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Abstract

In this paper, we propose deep architectures for
learning instance specific abstain (reject option) bi-
nary classifiers. The proposed approach uses dou-
ble sigmoid loss function as described by Kulin
Shah and Naresh Manwani in ("Online Active
Learning of Reject Option Classifiers", AAAI,
2020), as a performance measure. We show that the
double sigmoid loss is classification calibrated. We
also show that the excess risk of 0-d-1 loss is up-
per bounded by the excess risk of double sigmoid
loss. We derive the generalization error bounds for
the proposed architecture for reject option classi-
fiers. To show the effectiveness of the proposed
approach, we experiment with several real world
datasets. We observe that the proposed approach
not only performs comparable to the state-of-the-
art approaches, it is also robust against label noise.
We also provide visualizations to observe the im-
portant features learned by the network correspond-
ing to the abstaining decision.

1 INTRODUCTION

In classification problems, learning becomes difficult when
the cost of misclassification is extremely high. It becomes
more challenging when learning critical tasks such as
stock markets, medical diagnosis, autonomous driving,
biotech, cyber-security, identification technologies, and
robot-assisted surgery. In such situations, it becomes ad-
vantageous to refrain from taking any decision when in a
dilemma. Such classifiers are called abstain (reject) option
classifiers. Abstain classifiers have been successfully used
in medical diagnosis [da Rocha Neto et al., 2011], finan-
cial forecasting [Rosowsky and Smith, 2013], genomics
[Hanczar and Dougherty, 2008], speech emotion recogni-
tion [Sridhar and Busso, 2019], crowdsourcing [Li et al.,

2017] etc.

Let X ⊂ RD be the feature space and {+1,−1} be the
label space. An abstaining classifier can be defined using a
function f : X → R and a rejection function ρ : X → R+

as follows.

g(f(x), ρ(x)) =


1, I[f(x) > ρ(x)]

reject, I[|f(x)| ≤ ρ(x)]

−1, I[f(x) < −ρ(x)]

The goal here is to simultaneously learn the function f(·)
and ρ(.). The performance of a given abstain classifier is
measured using loss Ld (0-d-1) as follows.

Ld(yf(x), ρ(x)) = I[yf(x) < −ρ(x)] + d I[|yf(x)| ≤ ρ(x)]
(1)

where d ∈ (0, 0.5) is the cost of rejection. Loss Ld is min-
imized by generalized Bayes classifier [Chow, 1970] de-
scribed as follows.

f∗d (x) =


1, η(x) > 1− d
reject, d ≤ η(x) ≤ 1− d
−1, η(x) < d

(2)

where η(x) = P (y = 1|x). Loss Ld is discontinuous. Thus,
minimizing risk under Ld is difficult. In practice, various
surrogate losses of Ld have been used for learning abstain
classifiers.

Kernel Based Approaches: Different algorithms for
learning abstaining classifiers are proposed based on differ-
ent choices of surrogates of Ld. Generalized hinge [Bartlett
and Wegkamp, 2008] and double hinge [Grandvalet et al.,
2009] are convex surrogates of Ld. Risk minimization using
these losses results in support vector machine (SVM) like
algorithms. However, approaches proposed in [Bartlett and
Wegkamp, 2008, Grandvalet et al., 2009] learn the rejection
bandwidth as a post-processing step resulting in subopti-
mal solutions. Manwani et al. [2015], Shah and Manwani
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 [2019] propose approaches based on nonconvex surrogate
of Ld called double ramp loss. Cortes et al. [2016] pro-
pose max-hinge loss and plus-hinge loss for rejection option
and propose a kernel-based approach that minimizes these
losses. Online active learning of abstaining classifiers is
discussed in [Shah and Manwani, 2020]. These approaches
face three major challenges. (a) These approaches rely on
kernel trick to learn nonlinear classifiers. Thus, the scala-
bility of these methods with big data is an issue. (b) Func-
tion ρ(.) is assumed to be a constant for all instances (i.e.,
ρ(x) = ρ, ∀x ∈ X ). Thus, these approaches do not learn
instance-specific rejection functions. (c) Most of these ap-
proaches are not robust against the label noise. Though the
approach proposed in Shah and Manwani [2019] is shown
robust against label noise, it uses kernels to learn nonlinear
classifiers and cannot produce instance-specific rejection
bandwidth.

Deep Learning-based Approaches for Abstain Classi-
fiers: A neural networks based classifiers with abstain
option is proposed De Stefano et al. [2000]. In this model,
rejections are done after the learning of the classifier. This
results in a suboptimal abstain option classifier. A similar
approach for deep neural networks(DNNs) is proposed in
Geifman and El-Yaniv [2017], which finds the best abstain-
ing threshold based on the softmax output corresponding
to each class from already trained networks. The method
proposed in El-Yaniv et al. [2010] optimizes a pair of func-
tions, a classification function, and a selective function with
a risk-coverage trade-off, where coverage is defined as the
ratio of samples selected for classification amongst the com-
plete dataset. Deep learning implementation of the same
is proposed in Selectivenet [Geifman and El-Yaniv, 2019].
This approach learns the appropriate selection and classifica-
tion function for a given coverage in a deep learning setting.
However, this approach does not take rejection cost d into
account in their objective function. The main issue with such
an approach is that it does not allow the data to decide the
rejection rate. For example, in instances where the classes
are separable with sufficient margin, this approach rejects
and learns the classifier using the remaining examples based
on specified coverage parameters. Thulasidasan et al. [2019]
consider abstaining option as another class. However, this
changes the abstain option’s interpretation as the purpose of
abstaining option is to capture the overlapping regions of
any two classes.

Proposed Approach: In this paper, we propose an
instance-specific deep learning approach with abstain op-
tion. The proposed approach takes the cost of rejection also
as an input. It simultaneously learns the decision surface
(f(x)) and rejection function (ρ(x)) which depends on the
cost of rejection d. We use double sigmoid loss function to
compare the output of the network with the ground truth.
Note that the double sigmoid loss is a smooth nonconvex

surrogate of Ld (see Eq. (1)).

Key Contributions: Our key contributions in this paper
are as follows.

1. We show that the double sigmoid loss function is clas-
sification calibrated. We provide the excess risk bounds
of the double sigmoid loss.

2. We propose a novel instance-specific deep abstain net-
work called RISAN. RISAN has two variants, with and
without instance-specific rejection function.

3. We derive the generalization error bounds for the pro-
posed approach RISAN.

4. We show the proposed approach’s effectiveness by
comparing it with various state-of-the-art algorithms
on various benchmark datasets. We also show by ex-
periments that RISAN is robust against label noise in
the data.

5. We also show visualizations that focus on the areas
in an image leading the network to choose to abstain
option. These visualizations reflect that our network
learns useful representations for the rejection as well
as classification.

Paper Organization: The rest of the paper is organized
as follows. We discuss the double sigmoid loss and its prop-
erties in Section 2. In Section 3, we discuss the proposed
approach RISAN, its different variants, and generalization
bounds. We show the experimental results in Section 4. Ro-
bustness results of RISAN are given in Section 5. We discuss
the visualizations of the representations learned by RISAN
in Section 6. We conclude the paper with some remarks and
future directions in Section 7.

2 DOUBLE SIGMOID LOSS FOR
ABSTENTION

As discussed earlier, X ⊆ RD is the feature space and Y ∈
{±1} is the label space. Let P(x, y) be the unknown joint
distribution on X × Y . Let S = {(x1, y1), . . . , (xN , yN )}
be the finite training set where each (xi, yi) is generated
i.i.d. from the distribution P(x, y). The goal here is to learn
functions f : X → R and ρ : X → R+ using the training
set S.

Here, functions f(.) and ρ(.) are represented using deep
neural network (to be discussed shortly). To evaluate the
performance of the learnt functions f(.) and ρ(.), we use
double sigmoid loss function Shah and Manwani [2020] as
follows.

Lds(yf(x), ρ(x)) = 2dσ(yf(x)− ρ(x))

+ 2(1− d)σ(yf(x) + ρ(x)) (3)



 where d is the cost of rejection and σ(a) = (1+exp (γa))−1

is the sigmoid function with (γ > 0). The risk under double
sigmoid loss function is as follows.

Rds(f, ρ) = EX ,Y [Lds(yf(x), ρ(x))]

Here, we establish theoretical properties of the double sig-
moid loss function.

Classification Calibration Double sigmoid loss is a lin-
ear combination of two sigmoid functions and hence is a non
convex loss function. We first show classification calibration
on double sigmoid loss by ensuring that the risk under Lds
is minimized by the generalized bayes classifier. To approx-
imate the optimal classifier, classification calibration is the
minimal requirement for any loss function.

Theorem 1. For a fixed cost of rejection d, the risk under
double sigmoid loss is minimized by the generalized Bayes
classifier f∗d (.) (see Eq.(2)).

Excess Risk Bound We now relate the excess risk of
Ld, (Rd(f, ρ) − Rd(f

∗
d )) with the excess risk of the

double sigmoid loss (Rds(f, ρ) − Rds(f
∗
d )). Note that

here Rd(f, ρ) = EX ,Y [Ld(yf(x), ρ(x))] and f∗d (see
Eq.(2)) is the generalized Bayes classifier which minimizes
Rd(f, ρ). Rd(f∗d ) and Rds(f∗d ) represents risk of general-
ized Bayes classifies f∗d under Ld and Lds loss. We know
that Ld(yf(x), ρ(x)) ≤ Lds(yf(x), ρ(x)). Thus, taking
expectations on both sides, we get, Rd(f, ρ) ≤ Rds(f, ρ).
We follow the approach of Bartlett et al. [2006] to establish
an excess risk bound for the double sigmoid loss function
Lds.

Theorem 2. Let 0 ≤ d ≤ 1/2 and a measurable function z.
Then we have the excess risk relation as

ψ (Rd(f, ρ)−Rd(f∗d )) ≤ Rds(f, ρ)−Rds(f∗d )

where

ψ(θ) =


0 θ = 0

(2d− 1)ζ +
(
θ+1−2d

2

) (
T+ζ2θ
ζθ+Tζ

)
+
(
θ+2d−1

2

) (
T−ζ2θ
ζθ−Tζ

)
θ ∈ (0, 1− 2d]

θ + (2d− 1)ζ θ ∈ [1− 2d, 1]

and θ = Rd(f, ρ)−Rd(f∗d ) and . Also, ζ = tanh(ρ2 ) and
T = (1− 2d)−

√
(1− 2d)2 − θ2.

The proof of the theorem is provided in Appendix A.

Since we have established statistical properties of double
sigmoid loss, we can use this loss in deep networks to train
classifiers with abstention option.

FC
Layers

Prediction
head

1

Constant
Input

Rejection
head

Figure 1: RISAN architecture with input independent ρ

3 PROPOSED APPROACH: RISAN

The proposed architecture models both decision surface
f(.) and rejection function ρ(.) in a single DNN model.
Schematic view of RISAN implementations is depicted in
Figure-1 and Figure-2. The network’s input is processed by
the main body block and an associated (separate or same)
network that would learn the rejection region parameter. The
main body block consists of hidden layers or sub-blocks.
The rejection function ρ(.) can be modeled by a separate sin-
gle neuron or a network similar to the main body block. The
main body block can be assembled using any type of archi-
tecture relevant to the problem at hand (e.g., convolutional,
fully connected, or recurrent architectures).

3.1 RISAN: INPUT INDEPENDENT REJECTION

RISAN architecture represented in Figure-1 describes the ar-
chitecture when the rejection function takes the same value
for all x, that is, ρ(x) = ρ, ∀x ∈ X . RISAN for input
independent rejection has two output heads, prediction head
(f(x)) and rejection region parameter(ρ). The input data
x is fed into the fully connected (FC) layers while a fixed
constant is fed into the rejection head. The role of the predic-
tion head is to learn the appropriate decision surface f(x),
and the rejection head learns the rejection region parameter
(denoted as ρ). In this case, the main body block is a stack
of fully connected layers that are used for processing the
input data.

3.2 RISAN: INPUT-DEPENDENT REJECTION

RISAN architecture in Figure-2 describes the architectures
when rejection function depends on the specific instance.
The primary architecture is provided in Figure 2a for input
dependent rejection. This architecture has two output heads
similar to the input independent architecture. However, the
rejection head is fed the input from the main body block.
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(a) RISAN without an auxiliary head (RISAN-NA)
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(b) RISAN with an auxiliary head (RISAN)

Figure 2: Different implementations of RISAN with input dependent ρ(.)

An additional architecture for incorporating auxiliary loss
has been provided in Figure 2b. This architecture has three
output heads, prediction head (f(x)), rejection head (ρ(x))
and an auxiliary head. The auxiliary head, only used for
training the networks, sometimes plays an important role
in the initial process of acquiring complex features from
convolutional blocks. We follow the notion of the auxiliary
head for very deep neural networks as mentioned in Geif-
man and El-Yaniv [2019]. The auxiliary head’s role is to
learn a related prediction task that facilitates the consoli-
dation of apropos features in the main body block. Thus,
the prediction and rejection head are optimized with the
auxiliary head helping build features that minimize Lc, the
convex combination of categorical cross entropy loss Lce
and double sigmoid loss Lds.

Lc = α× Lds + (1− α)× Lce

The number and size of fully connected layers preceding
these two or three heads (depending on the architecture)
are independent and can vary depending on the task type
and complexity. The final neuron, however, for both the
prediction head and rejection head are single neurons. The
final layer of auxiliary head h(x) depends on the application
and could be a softmax layer. The relevance of the different
architectures has been explored in the experiments section.

3.3 GENERALIZATION ERROR BOUNDS OF
RISAN WITH INPUT INDEPENDENT
REJECTION

We followed the approach of Neyshabur et al. [2015] to
establish an upper bound on the Rademacher complexity
of regularized DNN with double sigmoid loss function and
an input independent ρ as shown in figure 1. We show in
Theorem 3 that the Rademacher complexity for rectified
linear unit based neural networks and consider two intuitive
types of norm regularization (i) bounding the norm of the
incoming weights of each unit (per-unit regularization) and
(ii) bounding the overall norm of all the weights in the
system jointly (overall regularization) Let `p, be the norm
over all incoming weights to each unit and `q, the norm

over all the units collectively. Now, considering the above
definitions. Our neural network can be defined as a graph
with group norm regularization as:

ξp,q(w) =

∑
v∈V

 ∑
(u→v)∈E

|w(u→ v)|p
q/p


1/q

where u and v are nodes in adjacent layers belonging to
set of vertices, V . And w(u → v) represents the weight
associated with the edge u→ v belonging to set of edges,
E.

Let us consider a deep abstain network with n + 1 layers
including input and output layers. Let us assume that all
the hidden layer have the same number of nodes (H). Let
Wj denotes the weight matrix corresponding to the connec-
tions from (j − 1) layer to jth layer. Then, W1 ∈ RH×D,
W2,. . . ,Wn−1 ∈ RH×H , Wn ∈ R1×H and ρ(x) = ρ. The
output of the network can be defined written as,

fW (x) = Wnσ (Wn−1σ (Wn−2 (. . . σ (W1x))))− ρ

where σ is the activation function and W =
(W1, . . . ,Wn, ρ). Let F denotes the set all possible func-
tions represented by such a neural network.

Theorem 3. Let D be any distribution on X × {−1,+1}.
Let 0 < δ ≤ 1. Then for any n, q ≥ 1, 1 ≤ p <∞ and any
set S = {x1, . . . ,xm}; with probability at least 1− δ (over
S ∼ Dm), all functions f ∈ F satisfy

Rds(f, ρ) ≤ R̂ds(f, ρ,+)
ρ̄√
m

+

√
8 ln

(
4
δ

)
m

+

√
2 ln

(
2
δ

)
m

+

(
2β√
m

max
i
‖xi‖p′

)(
2H

[
1
p′−

1
q

]
+

)n−1
where n is the number of layers in the network, H is the
number of neurons in the hidden layers, rejection region
parameter is bounded as ρ ≤ ρ̄. Also 1

p′ + 1
p = 1 and [a]+ =

max(0, a). er`S [f ] is the empirical error and βp,q(W ) =∏n
k=1 ‖Wk‖p,q ≤ β.



 The proof of the theorem is provided in appendix A. The
key observations from the bound in Theorem 3 are as fol-
lows. The bounds depend on the number of neurons in each
layer, H and the number of layers n. The bounds are also
inversely proportional to the number of samples,

√
m. Thus,

increasingm decreases the generalization error bound. Also,
when p′ ≥ q, the dependence on the number of neurons in
each layer vanishes. If we use overall `1 or `2 regularization,
this dependence should disappear.

3.4 EXAMPLE: CLASSIFIER LEARNT USING
RISAN

We generated 1000 examples in the square [−1.5, 1.5]2 uni-
formly randomly. We used x2 − x1 − 2sin(x1) = 0 as
separation boundary. We ensured equal representation of
each class. We then randomly flipped labels of the samples
present within the ±0.75 margin of the decision boundary.
We also used RISAN with input independent ρ (see Figure 1)
and d = 0.25. The resulting classification boundary and re-
jection region of the synthetic dataset are shown in Figure 3a
where the dark region signifies the rejection region. We also

− 1.5 − 1.0 − 0.5 0.0 0.5 1.0 1.5

− 1.5

− 1.0

− 0.5

0.0

0.5

1.0

1.5

(a) (b)

Figure 3: (a) Resulting classifier on a synthetically gener-
ated dataset with a nonlinear rejection region (black) (b)
Generalization error upper bounds the Test error on the syn-
thetic dataset

plot the generalization bounds for the input independent
rejection on a 2D dataset (see Figure 3b). For d = 0.25,
we ran the experiments for 30 epochs, increasing the no.
of samples from 100 to 1000 with a step size of 100. We
observed that an increase in the number of samples leads to
decreased training error, test error, and generalization error
simultaneously. Also, we observed that the generalization
error upper bounds the test error for each experiment.

4 EXPERIMENTS

This section describes the experimental details: datasets
used, baseline algorithms used for comparison purposes,
and our choice of architectures and hyper-parameters.

4.1 DATASETS USED

Note that our proposed approach works for binary classi-
fication problems. Thus, to show the effectiveness of the
proposed approach, we performed experiments on the fol-
lowing datasets.

1. Small Datasets: Ionosphere and ILPD [Dua and Graff,
2017].

2. Phishing dataset [Dua and Graff, 2017].

3. Cats vs. Dogs [Elson et al., 2007]: Each image re-
scaled to 64x64 from original images of size 360x400.

4. CIFAR-10 [Krizhevsky et al., 2009]: We selected
classes automotive and truck from CIFAR-10 for our
task. We have selected these classes as they have many
similarities, contain overlapping features, and are tough
to classify even for humans sometimes.

5. MNIST [LeCun et al., 2010]: We selected classes 1
and 7 from MNIST dataset for our task.

6. CBIS-DDSM [Lee et al., 2017]: This is a medical im-
age dataset with positive referring to the presence of
some form of calcification or mass, and the absence
refers to negative examples. The dataset has 14% posi-
tives, and 86% negative labeled pre-processed images
with ROI extracted. We further sampled the images to
create a subset dataset with a similar number (4500) of
positives and negative examples each, all re-scaled to
64x64 from the original size of 299x299.

We divide our experiments into two categories, namely,
small dataset and large dataset experiments because some
baseline methods are optimized for the smaller datasets
and fail to converge for larger datasets and. Hence, we use
different baseline methods for small and large datasets.

4.2 BASELINES

Baselines for Small Datasets Experiments: We compare
our network with two state of the art methods, (a) DH-
SVM: reject option classifier introduced in Grandvalet et al.
[2009] which minimizes the double hinge loss and (b) SDR-
SVM: sparse reject option classifier proposed in Shah and
Manwani [2019] which minimizes `1 regularized risk under
double ramp loss function.

Baselines for Large Datasets Experiments: We compare
the proposed approach with the following baselines for Cats
vs. Dogs, CIFAR-10, CBIS-DDSM, MNIST, and Phishing
website datasets. (a) SelectiveNet(SNN) [Geifman and El-
Yaniv, 2019]: a deep neural architecture with an integrated
reject option that simultaneously optimizes a prediction and
a selection function . We also compare results on a variant
of SNN without the auxiliary loss, the SNN-NA. (b) DAC:
deep abstaining classifier, a deep neural network trained



 with a modified cross entropy loss function introduced in
Thulasidasan et al. [2019] to accommodate an abstain (re-
ject) class.

(a) Ionosphere risk (b) ILPD risk

(c) Ionosphere accuracy (d) ILPD accuracy

(e) Ionosphere rejection rate (f) ILPD rejection rate

Figure 4: Small Dataset Results

4.3 EXPERIMENTAL SETTINGS

We execute experiments on ILPD and Ionosphere datasets
in a 10-fold cross-validation fashion for 10 repetitions. We
do these for the cost of rejection (d) varying from [0.05, 0.5]
with a step size of 0.05. We monitor the accuracy (on
unrejected samples), rejection rate, and the cross-validation
risk (0 − d − 1) for each value of d. The experiments
on large datasets compare five algorithms where each
one takes a different parameter to introduce rejection.
While DAC takes an abstention rate as input parameter,
Selective Net (SNN) and SNN-NA take as input a coverage
parameter. Here, coverage denotes fraction of points
without abstention as the output label by the final trained
classifier. For our networks RISAN and RISAN-NA, we
have a cost of rejection which depends on the dataset. To get
wide range of rejection rate, we choose cost of rejection d
parameter for our RISAN and RISAN-NA methods from set
{0.0001, 0.005, 0.001, 0.05, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25,
0.5}. Both the abstention rate parameter for DAC and
coverage parameter from SNN and SNN-NA are varied

from [0.1,1.0] with a step size of 0.1. We plot the rejection
rate vs accuracy plots to compare the five methods. The
details of architectures and hyperparameters used in the
experiments is given in Appendix A.4.

4.4 REPRODUCIBILITY

The code for the implementation would be avail-
able at https://github.com/kalra20/
RISAN-Robust-Instance-Specific-Abstain-Network

4.5 EMPIRICAL OBSERVATIONS

In Figure 4, we give results on smaller tabular datasets. We
observed that proposed method achieves lower risk on the
Ionosphere dataset (Figure 4a) and performs comparably on
the ILPD dataset except at a couple of points (Figure 4b).
Note that baseline methods on smaller datasets are opti-
mized for small-sized datasets and fail to converge for large
dataset. We perform better or comparable to such baseline
methods. The proposed algorithm RISAN and RISAN-NA
don’t suffer from failing-to-converge issue on large datasets
and perform comfortably to other neural network based
algorithms (Figure 5). We also make some interesting ob-
servations from results on the larger datasets. Both RISAN
and RISAN-NA perform comparably on Cats vs. Dogs and
CIFAR dataset with other datasets. However, RISAN per-
forms slightly better than SNN, while RISAN-NA performs
better than SNN-NA. This trend is consistent across all the
datasets. We do acknowledge a consistent improvement of
(1-2%) in accuracy with the addition of an auxiliary loss.
We also observed that DAC fails to reject any examples for
the MNIST dataset where the accuracy is too high (99.7%)
for VGG architecture despite complete coverage. However,
the RISAN and RISAN-NA perform better than SNN and
SNN-NA while all four maintain a non-zero rejection rate.
The fact that RISAN and RISAN-NA opting not to reject
more samples even for an extremely small value of d ver-
ifies that a cost-based abstain classifier is a more natural
choice to learn the classifier than a coverage-based classifier.
Since it chooses not to reject samples when the data is well
separated, i.e., high accuracy without any rejection. This
observation prompted the inspection of results on datasets
with label noise.

5 ROBUSTNESS OF RISAN AGAINST
LABEL NOISE

In this section, we show the robustness results of RISAN
against uniform label noise.

Experimental Setup: We use Cats vs. Dogs and CIFAR
10 datasets for showing the robustness of RISAN against
label noise. We introduce uniform label noise with a noise

https://github.com/kalra20/RISAN-Robust-Instance-Specific-Abstain-Network
https://github.com/kalra20/RISAN-Robust-Instance-Specific-Abstain-Network


 

(a) Cats vs Dogs Dataset (b) CIFAR Dataset (c) MNIST Dataset (d) CBIS-DDSM Dataset (e) Phishing Dataset

Figure 5: Large Dataset Results

(a) Cats vs Dogs with 20%
label noise

(b) Cats vs Dogs with 40%
label noise

(c) CIFAR with 20%
label noise

(d) CIFAR with 40%
label noise

Figure 6: Comparison Results With Label Noise

rate of 20% and 40%. We ran the experiments with iden-
tical coverage values for SNN, SNN-NA, and DAC used
in large dataset experiments. We used values of d from set
{0.05, 0.1, 0.15, . . . , 0.4, 0.45, 0.5}.

Results: Results with label noise are shown in Figure 6.
We observe that with 20% and 40% label noise rates, RISAN
and RISAN-NA performances do not drop much. On the
other hand, the other approaches’ performances drop signifi-
cantly with label noise on both datasets. For 20% label noise
and low rejection rate, RISAN and RISAN-NA achieve at
least 6 − 7% higher accuracy than other methods on both
datasets. For 40% label noise and low rejection rate, RISAN
and RISAN-NA achieve around 10% higher accuracy on the
Cats vs. Dogs dataset and around 5% higher accuracy on the
CIFAR-10 dataset. As Thulasidasan et al. [2019] claim that
their approach (DAC) is robust to noisy labels, proposed
algorithm RISAN improves around 5-10% accuracy on un-
rejected samples from previously proposed robust learning
algorithms. For large rejection rates, models are expected to
get good accuracy on unrejected samples because the model
is allowed to abstain large fraction of the data.

6 EXPLAINING THE REJECTION
DECISIONS

In this section we introduced a visualization technique into
the abstain network as a post processing step and examined
the rejected examples.

6.1 REPRESENTATIONS LEARNT BY RISAN

In this section, we explored the following hypotheses about
the trained abstain network: (i) Our network would reject
images that contain pertinent features amongst both the
classes (ii) Prediction network will learn features that are
more prominent and easily distinguishable for each class
(iii) The prediction network will give lesser precedence to
features that are common to both classes. The implemen-
tation details of GradCAM in RISAN have been shifted to
the Appendix A.5. The GradCAM Selvaraju et al. [2017]
technique was used on the sigmoid outputs of the auxiliary
head associated with the prediction network. Thus visualiz-
ing features learned by the prediction network to produce
highlighted regions corresponding to the image’s different
classes. We executed GradCAM on some selected examples
that were ambiguous and tough to classify. Our network,
as expected, choose to reject these samples. The images
used in this task were re-scaled to 64x64 for the network to
process the image. In Fig. 7a, we examined a cat image that
could be mistaken for a dog. We observed that the cat’s body,
especially the legs, were majorly highlighted with reference
to the cat class in Fig. 7b. It’s contrasted by the head region
of the subject being highlighted in Fig. 7c with respect to
dog class. The legs and body region are important features
for cat class, as will be established in our later conducted
experiments. In comparison, the head region of a dog is
equally important. We examined another example, a dog
in Fig. 7d that can be mistaken for a cat. We observed that
subject’s ear and the body is being majorly highlighted with
reference to the cat class in Fig. 7e. It’s contrasted by the



 

(a) Original Image (b) Cat features
highlighted

(c) Dog features
highlighted

(d) Original Image (e) Cat features
highlighted

(f) Dog features
highlighted

(g) Original Image (h) Negative
region highlighted

(i) Positive
region highlighted

Figure 7: GradCAM on image of a cat rejected by RISAN
highlights what the network perceives as cat and dog regions
in the image(a,b,c). GradCAM on image of a dog rejected
by RISAN highlights what the network perceives as cat and
dog regions in the image(d,e,f). GradCAM on image of a
cancerous development rejected by RISAN highlights what
the network perceives as negative and positive regions in
the image(g,h,i)

head region of the subject being highlighted in Fig. 7f with
respect to dog class.

In another example, we considered mammography of a ma-
lignant mass that’s tough to spot and classify in Fig. 7g. The
network was trained to classify the presence of any irregu-
larities(calcification or mass) in the image as positive. We
observed that in Fig. 7i, the mass (irregular lighter region
running through the image diagonally) is being highlighted
with respect to the positive class. It’s contrasted by the larger
region highlighted in Fig. 7h, containing more surrounding
negative region, with respect to negative class. Though there
appears to be an overlap of highlighted regions, negative
class region focuses more on the surroundings of the mass
while positive class focuses more on the mass itself. But
since features from both classes are present in the image,
it’s a good candidate for rejection. Hence, we observed
our prediction network highlighted pertinent features cor-
responding to each class found in the images and chose to
reject these examples.

To verify our second and third assumptions, we then chose
an interesting example of an animal, where a dog’s body
and head with a cat’s legs and tail were infused. To compare
and analyze our network’s learned features, we also trained
a separate network (CCEN) with categorical cross-entropy
loss. We executed GradCAM on both the networks to com-
pare the resulting highlighted regions in the images. We
observed that while our network rejected the image, CCEN
predicted the dog class. When we examined the highlighted
regions corresponding to different classes, we saw that in
Fig. 8b and Fig. 8e both networks chose to highlight the
cat’s legs fairly well in reference to cat class. This is also
coherent with our previous analysis of features highlighted
for the cat class. However, when we analyzed Fig. 8c, our
network gave attention to the dog’s body and head and less
attention to the animal’s legs. Whereas, as seen in Fig. 8f,
CCEN pays attention to the animal’s body and legs for dog
class. This holds with our belief that when rejecting, fea-
tures corresponding to non-similar regions would get more
attention and help make decisions only when the classifier
is extremely certain.

(a) Original Image (b) Cat features
highlighted

(c) Dog features
highlighted

(d) Original Image (e) Cat features
highlighted

(f) Dog features
highlighted

Figure 8: The GradCAM on image of a cat’s lower body
and tail infused with a dog’s upper body and head showcase
the contrasting features learnt by RISAN (a,b,c) and CCEN
(d,e,f)

7 CONCLUSION AND FUTURE WORK

We introduced a novel implementation of double sigmoid
loss in a deep neural network setting, RISAN for binary
classification. We established the statistical properties of
double sigmoid loss function such as classification calibra-
tion and excess risk bound. We also derived the generaliza-
tion error bounds for input independent RISAN. We then
demonstrated the various architectures and how each can be
utilized for varied sized datasets. We also show that RISAN
performs competitively to other state of the art shallow



 and deep neural network methods, SelectiveNet and Deep
Abstaining Classifier in absence of noise but gains signifi-
cant advantage when the data becomes noisy. We were also
able to visualize the highlighted regions for corresponding
classes in images and make inferences about rejected im-
ages. The results motivates the use of RISAN in applications
where cost of misclassification is extremely high.

We leave a number of issues for future research such as
extending the proposed method from binary classification
to multiclass classification. Also, the study of representa-
tions learnt by other abstain neural networks and how they
compare to RISAN is also an open future direction.
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