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Abstract

Causal discovery from data affected by unobserved
variables is an important but difficult problem to
solve. The effects that unobserved variables have
on the relationships between observed variables
are more complex in nonlinear cases than in linear
cases. In this study, we focus on causal additive
models in the presence of unobserved variables.
Causal additive models exhibit structural equations
that are additive in the variables and error terms.
We take into account the presence of not only un-
observed common causes but also unobserved in-
termediate variables. Our theoretical results show
that, when the causal relationships are nonlinear
and there are unobserved variables, it is not possi-
ble to identify all the causal relationships between
observed variables through regression and inde-
pendence tests. However, our theoretical results
also show that it is possible to avoid incorrect in-
ferences. We propose a method to identify all the
causal relationships that are theoretically possible
to identify without being biased by unobserved
variables. The empirical results using artificial data
and simulated functional magnetic resonance imag-
ing (fMRI) data show that our method effectively
infers causal structures in the presence of unob-
served variables.

1 INTRODUCTION

A fundamental objective in various fields of science is to
identify causal relationships. While randomized control tri-
als are the most effective means of understanding causal
relationships, such an approach is often too costly, unethical,
or technically impossible to conduct. Thus, causal discov-
ery from purely observational data is very important for
scientific research.

Causal discovery methods often assume that the causal struc-
tures form directed acyclic graphs (DAGs) and that unob-
served common causes are absent [Spirtes and Glymour,
1991, Shimizu et al., 2006, 2011, Hoyer et al., 2009, Mooij
et al., 2009, Peters et al., 2014]. If methods that assume
the absence of unobserved variables are applied to data af-
fected by unobserved variables, the causal graphs inferred
by such methods are biased, and thus tend to be incorrect.
The fast causal inference (FCI) [Spirtes et al., 1999] and
RFCI [Colombo et al., 2012] both assume the presence
of unobserved common causes and can present variable
pairs with unobserved common causes. However, they infer
causal relationships based on conditional independence, and
thus cannot distinguish between causal graphs that entail
the same sets of conditional independence.

Until recently, causal functional model-based ap-
proaches [Shimizu et al., 2011, Hoyer et al., 2009,
Mooij et al., 2009, Zhang and Hyvärinen, 2009, Peters
et al., 2011, 2014] had not been used to explore causal
models with unobserved variables. Causal functional
model-based approaches assume that causal effects can be
formulated with a specific form of functions. For example,
LiNGAM [Shimizu et al., 2006, 2011] and additive noise
models (ANMs) [Hoyer et al., 2009] assume that the data
generation process can be formulated as xi = fi(pai) + ni,
where xi is an observed variable, pai is the set of the direct
causes (parents) of xi, and ni is the external effect on
xi. These methods identify the causal direction between
observed variables xi and xj as xj → xi if the residual of
xi regressed on xj is independent of xj and the residual
of xj regressed on xi is dependent of xi. When analyzing
data suited to the models, these approaches can identify the
entire causal model.

Recently, a causal functional model-based method called
repetitive causal discovery (RCD) [Maeda and Shimizu,
2020], an extension of DirectLiNGAM [Shimizu et al.,
2011], was proposed. RCD infers causal graphs in which
bi-directed edges represent variable pairs affected by un-
observed common causes and directed edges represent the
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Figure 1: (a) Data generation process. (b) True causal graph of observed variables. (c) Causal graph inferred by our method:
Each dashed edge indicates that the causal relationship cannot be determined by our proposed method.

direct causal relationships between observed variables. The
RCD method assumes that the causal relationships are linear
and the external effects are non-Gaussian. It infers that xi
and xj have unobserved common causes when the residual
of xi regressed on xj is dependent of xj , and vice versa.
Janzing et al. [2009] proposed a method to identify the
causal relationships between a pair of observed variables
assuming that there exists a single unobserved common
cause and that the causal functions are nonlinear. However,
little research has been conducted on the discovery of causal
structures with three or more observed variables, assuming
nonlinear causal relationships and the presence of unob-
served variables.

The effects that unobserved variables have on the rela-
tionships between observed variables are more complex
in nonlinear cases than in linear cases. Assume that the
causal effect from xj to xi is indirectly mediated through
unobserved variable yk (i.e., xj → yk → xi). Then,
(∃f, [xi − f(xj)⊥⊥xj ]) holds in linear cases but it does
not hold in nonlinear cases (i.e., (∀f, [xi − f(xj)⊥/⊥xj ])).
Therefore, the causal relationship between xi and xj cannot
be determined by regression methods. This is called a cas-
cade ANM (CANM) and has been intensively discussed by
Cai et al. [2019]. However, their proposed method assumes
that there is no unobserved common cause. Therefore, it
is not applicable for inferring causal relationships between
three or more observed variables.

Our study is aimed at extending causal additive models
(CAMs) [Bühlmann et al., 2014] to incorporate unobserved
variables. CAMs are special cases of ANMs, and they as-
sume that the structural equations are additive in the vari-
ables and error terms. We call our extended models causal
additive models with unobserved variables (CAM-UV). In
these models, we consider the identifiability of the causal
relationships between observed variables. The theoretical
results show that it is not possible to identify all the causal
relationships, but it is possible to avoid incorrect inferences
of causal relationships. We propose a method to infer causal
relationships in CAM-UV. Assume that the data generation
process is as shown in Figure 1-(a), in which y1 and y7 are
unobserved variables and the other nodes indicate observed
variables. Ideally, the causal graph shown in Figure 1-(b)

should be recovered. However, our goal is to recover the
causal graph shown in Figure 1-(c) where the dashed undi-
rected edges between x2 and x3 and between x4 and x9
indicate that their causal relationships cannot be identified
based on our theoretical results.

The contributions of our study are as follows.

• We show the identifiability of the causal relationships
between observed variables in causal additive models
with unobserved variables (CAM-UV).

• We propose a method to infer the causal graph of CAM-
UV. Although the method cannot identify all the causal
relationships, it can avoid incorrect inferences.

• We provide experimental results on our method and
compare them to existing methods using artificial data
generated from CAM-UV and simulated functional
magnetic resonance imaging (fMRI) data.

All the proofs are available in Maeda and Shimizu [2021].

2 MODEL DEFINITION

Let X = {xi} denote the set of observed variables, Y =
{yi} the set of unobserved variables, and V = {vi} the set
of all the observed and unobserved variables (V = X ∪ Y ).
We assume the data generation model is formulated as

vi = zi+wi+ni, zi =
∑

xj∈Pi

f
(i)
j (xj), wi =

∑
yk∈Qi

f
(i)
k (yk)

(1)
where zi is the sum of the direct effects of observed variables
on vi, wi is the sum of the direct effects of unobserved
variables on vi, f

(i)
j is a nonlinear function, Pi is the set of

observed direct causes of vi, Qi is the set of unobserved
direct causes of vi, and ni is the external effect on vi. We
assume that all the external effects are mutually independent.
We also assume that the causal structure of the observed and
unobserved variables forms a DAG.

In addition, we impose Assumption 1 (described below) on
the causal functions and the external effects in a similar
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Figure 2: Definitions of an unobserved causal path (UCP)
and an unobserved backdoor path (UBP).

way to the Faithfulness assumption [Pearl, 2000, Spirtes
et al., 2000]. According to Equation 1, all the observed
and unobserved variables are mixtures of external effects
generated by the causal functions. In addition, there is an
external effect influencing two variables if the two variables
have a common ancestor (direct or indirect cause) or there
is a direct or indirect effect between them. In Assumption 1,
we assume that such variables are mutually dependent.

Assumption 1. We assume that all the causal functions and
the external effects in CAM-UV satisfy the following condi-
tion: If variables vi and vj have terms involving functions
of the same external effect nk , then vi and vj are mutually
dependent (i.e., (nk ⊥/⊥ vi) ∧ (nk ⊥/⊥ vj)⇒ (vi⊥/⊥ vj)).

3 IDENTIFIABILITY

In this section, we consider the identifiability of the causal
relationships between observed variables in CAM-UV.

First, we provide Definitions 1 and 2, which are used in the
analysis of the identifiability. The explanatory chart for the
definitions is shown in Figure 2.

Definition 1. A directed path from an observed variable to
another is called a causal path (CP). A CP from xj to xi is
called an unobserved causal path (UCP) if it ends with the
directed edge connecting xi and its unobserved direct cause
(i.e., xj → · · · → ym → xi where ym is an unobserved
direct cause of xi).

Definition 2. An undirected path between xi and xj is
called a backdoor path (BP) if it consists of the two directed
paths from a common ancestor of xi and xj to xi and xj
(i.e., xi ← · · · ← vk → · · · → xj , where vk is the common
ancestor). A BP between xi and xj is called an unobserved
backdoor path (UBP) if it starts with the edge connecting
xi and its unobserved direct cause, and ends with the edge
connecting xj and its unobserved direct cause (i.e., xi ←
ym ← · · · ← vk → · · · → yn → xj , where vk is the
common ancestor and ym and yn are the unobserved direct
causes of xi and xj , respectively). The undirected path xi ←
yk → xj is also a UBP, as vk, ym, and yn can be the same
variable.

We impose Assumption 2 on the regression functions Gi

used in the lemmas provided in this section.

Assumption 2. Let M and N denote sets satisfying M ⊆
X and N ⊆ X where X is the set of all the observed
variables in CAM-UV defined in Section 2. We assume
that functions Gi(M) take the forms of generalized addi-
tive models (GAMs) [Hastie and Tibshirani, 1990] such
that Gi(M) =

∑
xm∈M gi,m(xm) where each gi,m(xm)

is a nonlinear function of xm. In addition, we assume
that functions Gi satisfy the following condition: When
both (xi − Gi(M)) and (xj − Gj(N)) have terms in-
volving functions of the same external effect nk, then
(xi − Gi(M)) and (xj − Gj(N)) are mutually depen-
dent (i.e., (nk ⊥/⊥xi − Gi(M)) ∧ (nk ⊥/⊥xj − Gj(N)) ⇒
((xi −Gi(M))⊥/⊥(xj −Gj(N)))).

We first show the difference between linear and nonlinear
cases of how UCPs and UBPs affect the identifiability of
causality. If there is a UCP xj → yk → xi, then ∃a ∈
R, [xi − axj ⊥⊥xj ] holds in linear cases [Shimizu et al.,
2011] but ∀g, [xi − g(xj)⊥/⊥xj ] holds in nonlinear cases.
That is, there is no regression function such that the residual
of xi regressed on xj is independent of xj . The observed
variable xi is formulated as xi = f

(i)
k (f

(k)
j (xj) + nk) + ni.

When f
(i)
k is a nonlinear function, it cannot be repre-

sented as the linear sum of functions of xj and nk such
as f (i)k (f

(k)
j (xj) + nk) = s(xj) + t(nk). Therefore, g(xj)

cannot cancel out terms containing xj from xi because g(xj)
does not contain nk. Therefore, when there is a UCP be-
tween xi and xj , the causal relationship between xi and xj
cannot be identified through regression and independence
tests.
When there is a UBP, there is also a difference in the iden-
tifiability of causality between linear and nonlinear cases.
In linear cases, the causal relationship between xi and xj
can be identified if there is a set of observed variables
M ⊆ X \ {xi, xj} that blocks all the BPs between xi
and xj . That is, there exists a variable xl ∈ M on each
BP [Maeda and Shimizu, 2020]. In nonlinear cases, the
causal relationship between xi and xj cannot be identified
when there is a UBP, regardless of whether it is blocked by
observed variables. Let vm denote the common ancestor of
xi and xj on a UBP. Because the directed paths from vm
to xi and to xj end with their unobserved direct causes, the
effect of vm cannot be removed from xi or xj by regression.
Therefore, the causal relationship between xi and xj cannot
be identified when there is a UBP.

In the following, we provide lemmas about the identifiabil-
ity of causal relationships in CAM-UV. Lemma 1 is about
the conditions in which the causal relationship between
two observed variables cannot be identified. Lemma 2 is
about the condition in which the absence of the direct causal
relationship between two observed variables can be identi-
fied. Finally, Lemma 3 is about the condition in which the
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Figure 3: Causal relationships in multivariate cases.

existence and direction of the direct causal relationship be-
tween two observed variables can be identified. We provide
Examples 1, 2, and 3 for Lemmas 1, 2, and 3, respectively.

Lemma 1. Assume the data generation process of the vari-
ables is CAM-UV as defined in Section 2. If and only if
Equation 2 is satisfied, there is a UCP or UBP between
xi and xj where G1 and G2 denote regression functions
satisfying Assumption 2.

∀G1, G2,M ⊆ (X \ {xi}), N ⊆ (X \ {xj}),
[(xi −G1(M))⊥/⊥ (xj −G2(N))]

(2)

Equation 2 indicates that the residual of xi regressed on any
subset of X \ {xi} and the residual of xj regressed on any
subset of X \ {xj} cannot be mutually independent.

Example 1. In Figure 3-(1), there is a UCP from xj to xi
(i.e., xj → xa → yb → xi). In Figure 3-(2), there is a UBP
between xj and xi (i.e., xj ← yc ← xd → ye → xi). In
these cases, the common effects on xi and xj cannot be fully
removed by any regression function G1 or G2, because the
effects conveyed by the UBP or UCP cannot be removed by
G1 or G2.

Lemma 2. Assume the data generation process of the vari-
ables is CAM-UV as defined in Section 2. If and only if
Equation 3 is satisfied, there is no direct causal relationship
between xi and xj , and there is no UCP or UBP between
xi and xj where G1 and G2 denote regression functions
satisfying Assumption 2.

∃G1, G2,M ⊆ (X \ {xi, xj}), N ⊆ (X \ {xi, xj}),
[((xi −G1(M))⊥⊥ (xj −G2(N)))]

(3)

Equation 3 indicates that there are regression functions
such that the residuals of xi and xj regressed on subsets of
X \ {xi, xj} are mutually independent.

Example 2. In Figure 3-(3), there is no UCP or UBP be-
tween xi and xj , and there is no direct causal relationship
between xi and xj . In Figure 3-(3), M and N are direct
causes of xi and xj , and they correspond to M and N in
Equation 3. They block all the BPs and CPs between xi and
xj .

Lemma 3. Assume the data generation process of the vari-
ables is CAM-UV as defined in Section 2. If and only if
Equations 4 and 5 are satisfied, xj is a direct cause of xi,
and there is no UCP or UBP between xi and xj where G1

and G2 denote regression functions satisfying Assumption 2.

∀G1, G2,M ⊆ (X \ {xi, xj}), N ⊆ (X \ {xj}),
[(xi −G1(M))⊥/⊥ (xj −G2(N))]

(4)

∃G1, G2,M ⊆ (X \ {xi}), N ⊆ (X \ {xi, xj}),
[(xi −G1(M))⊥⊥ (xj −G2(N))]

(5)

Equation 4 indicates that the residual of xi regressed on
any subset of X \ {xi, xj} and the residual of xj regressed
on any subset of X \ {xj} cannot be mutually independent.
Equation 5 indicates that there are regression functions such
that the residual of xi regressed on a subset of X \ {xj}
and the residual of xj regressed on a subset of X \ {xi, xj}
are mutually independent.

Example 3. In Figure 3-(4), no UCP or UBP exists between
xj and xi. There is a direct causal relationship between xj
and xi. In Figure 3-(4),M andN are direct causes of xi and
xj , and they correspond to M and N in Equation 5. They
block all the BPs and CPs between xi and xj including the
direct causal effect of xj on xi (i.e., xj → xi).

Although it is impossible to identify the causal relationship
between xi and xj when there is a UCP or UBP, it is possible
to avoid the incorrect determination of the causal relation-
ship if we use Lemma 1. If there is no UCP or UBP, it is
possible to identify the direct causal relationship between
xi and xj using Lemmas 2 and 3.

Next, we provide Lemma 4, which can be used for identify-
ing a sink of a set of observed variables. Let K denote a set
of observed variables. Observed variable xi is called a sink
of K when xi ∈ K holds, and each xj ∈ K \ {xi} is not a
descendant of xi. Example 4 is provided after Lemma 4.

Lemma 4. Assume the data generation process of the vari-
ables is CAM-UV as defined in Section 2. Let K denote a
set satisfying K ⊆ X and assume xi ∈ K. If Equation 6
holds, each xj ∈ K \ {xi} is not a descendant of xi where
G1

i , G1
j , G2

i , and G2
j denote regression functions satisfying

Assumption 2.

∃G1
i ,Mi ⊆ (X \K),

∀xj ∈ (K \ {xi}),∃G1
j ,Mj ⊆ (X \K),∀G2

i , G
2
j

[((xi −G1
i (Mi ∪K \ {xi}))⊥⊥(xj −G1

j (Mj)))

∧ ((xi −G2
i (Mi))⊥/⊥(xj −G2

j (Mj)))]

(6)
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Equation 6 indicates that there exists set Mj ⊆ (X \K) for
each xj ∈ K satisfying the condition that the residual of xi
regressed on (Mi∪K \{xi}) is independent of the residual
of xj regressed on Mj for each xj ∈ K \ {xi}. In addition,
the residual of xi regressed on Mi cannot be independent of
the residual of xj regressed on Mj for each xj ∈ K \ {xi}.

Example 4. In Figure 4, K consists of three observed vari-
ables (i.e., K = {xa, xb, xi}). The BP between xi and xa
and the BP between xi and xb are blocked by Ma and Mb

respectively. In addition, all the effects of xa and xb on
xi are mediated by the direct causes of xi which are in-
cluded in K \ {xi}. Then, the residual of xi regressed on
Mi∪K \{xi} can be independent of the residuals of xa and
xb regressed on Ma and Mb respectively. In addition, the
residual of xi regressed on Mi cannot be independent of the
residuals of xa and xb regressed onMa andMb respectively.
These statements are formulated as Equation 7, which can
be generalized to Equation 6.

((xi −G1
i (Mi ∪K \ {xi}))⊥⊥(xa −G1

a(Ma)))

∧ ((xi −G1
i (Mi ∪K \ {xi}))⊥⊥(xb −G1

b(Mb)))

∧ ((xi −G2
i (Mi))⊥/⊥(xa −G2

a(Ma)))

∧ ((xi −G2
i (Mi))⊥/⊥(xb −G2

b(Mb)))

(7)

4 MODEL ESTIMATION

We propose a method to infer causal relationships between
observed variables. The causal graphs inferred by our pro-
posed method include directed edges and undirected dashed
edges (see Figure 1-(c)). A directed edge indicates a direct
causal relationship, and an undirected dashed edge indicates
that there is a UCP or UBP between the variables.

First, we propose a method to determine the directed edges.
The detailed procedure is listed in Algorithm 1, which con-
sists of two steps. Our method first extracts the candidates

Algorithm 1: Determine the directed edges
Input: i.i.d samples of a p-dimensional distribution on

{x1, · · · , xp} X , maximum number of
variables to examine causality for each step d,
significance level for independence test α.

Output: the sets of the parents {M1, · · · ,Mp}.
1 function getDirectedEdges(X, d, α)
2 # PHASE 1: Extracting the candidates of the

parents of each variable.
3 for i = 1 to p do
4 Initialize Mi ← ∅.
5 Initialize t← 2.
6 while t ≤ d do
7 Initialize noChange← True.
8 foreach K ∈ {K|K ⊆ X, |K| = t} do
9 # Finding the most endogenous variable

xb in K
10 xb ← argmax

xi∈K
p-HSIC
∧

(xi −G1(Mi ∪K \

{xi}), {xj −G2(Mj)|xj ∈ K \ {xi}})
11 # Computing the independence between

the residuals in regard to Lemma 4
12 e← p-HSIC

∧
(xb −G1(Mb ∪K \

{xb}), {xj −G2(Mj)|xj ∈ K \ {xb}})
13 h← max

xj∈K\{xb}
p-HSIC
∧

(xb −

G1(Mb), xj −G2(Mj))
14 # Checking whether xb is really a sink of

K
15 if (α < e) ∧ (α > h) then
16 # When xb is a sink of K, add each

variable in K \ {xb} to Mb

17 Mb ←Mb ∪ (K \ {xb})
18 noChange← False

19 # If each Mi remains unchanged, increment t
by one. If not, substitute 2 for t.

20 if noChange = True then
21 t← t+ 1
22 else
23 t← 2

24 # PHASE 2: Determining the parents of each
variable.

25 for i = 1 to p do
26 foreach xj ∈Mi do
27 # Checking whether xj is parent of xi
28 if α < p-HSIC

∧
(xi −G1(Mi \ {xj}), xj −

G2(Mj)) then
29 # When xj is not a parent, remove it

from Mi

30 Mi ←Mi \ {xj}

31 return {M1, · · · ,Mp}



 of the parents of each observed variable (lines 2–23 in Al-
gorithm 1), then it determines the parents of each observed
variable (lines 24–30). The notations G1 and G2 in Algo-
rithms 1 and 2 indicate GAM regression functions. Those
functions perform differently in different lines and different
iterations.

The first step of Algorithm 1 involves each Mi collecting
observed variables that are not descendants of xi, which
we call the candidates of the parents of xi. The method
first initializes each Mi to an empty set (lines 3–4 in Al-
gorithm 1). Then it repeats finding a sink for each K that
satisfies K ⊆ X and |K| = t (lines 8–18). That is, each
K is a set consisting of t observed variables. The value of
t starts at 2 (line 5). It is incremented by 1 when each Mi

remains unchanged through an iteration, and it is updated to
2 when at least one Mi changes during the iteration (lines
20–23). When our method determines that xb is a sink of K,
it updates Mb by adding each variable in K \ {xb} to Mb

(lines 16–17). The iteration ends when t exceeds d (line 6),
which is a hyperparameter that is set as the maximum num-
ber of |K|. The purpose of d is to reduce the computation
time, and it should be set according to the sparsity of the
causal relationships.
To find a sink for each K, our proposed method first finds
the most endogenous variable xb in K (lines 9–10). Such a
xb maximizes the independence between (xb −G1(Mb ∪
K \ {xb})) and ({xj − G2(Mj)|xj ∈ K \ {xb}}). We
use the p-value of the Hilbert–Schmidt Independence Cri-
teria (HSIC) [Gretton et al., 2008] for measuring indepen-
dence, and we also use the GAM regression method pro-
posed by Wood [2004]. Our method examines whether xb
and the other variables in K \ {xb} satisfy the condition
defined in Lemma 4 using the significance level for inde-
pendence test, given as hyperparameter α (lines 11–15). If
xb and K \ {xb} satisfy the condition, then each variable in
K \ {xb} is added to Mb (lines 16–17).

In the second step, our proposed method determines the
parents of each observed variable. If xj ∈ Mi satisfies
xi −G1(Mi \ {xj})⊥⊥xj −G2(Mj), it is not a parent of
xi because of Lemma 2. Therefore, our method removes
each xj satisfying the above equation from Mi and defines
the variables remaining in Mi as the parents of xi (lines 27–
30). The reason why the variables remaining in Mi are the
parents of xi is as follows. Each directed path from each xj
in Mi to xi is blocked by the parents of xi that are included
in Mi (i.e. Mi ∩ Pi). If xj is not a parent of xi, all the
directed paths from xj to xi is blocked by (Mi ∩Pi \ {xj}).
Then, (xi−G1(Mi\{xj})) and (xj−G2(Mj)) are mutually
independent. If xj is a parent of xi, there is a direct causal
effect xj → xi, and it is not blocked by (Mi ∩ Pi \ {xj}).
Then, (xi−G1(Mi \ {xj})) and (xj −G2(Mj)) cannot be
mutually independent. Therefore, the variables remaining
in Mi are parents of xi.

After determining the direct causal relationships, the pro-

Algorithm 2: Determine the undirected dashed edges
Input: i.i.d samples of a p-dimensional distribution on

{x1, · · · , xp} X , series of the sets of the
parents {M1, · · · ,Mp}, significance level for
independence test α.

Output: set of variable pairs having a UCP or UBP C.
1 function getUndirectedEdges(X, {M1, · · · ,Mp}, α)
2 Initialize C ← ∅.
3 foreach i, j ((1 ≤ i, j ≤ p) ∧ (i 6= j)) do
4 if (xi /∈Mj) ∧ (xj /∈Mi) then
5 if

α > p-HSIC
∧

(xi−G1(Mi), xj−G2(Mj))
then

6 C ← C ∪ {{xi, xj}}

7 return C

posed method determines variable pairs having UBPs or
UCPs (i.e., variable pairs connected with dashed undirected
edges). The detailed procedure is listed in Algorithm 2. If the
residual of xi regressed on Mi and that of xj regressed on
Mj are mutually dependent, there is a UCP or UBP between
them (lines 5–6 in Algorithm 2). Therefore, our proposed
method connects xi and xj with a dashed undirected edge.

The time complexity of the method is O
(
p2pn2

)
when d

(the maximum number of |K|) equals the number of all the
observed variables p (i.e., d = p). Please refer to Maeda and
Shimizu [2021] for the details.

5 EXPERIMENTS

We compared the performance of our method to the follow-
ing methods: PC [Spirtes and Glymour, 1991], FCI [Spirtes
et al., 1999], CAM [Bühlmann et al., 2014], RESIT [Peters
et al., 2014], and RCD [Maeda and Shimizu, 2020]. PC
is a constraint-based method that assumes the absence of
unobserved variables. FCI is also a constraint-based method,
but it assumes the presence of unobserved variables. CAM
and RESIT are causal functional model-based methods that
assume that causal functions are nonlinear and unobserved
variables are absent. In contrast, RCD is a causal functional
model-based method that assumes that causal functions are
linear and unobserved variables are present.

The true causal graphs used for the evaluation are defined
such that a directed edge is drawn from xj to xi when there
is a directed path from xj to xi on which no other observed
variable exists (see Figures 1-(a,b)). There are types of edges
other than directed edges (i.e.,←) in the graphs produced
by the above methods and our proposed method, but we
only used directed edges for the comparative evaluation.

We used precision, recall, and the F-measure as the evalua-
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Figure 5: Performance on artificial data generated from causal additive models with unobserved variables.
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Figure 6: Performance of our method CAM-UV in identify-
ing variable pairs having a UCP or a UBP.
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Figure 7: Sensitivity of our method CAM-UV to the setting
of α in identifying direct causal relationships.

tion measures. Avoiding false inferences is very important
in causal discovery. By evaluating the results in terms of pre-
cision, recall, and F-measure, it is possible understand how
well each method avoids false inferences. The true positive
(TP) is the number of true directed edges that a method cor-
rectly infers in terms of their positions and directions. Preci-
sion represents the TP divided by the number of estimations,
and recall represents the TP divided by the number of all
true directed edges. Furthermore, the F-measure is defined
as F-measure = 2 · precision · recall/(precision + recall).

We set the significance levels required for the baseline meth-
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Figure 8: Average runtime of the proposed method.

ods and our proposed method as 0.01. In addition, we set the
maximum number of |K| to 3 (i.e., d = 3) for our proposed
method (see Algorithm 1).

We conducted experiments on the artificial data generated
from CAM-UV and the simulated fMRI data created in
Smith et al. [2011].

5.1 PERFORMANCE ON ARTIFICIAL DATA
GENERATED FROM CAM-UV

Comparison with baseline methods: We performed 100
experiments using artificial data with each sample size
n ∈ {100, 200, · · · , 900, 1000} to compare our method
to existing methods. The data for each experiment were
generated as follows. The data generation process was ac-
complished using Equation 1. We prepared ten observed
variables, two unobserved common causes, and two unob-
served intermediate causal variables. The causal order of
the observed variables was determined the same as the order
of the indices of the observed variables. The direct causal
relationships between the observed variables were deter-
mined based on the Erdős–Rényi model [Erdős and Rényi,
1960] with parameter 0.3. That is, each variable pair was
connected by an edge with a probability of 0.3. The direc-
tions of the edges were determined according to the causal
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Figure 9: (a) Causal structure in fMRI data (b) Omitted variables. (c) True causal graph after omitting variables.
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Figure 10: Performance on simulated fMRI data.

order. We drew two directed edges from each unobserved
common cause to two randomly selected observed variables.
Finally, two variable pairs were randomly chosen, and an un-
observed intermediate causal variable was inserted between
each variable pair. The indices of the observed variables
were randomly permuted after the data were created. The
value of each vi defined in Equation 1 was determined by

vi =
hi

sd(hi)
, hi =

∑
vj∈(Pi∪Qi)

((vj + ai,j)
ci,j + bi,j) + ni,

(8)

where ai,j , bi,j , and ci,j denote constants, ni denotes a ran-
dom variable, and sd(hi) denotes the standard deviation
of hi. The values of ai,j and bi,j were randomly chosen
from U(−5, 5) and U(−1, 1), respectively. The value of
ci,j was randomly selected from {2, 3}, where the proba-
bility of selecting either value is 0.5. The samples of ni
were taken from U(−10 + di, 10 + di) where di is a con-
stant randomly chosen from U(−2, 2). The causal effect
of vj on vi (i.e., f (i)j (vj) in Equation 1) corresponds to
((vj + ai,j)

ci,j + bi,j) /sd(hi).

Figure 5 shows the results. The graphs plot the mean values
of the evaluation measures. CAM-UV scores the best in
terms of precision and the F-measure for each sample size.
The recall value of CAM-UV increases as the sample size
increases. When the sample size is 300 or less, the scores of
our proposed method are the second best next to CAM, but
it scores the best when the sample size is more than 300.

Performance of identifying UCPs and UBPs: Figure 6
shows how well our proposed method identified UCPs and
UBPs. The true positive (TP) is the number of variable
pairs having a UCP or UBP and those that are connected
by dashed undirected edges in the causal graph inferred by
our proposed method. The graphs in Figure 6 show that
the precision, recall, and F-measure values increase as the
sample size increases.

Sensitivity to the hyperparameter: We conducted ex-
periments to investigate the sensitivity of the proposed
method to the settings of the hyperparameter α. We
used 500 samples for each experiment with α ∈
{0.5, 0.1, 0.05, 0.01, 0.005, 0.001}. Figure 7 shows the re-
sults. The precision and F-measure values gradually increase
as α decreases, but they remain flat for α ≤ 0.01.

Average runtime: The average runtimes are shown in Fig-
ure 81. It was 8.3 seconds when the sample size was 500
and 24.9 seconds when the sample size was 1000.

1The details of the machine used for computing are as follows.
OS: macOS Catalina 10.15.7; CPU: 2.4 GHz 8-core 9th-generation
Intel Core i9 processor; Memory: 64 GB 2666 MHz DDR4 mem-
ory, Python version: 3.8.6.



 5.2 PERFORMANCE ON SIMULATED FMRI
DATA

We conducted experiments on simulated fMRI data gener-
ated by Smith et al. [2011] based on a well-known mathemat-
ical model of interactions among brain regions, the dynamic
causal model [Friston et al., 2003]. We used one of their
datasets (“sim2”) with ten variables, the causal relationships
of which are shown in Figure 9-(a). We randomly omitted
m variables for each experiment to create a dataset with
unobserved variables. For example, when m = 2 and x3
and x7 are omitted to make unobserved variables y3 and y7,
as shown in Figure 9-(b), the causal graph for evaluation in-
cludes directed edges x2 → x4, x2 → x8, and x6 → x8, as
shown in Figure 9-(c). We conducted 100 experiments with
1000 samples randomly extracted from the data for each
m ∈ {0, 1, 2, 3, 4}. Figure 10 shows the results. Though
the precision score for CAM-UV is slightly lower than FCI
when m = 0, our method scores the best for the other cases.

6 CONCLUSIONS

In this study, we extended causal additive models to incor-
porate unobserved variables, the model for which we called
causal additive models with unobserved variables (CAM-
UV). Our theoretical analysis showed that the direct causal
relationships between observed variables cannot be deter-
mined when there is an unobserved causal path (UCP) or
unobserved backdoor path (UBP) between the variables.
However, the theoretical results also show that it is possi-
ble to identify such variable pairs and to avoid incorrect
inferences. Based on these theoretical results, we proposed
a method to infer causal graphs for CAM-UV and verified
the method through experiments. As demonstrated by our
theoretical and experimental results, our proposed method
is effective in inferring causal relationships in the presence
of unobserved variables. Our future research will focus on
the application of our method for the efficient intervention
design using the results of UBPs and UCPs.
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