g., in the distribution of X
e. As-

sume we have enough information in X
e to estimate the

causal effect, i.e., it contains a set of variables sufficient for
adjustment. But we do not know the status of each covariate
in the causal graph. A covariate might be an ancestor, con-
founder, collider, parent, or descendant. Figure 1 shows an

example graph that defines these terms.

Each environment is a data generating process (DGP)
with a causal graph and an associated probability distri-
bution P

e. The data from each environment is drawn i.i.d.,
{X

e

i
,T e

i
,Y e

i
} iid⇠ P

e. The causal mechanism relating Y to T

and X is assumed to be the same in each environment. In the
example from the introduction, different hospitals consti-
tute different environments. All the hospitals share the same
causal mechanism for lung disease, but they vary in the pop-
ulation distribution of who they serve, their propensity to
prescribe sleeping pills, and other aspects of the distribution.

The goal is to estimate the average treatment effect on the

treated (ATT)2 in each environment,

ye , E [Y e |do(T e = 1),T e = 1]
�E [Y e |do(T e = 0),T e = 1] .

(3.1)

The use of do notation (Pearl, 2000) indicates that the esti-
mand is causal. The ATT is the difference between interven-

ing by assigning the treatment and intervening to prevent
the treatment, averaged over the people who were actually
assigned the treatment. The causal effect for any given indi-
vidual does not depend on the environment. However, the
ATT does depend on the environment because it averages
over different populations of individuals.

3.1 CAUSAL ESTIMATION

For the moment, consider one environment. In theory, we
can estimate the effect by adjusting for the confounding vari-
ables that influence both T and Y (Rosenbaum and Rubin,
1983). Let Z(X) be an admissible subset of X—it contains
no descendants of Y and blocks all “backdoor paths” be-
tween Y and T (Pearl and Paz, 2014). An admissible subset
in Figure 1 is any that includes Xcn but excludes Xcl and Xde.
Using Z(X), the causal effect can be expressed as a function
of the observational distribution,

y = EX [EY [Y |T = 1,Z(X)]

�EY [Y |T = 0,Z(X)] |T = 1].
(3.2)

We estimate y in two stages. First, we fit a model Q̂ for
the conditional expectation Q(T,Z(X)) = EY [Y |T,Z(X)].
Second, we use Monte Carlo to approximate the expectation
over X ,

ŷ =
1

Âi ti
Â

i:ti=1

�
Q̂(1,Z(Xi))� Q̂(0,Z(Xi))

�
, (3.3)

The function Q̂ can come from any model that predicts Y

from {T,Z(X)}.
2For simple exposition, we focus on the ATT estimation. The

method can also be applied to conditional average treatment effect
or average treatment estimations.



 If the causal graph is known then the admissible set
Z(X) can be easily selected and the estimation in (3.2) is
straightforward. But here we do not know the status of each
covariate—if we inadvertently include bad controls in Z(X)
then we will bias the estimate. To solve this problem, we
develop a method for learning an admissible representation

F(T,X), which is learned from datasets from multiple
environments. An admissible representation is a function
of the full set of covariates but one that captures the
confounding factors and excludes the bad controls, i.e., the
descendants of the outcome that can induce bias.3 Given
the representation, we estimate the conditional expectations
EY [Y |F(T,X)] and proceed to estimate the causal effect.

3.2 INVARIANT RISK MINIMIZATION

To learn an admissible representation, we use IRM. IRM is
a framework for learning predictors that perform well across
many environments. We first review the main ideas of IRM
and then adapt it to causal estimation.

Each environment is a causal structure and probability dis-
tribution. Informally, for an environment to be valid, it must
preserve the causal mechanism relating the outcome and the
other variables.

Definition 3.1 (Valid environment Arjovsky et al., 2019).
Consider a causal graph G and a distribution P(X ,T,Y )
respecting G . Let Ge denote the graph under an interven-
tion and P

e = P(Xe,T e,Y e) be the distribution induced by
the intervention. The intervention can be either atomic or
stochastic. An intervention is valid with respect to (G ,P) if
(i) EPe [Y e|Pa(Y )] = EP [Y |Pa(Y )], and (ii) V (Y e|Pa(Y )) is
finite. An environment is valid with respect to (G ,P) if it
can be created by a valid intervention.

Given this definition, a natural notion of an invariant rep-
resentation is one where the conditional expectation of the
outcome is the same regardless of the environment.

Definition 3.2 (Invariant representation). A representation
F(T,X) is invariant with respect to environments E if and
only if E [Y e1 |F(T e1 ,Xe1) = p] = E [Y e2 |F(T e2 ,Xe2) = p]
for all e1,e2 2 E .

Arjovsky et al. (2019) recast the problem of finding an invari-
ant representation as one about prediction. In this context,
the goal of IRM is to learn a representation such that there is
a single classifier w that is optimal in all environments. Thus
IRM seeks a composition w�F(T e,Xe) that is a good esti-
mate of Y

e in the given set of environments. This estimate
is composed of a representation F(T,X) and a classifier w

that estimates Y from the representation.

3An admissible representation is analogous to an ‘admissible
set’ (Pearl, 2000), which is a valid adjustment set.

Definition 3.3 (Invariant representation via predictor Ar-
jovsky et al., 2019). A data representation F : X !H

elicits an invariant predictor across environments E if there
is a classifier w : H ! Y that is simultaneously optimal
for all environments. That is,

w 2 argmin
w̄:H!Y

R
e(w̄�F) for all e 2 E , (3.4)

where R
e is the the training objective’s risk in environment e.

The invariant representations in Definitions 3.2 and 3.3
align if we choose a loss function for which the mini-
mizer of the associated risk in (3.4) is a conditional ex-
pectation. (Examples include squared loss and cross en-
tropy loss.) In this case, we can find an invariant predictor
Q

inv = w�F(T e,Xe) = E [Y |F(T,X)] by solving (3.4) for
both w and F.

However, the general formulation of (3.4) is computationally
intractable, Arjovsky et al. (2019) introduce IRMv1 as a
practical alternative.

Definition 3.4 (IRMv1Arjovsky et al., 2019 ). IRMv1 is:

F̂ = argmin
F

Â
e2E

R
e(1.0 ·F)+l k —w|w=1.0R

e(w ·F) k2 .

(3.5)

Notice here, IRMv1 fixes the classifier to the simplest
possible choice: multiplication by the scalar constant
w = 1.0. The task is then to learn a representation F such
that w = 1.0 is the optimal classifier in all environments. In
effect, F becomes the invariant predictor, as Q

inv = 1.0 ·F.
The gradient norm penalizes model deviations from the
optimal classifier in each environment e, enforcing the
invariance. The hyperparameter l controls the trade-off
between invariance and predictive accuracy.4

In practice, we parameterize F with a neural network that
takes {t

e

i
,xe

i
} as input and outputs a real number. Let ` be

a loss function, such as squared error or cross entropy, and
ne be the number of units sampled in environment e. Then,
we learn F̂ by solving IRMv1 where each environment risk
is replaced with the corresponding empirical risk:

R̂
e(Q) =

1
ne

Â
i

`(ye

i
,Q(te

i
,xe

i
)). (3.6)

Q̂
inv = 1.0 · F̂ is an empirical estimate of E [Y |F(T,X)].

3.3 NEARLY INVARIANT CAUSAL ESTIMATION

We now introduce nearly invariant causal estimation (NICE).
NICE is a causal estimation procedure that uses data col-
lected from multiple environments. NICE exploits invari-
ance across the environments to perform causal adjustment

4For details on IRMv1, see (Arjovsky et al., 2019, section 3.1)



 without detailed knowledge of which covariates are bad
controls.

Informally, the key connection between causality and invari-
ance is that if a representation is invariant across all valid en-
vironments then the information in that representation is the
information in the causal parents of Y . Since the causal struc-
ture relevant to the outcome is invariant across environments,
a representation capturing only the causal parents will also
be invariant. We can see that Pa(Y ) is the minimal informa-
tion required for invariance. A representation that is invari-
ant over all valid environments will be minimal; hence, an
invariant representation must capture only the parents of Y .

NICE is based on two insights. First, as just explained,
if F(T,X) is invariant over all valid environments, then
E [Y |T,Pa(Y )\{T}] = E [Y |F(T,X)]. Second, Pa(Y )\{T}
suffices for causal adjustment. That is, Pa(Y )\{T} blocks
any backdoor paths and does not include bad controls. Fol-
lowing (3.2),

y = E[E [Y | T = 1,Pa(Y )\{T}]
�E [Y | T = 0,Pa(Y )\{T})] |T = 1]

(3.7)

Since E [Y |T,Pa(Y )\{T}] = E [Y |F(T,X)],

y = E [E [Y | F(1,X)]�E [Y | F(0,X)] |T = 1] . (3.8)

Recall the invariant predictor Q
inv(T,X) = E [Y | F(T,X)].

The NICE procedure is

1. Input: multiple datasets De := {(Xe

i
,Y e

i
,T e

i
)}ne

i=1.

2. Estimate the invariant predictor Q̂
inv = 1.0 · F̂ using an

invariant objective, such as IRMv1.

3. Compute ŷe = 1
Âi t

e

i

Â
i:te

i
=1

Q̂
inv(1,xe

i
)� Q̂

inv(0,xe

i
) for

each environment e.

Similar to the function Q̂ in (3.2), Q̂
inv can come from any

prediction model that uses an invariant objective. In § 5,
we use linear regression, TARNet (Shalit et al., 2016), and
Dragonnet (Shi et al., 2019). We call the procedure ‘nearly’
invariant as we only ever have access to a limited number
of environments, so we cannot be certain that we’ll achieve
invariance across all valid environments.

4 JUSTIFICATION OF NICE

We now establish the validity of NICE as a causal estimation
procedure. All proofs are in the appendix.

First consider the case where we observe data from a suffi-
ciently diverse set of environments that the learned represen-
tation is invariant across all valid environments. We prove
that conditioning on a fully invariant representation is the
same as conditioning on the parents of Y .

Lemma 4.1. Suppose that E [Y |Pa(Y ) = a] 6=
E [Y |Pa(Y ) = a

0] whenever a 6= a
0
. Then a represen-

tation F is invariant across all valid environments if

and only if E [Y e|F(T e,Xe)] = E [Y |Pa(Y )] for all valid

environments.

Lemma 4.1 helps show that a representation that elicits an
invariant predictor suffices for adjustment.

Theorem 4.2. Let L be a loss function such that the min-

imizer of the associated risk is a conditional expectation,

and let F be a representation that elicits a predictor Q
inv

that is invariant for all valid environments. Assuming X
e

does not contain mediators between the treatment and the

outcome, then ye = E
⇥
Q

inv(1,Xe)�Q
inv(0,Xe)|T e = 1

⇤
.

Theorem 4.2 shows that the NICE estimand is equal to the
ATT as long as the predictor Q

inv is invariant across all valid
environments.

In practice, if a predictor is invariant across a limited set of
diverse environments, it may generalize to all valid environ-
ments. Assuming a linear data generating process, Arjovsky
et al. (2019) establish sufficient conditions on the number
and diversity of the training environments such that the
learned representation generalizes to all valid environments.
In the non-linear case, there are no known sufficiency results.
However, Arjovsky et al. (2019) give empirical evidence
that access to even a few environments may suffice.5

In addition to identifiability, non-parametric estimation of
treatment effects with finite data, i.e., (3.3), requires ‘pos-
itivity’ or ‘overlap’ – both treatment and non-treatment
have a non-zero probability for all levels of the confounders
(Rosenbaum and Rubin, 1983; Imbens, 2004). Let F(Xe)
be the covariate representation, i.e., F(Xe) = {F(T e =
1,Xe),F(T e = 0,Xe)}, in the following theorem, we es-
tablish that if the covariate set X is sufficient for overlap,
then F(Xe) is sufficient for overlap.

Theorem 4.3. Suppose e  P(T e = 1|Xe)  1� e with

probability 1, then e  P(T e = 1|F(Xe)) 1�e with prob-

ability 1.

The intuition is that the richer the covariate set is, the more
likely it is to accurately predict the treatment assignment
(D’Amour et al., 2020). The covariate representation F(Xe),
by definition, contains less information than X

e, therefore
F(Xe) satisfies overlap if X

e satisfies overlap.

Even when invariance across all valid environments is not
guaranteed, NICE may still improve the estimation quality
when there are possible colliders in the adjustment set. If
the observed environments are induced by valid interven-
tions, either atomic or stochastic, on the bad controls, an
invariant representation over these environments can also

5Establishing the sufficiency result of IRM is an open question.
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Figure 2: We observe {X1,X2}, but do not know its compo-
sition. In (a) {X1,X2} is a valid adjustment. In (b) and (c),
X2 is downstream of Y , so {X1,X2} is not a valid adjustment.

exclude bad controls. Even when the representation does
not exclude the bad controls, invariance may remove at least
some (if not all) collider dependence. Intuitively, condition-
ing on a subset of collider information should reduce bias in
the resulting estimate. Theorem 7.1 in the appendix shows
that this intuition holds for at least one illustrative causal
structure. A fully general statement remains open.

The case of mediators. So far, we assumed the observed
covariate set X does not contain mediators between T and Y .
What happens to the interpretation of the learned parameter,
ŷe, if the adjustment set contains mediators?

Intuitively, NICE captures the information in the direct link
between T and Y . Concretely, if there are no mediators, the
parameter reduces to ATT. If there are mediators but no con-
founders, the parameter reduces to the Natural Direct Effect
(Pearl, 2000). If there are mediators and confounders, we de-
fine the parameters as the natural direct effect on the treated
(NDET). The mathematics definitions are in the appendix.

5 EMPIRICAL STUDIES

We study the performance of NICE with three experiments.
We are interested in three empirical questions: (1) Does
NICE strip out bad controls in practice? (2) Is NICE
"cost-less" when there are no bad controls? (3) What is the
effect of different amounts of environmental variation on
NICE’s performance.

We find that (1) when there are bad controls in the adjust-
ment set, NICE can reduce bias induced by the bad controls.
(2) When there are no bad controls in the adjustment set,
NICE does not hurt the estimation quality. (3) Whether
NICE can strip out bad controls depends on the diversity of
the environments. The more diverse the environments, the
more likely it is that NICE can strip out the bad controls.

5.1 EXPERIMENTAL SETUP.

We construct three experiments corresponding to different
settings. We first consider the setting where NICE is theo-
retically guaranteed to strip out bad controls. In § 5.2, the
data are collected from diverse environments, and the DGPs

Figure 3: NICE reduces bias when the adjustment con-
tains bad controls and does not hurt if the adjustment
set is valid. When ICP returns an empty set, estimated
causal effect is zero. The figure reports average MAE
and standard error of the SATT over 10 simulations.

are linear. In the non-linear setting, there are no known suf-
ficiency results for the generalizability of IRM. Therefore,
there is no theoretical guarantee that NICE can strip out
bad controls. To study whether NICE can reduce bias from
bad controls empirically, we validate NICE using non-linear
semi-synthetic benchmark datasets in § 5.3. Furthermore,
we study the effect of different amounts of environmental
variation on NICE’s performance in § 5.4.

Causal Estimands & Evaluation metrics. We consider
two estimands: the sample average treatment effect on the
treated (SATT), ys =

1
Âi ti

Âi:ti=1 (Q(1,Z(xi))�Q(0,Z(xi)))
and the conditional average treatment effect (CATE),
t(xi) = Q(1,Z(xi))�Q(0,Z(xi)) (Imbens, 2004). For the
SATT, the evaluation metric is the mean absolute error
(MAE), eatt = |ŷs�ys|. For the CATE, the metric is the
Precision in Estimation of Heterogeneous Effect (PEHE)
ePEHE = 1

n
Ân

0(t̂(xi)� t(xi))2 (Hill, 2011). PEHE reflects
the ability to capture individual variation in treatment ef-
fects. The main paper shows the MAE of the SATT averaged
across environments. For the evaluation of CATE, see the
appendix.

Predictor Choices. Under the NICE procedure, the invari-
ant predictor Q̂

inv can be any class of predictor trained with
an IRMv1 objective. In the linear settings, we use OLS-2 as
the predictor. OLS-2 is linear regression with two separate
regressors for the treated and the control population.

In the nonlinear settings, we consider two neural network
models similar to the structure of TARNet (Shalit et al.,
2016) and Dragonnet (Shi et al., 2019). TARNet is a two-
headed model with a shared representation Z(X) 2 R

p, and
two heads for the treated and control representation. The
network has 4 layers for the shared representation and 3
layers for each expected outcome head. The hidden layer



 

Figure 4: NICE strips out bad controls, which leads
to better downstream treatment effect estimation. ICP
(causal discovery) strips out bad controls, but also use-
ful confounders (see figure 3). The non-causal error is
measured by the mean square error of the weights on X2.
Lower is better.

size is 250 for the shared representation layers and 100 for
the expected outcome layers. We use Adam (Kingma and
Ba, 2014) as the optimizer, set the learning rate as 0.001, and
an l2 regularization rate of 0.0001. For Dragonnet, there’s an
additional treatment head, which makes treatment prediction
from the shared representation. For the hyper-parameter l
used in IRMv1, we use l = 10 in the linear settings and
l = 100 in the non-linear settings.

Since we use the same predictor across different DGPs, the
hyper-parameters are chosen arbitrarily. We use data from
all environments to train and evaluate the predictor. The
main paper presents results using TARnet. Results derived
from Dragonnet are in the appendix.

Adjustment Schemes. We compare estimation quality pro-
duced by the following adjustment schemes: (1) adjusting
for all covariates, (2) NICE, and (3) causal variable selec-
tion. Under (1), we pool the data across environments to
fit a predictor Q̂ and compute SATT using (3.2). Under (3),
we first use Invariant Causal Prediction (ICP) (Peters et al.,
2016) to select an adjustment set. ICP is a variable selection
method that identifies the target variable’s causal parents
by leveraging data from multiple environments. We then
pool data across environments, use the adjustment set to fit
a predictor and compute SATT using (3.2). The estimation
procedure of NICE is described in § 3.3.

5.2 NICE IN LINEAR SETTINGS

We simulate data with the three causal graphs in Figure 2.
With a slight abuse of notation, each intervention e gener-
ates a new environment e with interventional distribution
P(Xe,T e,Y e). T

e is the binary treatment and Y
e is the out-

come. X
e is a 10-dimensional covariate set that differs across

DGPs. X
e = (Xe

1 ,X
e

2 ), where X
e

1 is a five-dimensional con-
founder. X

e

2 is either noise, a descendant, or a collider in

At Ay A1

Xt Xy

T Y

Z

Figure 5: The DGP for § 5.4. The adjustment set {X,
A} is valid. Adjustment set {X, A, Z} is not valid.

each DGP. The DGPs are:

X
e

1  N (0,e2)

T
e Bern(sigmoid(Xe

1 ·wxte +N (0,1)))

t  5+N (0,s2)

Y
e X

e

1 ·wxye +T
e · t +N (0,e2)

In (a) X
e

2  N (0,1), in (b) X
e

2  e⇤Y
e +N (0,1), and in

(c) X
e

2  e⇤Y
e +T

e +N (0,1).

For evaluation, following (Arjovsky et al., 2019), we create
three environments E = {0.2,2,5}. We ran 10 simulations.
In each simulation, we draw 1000 samples from each envi-
ronment. We consider two types of variations: (1) whether
the observed covariates S(X) are scrambled versions of the
true covariates X . If scrambled, S is an orthogonal matrix.
If not scrambled, S is an identity matrix. (2) whether the
treatment effects are heteroskedastic across environments.
In the heteroskedastic setting t  5 +N (0,e2). In the
environment-level homoskedastic setting t  5+N (0,1).

We compare the estimation quality produced by four differ-
ent adjustment approaches: (1) adjusting for all covariates,
(2) causal variable selection, (3) NICE, and (4) No adjust-
ment. The results in Figure 3 and Figure 4 are under the
unscrambled and heteroskedastic variant. The results of the
other variants are in the appendix.

Analysis. Figure 3 reports the average of the MAE of SATT
estimates over all three environments. We observe that when
the covariate set does not include bad controls—simulation
setting (a)— NICE performs as well as adjusting for all
covariates. When the covariate set includes bad controls that
are closely related to the outcome, that is (b) and (c), NICE
can help reduce the estimation bias.

To understand why NICE reduces the estimation bias, we
look at the weights of the control predictor. Ideally, the
weights that correspond to the bad controls should be 0. As
shown in Figure 4, the predictor trained an IRMv1 objective
places less weight on the bad controls than the predictor
using empirical risk minimization. We observe ICP suc-
cessfully strips out most of the bad controls. However, it
produces worse causal estimates as it also strips out con-
founders. We believe that this is because (1) the amount of
noise in the DGP is non-trivial, and (2) in some settings,



 the observed covariates are scrambled versions of the true
covariates. The result suggests that while ICP is a robust
causal discovery method, it should not be used for down-
stream estimation. A similar observation is made in Zhao et
al. (2016), where slight perturbations on ICP’s assumptions
might lead to poor performance.

5.3 NICE IN NON-LINEAR SETTINGS

We validate NICE for the non-linear case on a benchmark
dataset, SpeedDating. SpeedDating was collected to
study the gender difference in mate selection (Fisman
et al., 2006). The study recruited university students to
participate in speed dating, and collected objective and
subjective information such as ‘undergraduate institution’
and ‘perceived attractiveness’. It has 8378 entries and 185
covariates. ACIC 2019’s simulation samples subsets of
the covariates to simulate binary treatment T and binary
outcome Y . Specifically, it provides four modified DGPs:
Mod1: parametric models; Mod2: complex models; Mod3:
parametric models with poor overlap; Mod4: complex mod-
els with treatment heterogeneity. Each modification includes
three versions: low, med, high, indicating an increasing
number of covariates included in the models for T and Y .

Table 1: If the adjustment set is valid, NICE does not hurt
the estimation performance. The table reports average MAE
and bootstrap standard deviations of the SATT estimation.

Valid Adjustment eatt

MOD1 MOD2 MOD3 MOD4
Low Adjust All .04± .08 .05± .09 .07± .09 .01± .01

NICE .07± .03 .02± .01 .09± .03 .04± .02
Med Adjust All .07± .10 .05± .05 .04± .04 .07± .08

NICE .05± .02 .04± .03 .05± .03 .03± .02
High Adjust All .07± .07 .06± .05 .06± .07 .04± .04

NICE .02± .01 .06± .03 .04± .02 .07± .04

The ACIC simulations are designed to assess the estimation
quality of predictors and estimators. They do not come
in multiple environments, nor do the covariates include
bad controls. To create multiple environments, we draw
6000 samples and select a covariate x that’s not the causal
parent of Y . We sort the samples based on x and divide
them into three equal sized environments. For each DGP,
we draw 10 bootstrap samples. To simulate bad controls,
we included 20 copies of a collider in the adjustment set:
X

e
co
= T

e +Y
e +N (0,e2), where e 2 {0.01,0.2,1}.

Analysis. We compare two adjustment schemes: adjusting
for all covariates and NICE. We first consider the setting
where there are no bad controls. Table 1 reports the average
SATT MAE and standard deviations over 10 bootstraps
under two adjustment schemes. We observe that NICE does
not hurt the estimation quality in comparison to adjusting
for all covariates. We also consider the setting where there

Table 2: NICE reduces estimation bias in the presence of
bad controls. The table reports the average MAE and boot-
strap standard deviation of SATT.

Bad Controls in Adjustment Set eatt

MOD1 MOD2 MOD3 MOD4
low Adjust All .26± .09 .42± .03 .34± .08 .46± .09

NICE .09± .07 .03± .01 .11± .04 .08± .04
med Adjust All .38± .10 .35± .06 .40± .17 .3± .09

NICE .06± .03 .06± .03 .06± .02 .03± .03
high Adjust All .32± .14 .38± .09 .42± .05 .28± .05

NICE .05± .03 .11± .03 .16± .05 .11± .05

Figure 6: NICE mitigates bad controls more with access to
more diverse environments. The x-axis is the environmental
diversity. The y-axis is the average MAE of the SATT.
is a strong collider. As shown in Table 2, NICE reduces
collider bias across simulation setups. However, we also
observe that while it reduces the collider bias, it does not
eliminate it completely. One potential reason is that the
predictor is not optimal.

5.4 THE EFFECT OF ENVIRONMENT
VARIATIONS ON NICE’S PERFORMANCE.

In this experiment, we examine the effect of environment
variations on NICE’s performance. We simulate non-linear
data using the causal graph illustrated in Figure 5. The
details of the data simulation are in the appendix.

We first draw three source environments {P
e1 ,Pe2 ,Pe3} that

are diverse. To control the level of environment variation,
we construct three new environments {P

e
0
1 ,Pe

0
2 ,Pe

0
3} that

are mixtures of the three source environments. Respectively,
P

e
0
1 ,Pe

0
2 ,Pe

0
3 draw (p1, p2, p3) proportions from P

e1 , (p2,
p3, p1) proportions from P

e2 , and (p2, p3, p1) proportions
from P

e3 . The proportions (p1, p2, p3) sum to one.

We approximate the diversity of the environments by the
diversity of the proportions. The diversity measure is:
1
3 Âi j |pi� p j|. We consider 14 set of new environments,
induced by different combination of the mixture probabili-
ties. We compare the estimation quality of NICE when given



 a covariate set that include bad controls {X ,A,Z} against
adjusting for a valid covariate set {X ,A}.

As shown in Figure 6, the more diverse the environments,
the more likely that NICE can strip out bad controls and
reduce bias. When environments are sufficiently diverse, the
learned representation is equivalent to a valid adjustment set.

6 DISCUSSION

NICE lives at the intersection of representation learning and
causal inference, demonstrating how representation learning
ideas can be harnessed to improve causal estimation. Here
we have examined the causal setup where it’s unknown
which covariates are safe to adjust for. One important direc-
tion for future work is to expand this setting to one where
we combine partial causal knowledge with representation
learning for estimating effects in more general scenarios.
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