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Abstract

Bayesian decision theory provides an elegant
framework for acting optimally under uncertainty
when tractable posterior distributions are avail-
able. Modern Bayesian models, however, typi-
cally involve intractable posteriors that are approx-
imated with, potentially crude, surrogates. This dif-
ficulty has engendered loss-calibrated techniques
that aim to learn posterior approximations that fa-
vor high-utility decisions. In this paper, focusing on
Bayesian neural networks, we develop methods for
correcting approximate posterior predictive distri-
butions encouraging them to prefer high-utility de-
cisions. In contrast to previous work, our approach
is agnostic to the choice of the approximate infer-
ence algorithm, allows for efficient test time deci-
sion making through amortization, and empirically
produces higher quality decisions. We demonstrate
the effectiveness of our approach through con-
trolled experiments spanning a diversity of tasks
and datasets.

1 INTRODUCTION

Decision-making under uncertainty is a frequently encoun-
tered challenge across diverse applications. Examples in-
clude, medical diagnosis [Leibig et al., 2017], hazard alarms
[Economou et al., 2016], and autonomous driving [McAllis-
ter et al., 2017]. Bayesian decision theory (BDT) provides an
elegant framework for decision-making under uncertainty.
Given the Bayes posterior, a set of decisions, and a utility
function encoding user preferences, BDT dictates that the
decision that maximizes the expected utility, where the ex-
pectation is with respect to the Bayes posterior, is optimal.
While promising, it is worth noting that the optimality guar-
antees provided by BDT only hold when the true Bayes
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posterior is available.

Inspired in part by the success of deep learning, modern
Bayesian models are often high dimensional, not restricted
to conjugate prior-likelihood families, and almost always
have intractable posterior distributions. Bayesian neural
networks (BNN), the primary focus of this paper, are a
prime example of such models. In BNNs, lacking tractable
posterior distributions, various, at times crude surrogates
are employed to approximate the posterior. Decisions that
maximize the expected utility, with the expectation com-
puted with respect to the surrogate rather than the true
posterior, are not guaranteed to be optimal. This obser-
vation has engendered research into loss-calibrated infer-
ence [Lacoste-Julien et al., 2011, Cobb et al., 2018, Kuśmier-
czyk et al., 2019b] techniques that modify the approximate
inference procedures to prefer regions of the posterior, most
relevant to the decision-making task at hand. These meth-
ods, however, intricately couple posterior inference with
decision-making. Such coupling poses several difficulties.
Any change in the utility function necessitates recomputing
the loss-calibrated posterior. Approximate inference algo-
rithms are typically computationally expensive, and such
re-computations can be computationally onerous. More-
over, updating the posterior on account of a modified utility
function rather than updated prior beliefs or data is concep-
tually unappealing. Furthermore, under the loss-calibrated
inference framework, every posterior inference algorithm re-
quires a bespoke loss-calibrated counterpart to be developed.
Such loss-calibrated variants may be challenging to develop,
and no obvious counterpart may exist for a practitioner’s
algorithm of choice.

Inspired by these difficulties, we focus on post-hoc correc-
tions to the posterior predictive distributions. By choosing
to correct predictions, we are able to decouple posterior
inference from the process of correcting decisions. As a
result, our proposed method is agnostic to the choice of
the inference algorithm; any off-the-shelf procedure may
be used. Indeed, given a posterior approximation and an
unlabeled calibration dataset, we do not even need to access
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 the original training data. Together these properties signifi-
cantly expand the applicability of loss-calibrated inference
approaches. Further, we use a single neural network to pa-
rameterize the posterior predictive corrections. At test time,
decision-making involves a single forward pass through the
network. This provides significant speed-ups over alternate
loss-calibrated approaches [Cobb et al., 2018] which require
expensive Monte Carlo approximations. We empirically
demonstrate that our approach can support applications that
require real-time decisions. We also find that the post-hoc
corrections can be efficiently learned and, since they do
not involve any posterior inference inexpensively adapted
to changing utility functions. Finally, through careful ex-
periments across diverse applications, we demonstrate that
the aforementioned conceptual and computational benefits
do not come at the expense of empirical performance. Our
post-hoc correction procedure performs as well or better
than competing approaches.

2 RELATED WORK

Bayesian Neural Networks Let p(y|x, θ) represent the
probability distribution induced by a deep neural network
classifier over classes y ∈ Y = {1, .., C} given feature vec-
tors x ∈ RD. Given training data D = {(xi, yi)|1 ≤ i ≤
N} they are commonly learned through maximum condi-
tional likelihood maximization. Instead of attempting to find
the single (locally) optimal set of parameters θ∗, Bayesian
neural networks are learned by inferring a posterior distri-
bution p(θ | D, θ0) over the unknown parameters θ given
the prior p(θ | θ0) with hyper-parameters θ0. Predictions on
unseen data points x∗ are made via the posterior predictive
distribution which involves averaging over the uncertainty
in the posterior distribution,

p(y∗ | x∗,D, θ0) =

∫
p(y∗ | x∗, θ)p(θ | D, θ0)dθ. (1)

Applying Bayesian inference to neural networks is challeng-
ing because both the posterior and the posterior-predictive
distributions are intractable to compute, and require approx-
imations. We now briefly review various approximate infer-
ence algorithms that have been used to approximate the in-
tractable posterior, including variational inference (VI) [Jor-
dan et al., 1999] and Markov Chain Monte Carlo (MCMC)
methods [Neal, 1996, Welling and Teh, 2011].

In VI, an auxiliary distribution qϕ(θ) is defined to approx-
imate the true parameter posterior p(θ|D, θ0). The varia-
tional parameters ϕ are selected to minimize the Kullback-
Leibler (KL) divergence between qϕ(θ) and p(θ | D, θ0).
Hinton and Van Camp [1993] did early work applying VI to
neural networks. Graves [2011] and Blundell et al. [2015]
later developed stochastic variants of VI that scale to modern
networks. In other related work, authors Hernández-Lobato
and Adams [2015], Soudry et al. [2014], Ghosh et al. [2016]

explored assumed density filtering (ADF) and expectation
propagation [Minka, 2001] based approaches [Li et al., 2015,
Hernandez-Lobato et al., 2016] for learning BNNs. These
approaches however result in biased posterior estimates
for complex posterior distributions. MCMC methods on
the other hand provide sampling-based posterior approx-
imations that are unbiased, but are often computationally
more expensive to use. MCMC methods allow for drawing
a correlated sequence of samples θt ∼ p(θ|D, θ0) from the
parameter posterior. The samples can then be used to ap-
proximate the posterior predictive distribution as a Monte
Carlo average as shown in equation 2,

p(y|x,D, θ0) ≈ 1

T

T∑
t=1

p(y|x, θt), θt ∼ p(θ|D, θ0).

(2)

While Hamiltonian Monte Carlo [Neal, 1996] remains the
gold standard for inference in BNNs, its stochastic gradient
variants [Welling and Teh, 2011, Chen et al., 2014] are
popular for large networks, and we will use them extensively
in this paper.

Bayesian decision theory and loss-calibrated inference
Bayesian decision theory provides a framework for decision-
making under uncertainty [Berger, 1988]. Under the frame-
work, we elicit a utility function u(h, y), where h denotes
a decision within a set of possible actions A and y denotes
model predictions. Next, given a data point x∗, we evaluate
the expected utility (also known as the conditional gain),
G(h | x∗), for all h ∈ A using the utility function u(.) and
the posterior predictive distribution p(y∗|x∗, θ,D),

G(h | x∗) =

∫
y∗

u(h, y∗)p(y∗ | x∗,D, θ0)dy∗ (3)

Finally, we select the optimal decision c∗, such that it max-
imizes the conditional gain, c∗ = argmaxh∈A G(h | x∗).
However, an important assumption in this frameworks is
that we have access to the true posterior predictive distri-
bution. As noted earlier, the true posterior predictive distri-
bution is intractable for Bayesian neural networks. Rather,
in practice, we only have access to a crude approximation
p̃(y∗ | x∗,D, θ0). Using this approximation as an drop-in
replacement to p(y∗ | x∗,D, θ0) in Eq. (3) no longer guar-
antees optimality of decisions, c∗.

This observation has inspired research in loss-calibrated
inference. Lacoste-Julien et al. [2011] presents a variational
approach for Gaussian process classification that derives
from lower-bounding the log-conditional gain. To train the
variational distribution, it presents an EM algorithm with
closed form updates which alternates between sampling
from the variational posterior and making optimal decisions
under the variational posterior. Cobb et al. [2018] extends
the work done by Lacoste-Julien et al. [2011] to Bayesian



 neural networks, and derives an objective that is a cost-
penalized version of the standard evidence lower-bound
(ELBO). Both Lacoste-Julien et al. [2011] and Cobb et al.
[2018] deal with only discrete values for the decisions h,
Kuśmierczyk et al. [2019b] generalizes these methods to
continuous decisions. Beyond variational approximations,
Abbasnejad et al. [2015] present an importance sampling-
based approach that encourages high utility decisions.

Finally, this paper was in part inspired by the work of
Kuśmierczyk et al. [2019a]. Similarly to us, they propose
corrections to model predictions instead of the posterior
approximations. However, unlike us, their primary focus is
on problems with low-dimensional posteriors. As a result,
their methods are challenging to apply to the large BNN
models considered here.

3 POST-HOC CORRECTIONS FOR
POSTERIOR PREDICTIVE
DISTRIBUTIONS

Going forward, we will assume that we have access to a cali-
bration dataset D′ := {xn}Nn=1 and that we can evaluate the
posterior predictive distribution, under some approximation
to the posterior, at all xn ∈ D′. The log conditional gain on
D′ is,

log G(h = c | D′) =

N∑
n=1

log

∫
y

u(h = cn, yn = y)p(yn = y | xn,D, θ0)dy,

(4)

where c = {cn}Nn=1, and cn = argmaxh∈A G(h | xn).

If we had access to the true posterior predictive distri-
bution, guarantees from Bayesian decision theory ensure
that the decisions cn are optimal. However, for BNNs we
only have access to potentially crude approximations to the
posterior and cn are no longer guaranteed to be optimal.
To address this, we introduce an utility aware correction,
q(yn | xn, λ) to the (approximate) posterior predictive dis-
tribution p(yn | xn,D, θ0) evaluated at xn ∈ D′. The
correction is parameterized by a set of learnable parameters,
λ. In our experiments, we use a neural network to parame-
terize q and λ corresponds to the weights of that network.
We observe that the log conditional gain can be expressed
as a function of λ,

log G(h = c | D′;λ) =

N∑
n=1

logEq(yn=y|xn,λ)

[
p(yn = y|xn,D, θ0)u(h = cn, yn = y)

q(yn = y|xn, λ)

]
,

(5)

and is lower bounded by,

U(λ, c,D′) =

N∑
n=1

Eq(yn|xn,λ) [log u(cn, yn)]

− KL
[
q(yn|xn, λ)||p(yn|xn,D, θ0)

]
,

(6)

where the bound log G(h = c | D′;λ) ≥ U(λ, c;D′)
follows from Jensen’s inequality. See Appendix A.2 for
a detailed derivation. We learn q(· | ·, λ) by maximizing
U(λ, c;D′) with respect to λ and c. Our algorithm proceeds
in an coordinate ascent fashion by alternating between fix-
ing c and taking a gradient step in the direction maximizing
U(λ, c;D′) with respect to λ and then fixing λ and max-
imizing c. We limit our attention to finite discrete-valued
decision problems prevalent in classification settings. For
these problems, we are able to trivially maximize c given
λ by enumerating the expected utility of all decisions and
selecting the highest utility decision.

The variational gap between the log conditional gain and
the lower bound,

log G(h = c | D′;λ)− U(λ, c,D′)

=
∑

xn∈D′

KL
[
q(yn|xn, λ)||

p(yn|xn,D, θ0)u(cn, yn)

Zn

]
,

(7)

where Zn = Ep(yn|xn,D,θ0)[u(cn, yn)], lends further in-
sights into the optimization problem. For a fixed c, maximiz-
ing Eq. (6) is equivalent to minimizing the KL divergence
between q and the original posterior predictive distribution
scaled by the utility function, pointwise over the calibra-
tion dataset. This further highlights a key aspect of the pro-
posed approach, it corrects the (typically) low-dimensional
posterior predictive distribution rather than the unwieldy,
high-dimensional BNN posterior. The lower bound Eq. (6)
also lends itself to an intuitive interpretation. The first term
guides q(· | ·, λ) to higher utility decisions while the second
Kullback-Leibler divergence term encourages q(· | ·, λ) to
be close to the approximate posterior predictive distribution
in the KL sense.

Although nearly operational, two key challenges remain in
applying the developed framework. The first stems from
computational considerations necessary when working with
large Bayesian models like BNNs. Posterior predictive dis-
tributions for BNNs need to be approximated via Monte
Carlo simulations. Computation and storage cost of Monte
Carlo approximations grow linearly with the number of sam-
ples and can be prohibitive for large networks. The other
challenge stems from user preferences typically being ex-
pressed as cost functions [Berger, 1988, Kuśmierczyk et al.,
2019b] rather than utility functions, and yet our develop-
ment thus far has dealt exclusively with utility functions. We
next describe strategies effective at alleviating both these
concerns.



 3.1 PRACTICAL CONSIDERATIONS

Amortized posterior predictive distribution We tackle
the computational concerns associated with Monte Carlo ap-
proximations to the posterior predictive distribution by learn-
ing an amortized approximation [Balan et al., 2015, Vadera
et al., 2020b]. We use the online distillation algorithm pro-
posed by Balan et al. [2015], a special case of the general
framework of Vadera et al. [2020b], and distill the posterior
predictive distribution into a single “student” neural net-
work model. This algorithm aims to minimize the Kullback-
Leibler (KL) divergence between p(yn | xn,D, θ0) and
a student network S(yn | xn, ω), parameterized by ω for
xn ∈ D′. The online nature of this algorithm allows us to
amortize the computation of posterior predictive distribution,
without having to instantiate a large number of posterior
samples. Once we have trained the student model, we can
use it as a drop-in replacement for the posterior predictive
distribution in Eq. (6),

U s(λ, c,D′) =

N∑
n=1

Eq(yn|xn,λ) [log u(cn, yn)]

− KL(q(yn | xn, λ)||S(yn | xn, ω)).

(8)

Decision cost v/s utilities: In practical applications it
is common to have user preferences encoded as decision
costs rather than utilities. We follow Kuśmierczyk et al.
[2019b],to translate between costs and utilities. Let us de-
note the decision cost function as ℓ(h, y), where h again
denotes the decision and y denotes the predicted class. W
can re-write the utility function as u(h, y) = M − ℓ(h, y),
where M ≥ suph,y ℓ(h, y). By substituting this in Eq. (6)
we obtain,

L(λ, c;D′) =

N∑
n=1

Eq(yn|xn,λ) [log (M − ℓ(cn, y))]

− KL(q(yn|xn, λ)||p(yn|xn,D, θ0)),

(9)

and the analogous amortized variant is given by,

Ls(λ, c;D′) =

N∑
n=1

Eq(yn|xn,λ) [log (M − ℓ(cn, y))]

− KL(q(yn|xn, λ)||S(yn|xn, ω)).

(10)

Further performing a first order Taylor series expansion
about M [Kuśmierczyk et al., 2019b, Lacoste-Julien et al.,
2011] we obtain,

Ls(λ, c;D′) ≈
N∑

n=1

Eq(yn|xn,λ)

[
logM − ℓ(cn, y)

M

]
−KL(q(yn|xn, λ)||S(yn|xn, ω)),

(11)

Noting that Eq(yn|xn,λ)[logM ] is constant with respect to
λ and c, we arrive at,

L̃s(λ, c;D′) = −
N∑

n=1

Eq(yn|xn,λ)

[
ℓ(cn, y)

M

]
− KL(q(yn|xn, λ)||S(yn|xn, ω)).

(12)

If we have access to the original posterior predictive distri-
bution p(yn|xn,D, θ0)), the analogous objective is,

L̃(λ, c;D′) = −
N∑

n=1

Eq(yn|xn,λ)

[
ℓ(cn, y)

M

]
− KL(q(yn|xn, λ)||p(yn|xn,D, θ0))).

(13)

Our experiments maximize either L̃s(λ, c;D′) or
L̃(λ, c;D′) depending on the experimental setup. An
algorithm giving an overview of our approach is presented
in Appendix A.1.

With the description of our method complete, we reempha-
size the distinct advantages provided by it. Observe that we
only require that we are either able to evaluate the poste-
rior predictive distribution or an amortized approximation
to it on D′. We remain agnostic and make no assumptions
about how the posterior or the posterior predictive distri-
butions were computed. Moreover learning the corrections,
q(· | ·, λ), involves optimizing Eq. (12) or Eq. (13) and is
no more expensive than training standard deep neural net-
works. Finally, at a test point x∗ the expected cost associated
with a decision h is

∑C
k=1 ℓ(h, y = k)q(y = k | x∗, λ).

Computing this expected cost involves a single forward
pass through q. Our framework, thus, amortizes test time
decision-making. This leads to significant speed-ups over ex-
isting loss-calibrated inference approaches, which must first
compute the posterior predictive distribution by performing
an expensive Monte Carlo integration over the corrected
posterior before making decisions. Test time amortization
allows our method to be used in applications that demand
real-time decision-making. We summarize our approach’s
similarities and differences to relevant work in Table 1.

4 EXPERIMENTS

In this section, we carefully vet our proposed method against
relevant baselines across a diverse range of applications.
Broadly, we divide our experiments into three major cat-
egories to target three practical scenarios — 1) Decision-
making in poor data quality regimes, 2) Decision-making
with a reject option (also known as selective classification),
3) Decision-making under real-time constraints.

Throughout this section, we experiment with fully-
connected and ResNet18 [Krizhevsky et al., 2012] archi-
tectures. We test our methods on data from MNIST [LeCun,



 
Table 1: Overview of related loss-calibrated methods.
Inference Agnostic: Method does not modify or make as-
sumptions about the posterior inference algorithm. Scalable:
Method scales to modern Bayesian neural networks learned
from large data. Amortized Decisions: Method does not re-
quire multiple forward passes for test time decision-making.

Inference
Agnostic

Scalable
Amortized
Decisions

Lacoste-Julien et al. [2011] ✗ ✗ ✗

Cobb et al. [2018] ✗ ✓ ✗

Kuśmierczyk et al. [2019b] ✗ ✓ ✗

Kuśmierczyk et al. [2019a] ✓ ✗ ✓

Ours ✓ ✓ ✓

1998], CIFAR10 [Krizhevsky et al., 2009], and the chal-
lenging CamVid [Brostow et al., 2008b] dataset. We demon-
strate that our posterior correction consistently improves
the quality of decisions when used in conjunction with pop-
ular BNN inference algorithms — black-box variational
inference (BBVI) [Blundell et al., 2015], stochastic gradient
Hamiltonian Monte-Carlo (SGHMC) [Chen et al., 2014],
and Kronecker-factored Laplace approximation (KFAC-
Laplace) [Ritter et al., 2018]. Noting that SGHMC [Yao
et al., 2019] typically provides a more faithful approx-
imation to the BNN posterior, we restrict ourselves to
SGHMC for real data experiments. To compare against
a loss-calibrated inference procedure, we develop a loss-
calibrated variant of SGHMC. Following Lacoste-Julien
et al. [2011] we define the following utility scaled posterior,

p̃(θ|D, u) ∝ p(θ|D)G(h∗|D). (14)

The loss-calibrated stochastic gradient HMC (LC-SGHMC)
algorithm then proceeds by sampling from this scaled poste-
rior using SGHMC. Given that SGHMC is typically more
accurate than competing variational methods, we view LC-
SGHMC as a strong loss-calibrated inference baseline. We
also provide a brief overview of SGHMC in Appendix A.4.

4.1 SYNTHETIC DATA EXPERIMENTS

We begin with experiments on synthetic data, employing
fully connected architectures and three popular inference
techniques, BBVI with local reparameterizations [Kingma
et al., 2015], SGHMC, and KFAC-Laplace.

Experimental setup: We construct a two-dimensional, two
class data set with class imbalance. We generate data from
the two classes by sampling isotropic Gaussian distributions
with means [−1,−1] and [+1,+1]. For training, we use 90
data instances from the negative class and 10 data instances
from the positive class. We resample the Gaussian distribu-
tions to create a test set, which again contains 90 negative
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Figure 1: Synthetic Data (Top). Labeled training data (D) is
shown in the left plot and unlabeled calibration data (D′) is
shown in the right plot. Blue markers represent the negative
class and red markers represent the positive class. Decision
Visualization (Bottom). A visual comparison of decision-
making using BBVI without correction, and with our correc-
tional approach for a single trial, on test data drawn from the
same distribution as the training data D′. The edge colors
indicate ground truth classes, while the face colors indicate
the predicted classes. Consistency between edge and face
colors indicate correct predictions.

examples and 10 positive ones. For calibration data, we uni-
formly sample the two dimensional space to generate 500
unlabeled data instances. We repeat this procedure ten times
and generate ten training and calibration datasets. Fig. 1
visualizes one of these ten datasets. For each dataset, we
learn a 50 unit, single hidden layer, multi-layer perceptron
with ReLU activations using BBVI, SGHMC, and KFAC-
Laplace and use a 100 sample Monte Carlo approximation
to compute the corresponding posterior predictive distribu-
tions. We employ the following decision-cost function,

ℓ(c, y) =

 0, for y = c
1, for y ̸= c, y = positive
0.1, for y ̸= c, y = negative

,

which encourages decisions that minimize false negative
errors for the minority class — often a desirable property
in practice. In this experiment, we learn the corrections by
maximizing Eq. (13). Additional experimental details can
be found in Appendix A.5.

Results: We compute the average decision cost under our
cost-function for each of the three inference algorithms with



 and without our post-hoc correction on the test set. Table 2
summarizes our results, where the error bars stem from hav-
ing repeated the experiment on the ten randomly generated
training and calibration datasets. Our post-hoc correction
results in test decisions with lower decision costs compared
to the decisions produced by the uncorrected variants. The
costs are only marginally lower in this synthetic example,
where the approximations to the posterior are likely already
good. In the following, we will see that the decision costs
can be substantially lower in more challenging scenarios. In
subsequent experiments, we solely rely on stochastic gradi-
ent HMC algorithms for approximating the Bayesian neural
network posterior. A full panel of results is presented in
Appendix A.6.

Table 2: Results on synthetic data. Test decision costs with
and without post-hoc correction over 10 replicates. Post-
hoc correction consistently provides lower cost decisions.
Results presented as mean ± std. dev.

W/O post-hoc
correction

W/ post-hoc
correction (ours)

VI 0.019 ± 0.011 0.016 ± 0.010

SGHMC 0.018 ± 0.008 0.017 ± 0.009

KFAC-Laplace 0.021 ± 0.007 0.018 ± 0.008

4.2 SELECTIVE CLASSIFICATION

Next, we consider the problem of selective classification,
wherein the goal is to classify a data instance into one of C
classes or choose not to classify and instead refer it to an
oracle. The corresponding decision problem thus involves
selecting one of C + 1 decisions for each data instance. By
adjusting the cost of a referral the decision making system
can trade erroneous decisions for potentially expensive or-
acle feedback. Different users of such a system will likely
prefer different trade-offs and as a result choose different
referral costs. We however have no reason to believe that the
different users would have different posterior beliefs. Since
our method does not involve relearning the posterior beliefs
when faced with changing cost functions, it is well suited
for such selective classification problems.

Experimental setup: We use the CIFAR10 [Krizhevsky
et al., 2009] dataset along with SGHMC trained Bayesian
ResNet18 [He et al., 2016] networks. To make the problem
more challenging and encourage referrals, we contaminate
the data via an additional data transformation. Under this
contamination, we subject each image in the dataset by
angle sampled uniformly at random from [−30°, 30°]. Next,
following Murphy [2012] (section 5.7.1.2), we define our

selective classification decision cost function as,

ℓ(c, y) =

 0, for y = c
1, for y ̸= c
r, for c = referral.

Here, r denotes the cost of a referral. With this setup we ex-
amine a) the effectiveness of our method as a function of r,
b) whether using the amortized posterior predictive distribu-
tion S (maximizing Eq. (12)) adversely affects performance
when compared to the non-amortized version (maximiz-
ing Eq. (13)), and c) the computational cost of learning
post-hoc corrections under multiple decision-cost functions.
Additional details around models, training procedures, hy-
perparameters, baselines, and cost function is given in the
Appendix A.6.

Results: The results for the experiment are presented in
Fig. 2. As we would expect, lower values of the referral cost
r lead to more referrals and as a result, the models tend to
make a decision only when they are very confident, leading
to higher values of accuracy. Lower values of r also result
in lower average decision cost, as the models tend to refer
to the oracle more, and due to the lower value of referral
cost, the average decision cost reduces. As we can see from
the comparison, the decision cost as well as accuracy of
our post-hoc corrections outperforms those obtained using
SGHMC and LC-SGHMC across all values of referral cost
r. Furthermore, we observe that the accuracy and decision
cost values are not adversely affected by using S in place
of the non-amortized posterior predictive distribution. We
also compare the training time of LC-SGHMC and our
post-hoc corrections as a function of the number of decision-
cost functions. The wall-clock times required by the two
approaches are shown in Fig. 3. All the experiments were
run using the same GPU hardware (Nvidia Tesla V100) and
under identical conditions for consistency in wall-clock time
comparisons. We observe that our approach is significantly
faster to train, and its computational cost grows at a slower
rate with increasing number of cost functions.

Finally, the fact that the amortized posterior predictive dis-
tribution S does not adversely affect performance, is sig-
nificant, in that it suggests that our approach would likely
continue to scale with increasing network size, when storing
and averaging over multiple Monte Carlo samples to com-
pute the posterior predictive distribution is the bottleneck.
Moving forward, we only consider experiments with the
amortized posterior predictive S.

4.3 DECISION MAKING UNDER POOR DATA
QUALITY

In the current era of big-data, it is not uncommon to have
data sets of poor quality. In many settings, the data sets
are labeled by crowdsourcing, as well as other automated
techniques. These labeling techniques can often lead to
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Figure 2: Selective classification. Average test decision costs and test accuracy as a function of referral cost on CIFAR10
using a Bayesian ResNet18 model. The two left plots show results without using an amortized posterior predictive distribution,
S, and the two plots on the right display results when using S. Accuracy is determined on those test data points that are
not referred to the oracle. We note that introducing the amortized approximation S does not adversely affect performance.
Additional results involving negative log likelihood are presented in Appendix A.6.
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Figure 3: Training cost comparison. Wall-clock training
time of our method and LC-SGHMC as a function of the
number of decision cost functions.

noisy labels, and affecting downstream performance. Thus,
it is important to understand how our method performs in
this practical scenario. In practical scenarios, it is common
to have asymmetric decision cost functions. This means that
for making certain incorrect decisions, the cost can be higher
or lower than the rest to encourage or discourage making
those decisions. In this experiment, we also incorporate
an asymmetric cost function similar to the one introduced
earlier in the synthetic data experiments.

Experimental setup: We simulate label corruption on
MNIST [LeCun, 1998] and CIFAR10 [Krizhevsky et al.,
2009]. For each dataset, we switch the true labels of a pro-
portion of the training set to labels sampled uniformly at
random. For MNIST, we use a simple multi-layer perceptron
architecture with one hidden layer of 200 units, while for CI-
FAR10, we use the ResNet18 architecture [He et al., 2016].
It is worth noting that SGLD can be derived special case for
the SGHMC (refer to Appendix A.4). For each data set, we
pick two classes to which we assign higher importance, and
thus assigning a lower cost to the mistakes which involve
choosing these classes as decisions. In MNIST, we assign a
higher importance to classes 3 and 8, while in CIFAR10, we
assign a higher importance to classes automobile and trucks.
We use SGLD [Welling and Teh, 2011] for sampling from

the posterior as well as the utility scaled posterior distribu-
tion. For a point-estimated model baseline, we introduce
the class-weighted SGD (CW-SGD) baseline. In CW-SGD,
we use our standard log loss on the neural network model,
but assign a higher weight to the classes of interest. This
encourages the model to make lesser mistakes on classes
of higher importance. For additional details around models,
training procedures, hyperparameters, and baselines, please
refer to Appendix A.7.

Results: We present the results of this experiment in Fig-
ure 4. For a comprehensive evaluation of performance, we
vary the label corruption proportion between 0.3 and 0.7.
For performance assessment, we look at the decision cost
(↓), and accuracy (↑) on the standard test sets for each data
set. While looking across the set of performance metrics,
similar trends emerge. For lower levels of corruption, we
notice that our post-hoc correction method performs simi-
larly to LC-SGHMC and LC-SGLD, and marginally better
than the uncorrected posterior predictive distribution and
CW-SGD. However, as we increase the label corruption
proportion to moderate levels, we observe that our method
outperforms the baselines. Finally, with increasing corrup-
tion proportion, all methods are overwhelmed by the label
noise, and we see a sharp dip in performance across all
methods. We note that beyond achieving similar or lower
decision costs, our approach also achieves higher accuracy
and negative log-likelihoods than the competing methods.
With these encouraging results in mind, we move towards
our final experiment which looks at a real-world data set and
demonstrates the benefits of amortized decision making.

4.4 SEMANTIC SCENE SEGMENTATION

In this experiment, we consider the problem of semantic
scene segmentation. Here, our goal is to segment an image
into its components. This is achieved by labeling each pixel
of an image with one of C known categories. Semantic seg-
mentation can be useful for a variety of applications includ-
ing aiding autonomous vehicles navigate the world. In such
an application, it is crucial that the underlying decision prob-
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Figure 4: Decision-making under label corruption. The two left plots illustrate performance comparison for different
levels of label corruption on CIFAR10 using a Bayesian ResNet18 model. The right two plots illustrate performance
comparison for different levels of label corruption on MNIST using an MLP with a single hidden layer of 200 hidden units.
The results are shown as mean ± std. dev. over 5 trials. Additional results involing negative log likelihood are presented in
Appendix A.7.

lem of labeling pixels be solvable in near real-time. Existing
loss-calibrated approaches struggle with such real-time re-
quirements. through this experiment, we demonstrate both
real time performance and improved decisions provided by
our post-hoc loss correction framework.

Experimental setup: For this experiment, we use the
Camvid data set [Brostow et al., 2008a,b] which contains
per-pixel labeled images captured using a camera on the
dashboard of a car moving on the streets. An illustration of
the data is provided in Figure Fig. 5. The version of the data
set that we use, contains a total of 12 class labels. Of these
class labels, we assign a lower cost to false decisions that
involve picking either of the pedestrian, cyclist or car class.
This decision cost structure is inspired from the experiments
of Cobb et al. [2018], as the goal of an autonomous car is
to avoid these obstacles for safety reasons. By assigning
a lower penalty to an incorrect decision of classifying a
pixel to one of these three classes, we encourage our model
to be more risk averse. For our model, we use the SegNet
model architecture [Badrinarayanan et al., 2017]. SegNet is
an auto-encoder style model which has previously been used
for semantic scene segmentation. For additional comparison,
we add the loss calibrated MC dropout baseline based on the
algorithm presented in Cobb et al. [2018]. We defer addi-
tional details around training procedures, hyperparameters,
baselines and decision cost matrix to Appendix A.8.

Results: The aim of this experiment is two-fold. First,
we want to evaluate the performance of our approach for
the task, and compare it with relevant baselines. Secondly,
we want to assess the test-time efficiency of our approach
against alternates.

For assessing performance, we use the intersection over
union (IoU) (↑) metric that is commonly used to assess se-
mantic segmentation performance. This metric evaluates
the ratio of the area of overlap and the area of union while
comparing the ground truth segmentation and model output
segmentation for each class. In Fig. 5, we present a perfor-

mance comparison between our method and the baselines
using the IoU metrics on test set. For the comparison, we
look at each of the high utility classes separately, as well as
we evaluate the overall mean IoU over all classes combined.
We observe that our method performs consistently better
on all the high utility classes, and thus doing a better job
at capturing the preferences embedded in our cost function.
Moreover, the mean IoU across all the classes indicates that
our method does a better job overall for this task.

Next, we look at assessing test-time efficiency for our cur-
rent task. The metric used for quantifying the test time
efficiency is the number of frames that can be processed
per second (FPS, ↑). For application such as autonomous
driving, a slower processing pipeline can create a bottleneck
when it comes to the efficacy for deployments. However,
since we use a point-estimated model for our approach, it
gives us inherent time savings when looking at test-time
processing capabilities. In Figure 5, we present a compari-
son of no. of frames/sec that can be processed between our
approach and LC-SGHMC. Each frame (image) in the data
set has a resolution of 360× 480. We compute the time to
process an image after loading both the image and model (or
model ensemble for LC-SGHMC) on a Nvidia Tesla V100
GPU. While we expect monte carlo based approximations
to perform much slower than our point-estimated model,
it is increasingly evident looking at Figure 5 (middle) that
the number of frames/s can be inhibitively low for practical
applications, for even a smaller number of MCMC samples.
While the performance for MCMC methods in Figure 5 is
computed using 30 samples, we compute the frames/s met-
ric over larger ensemble sizes to give a sense of why Monte
Carlo integration at test time can be impractical.

To summarize, there are two key findings of this experiment.
First, our approach leads to improved decision making by
capturing class preferences better, and improves on the over-
all performance averaging across all twelve classes. Second,
our method is better positioned for deployments requiring



 

Figure 5: Semantic Segmentation (Left) Sample input images (top) and ground truth segmentations (bottom) from the
CamVid dataset. (Middle) IoU scores acheived by different methods for classes deemed important by the cost function as
well as overall mean IoU across all classes and all images. (Right) We compare the number of frames processed per second
by our method and LC-SGHMC. Owing to amortization our approach is independent of the number of samples used to
compute the Monte Carlo approximation to the posterior predictive distribution. In contrast, the number of frames processed
per second by LC-SGHMC decreases dramatically (note the log scaling of the axes) with increasing number of samples.

real-time performance as at decision time it requires a single
forward pass and no Monte Carlo approximations.

5 DISCUSSION AND FUTURE WORK

In this paper we introduced a novel framework for post-hoc
loss calibration of Bayesian neural networks for decision-
making. Through comprehensive empirical evaluations rang-
ing from synthetic data sets to practical applications involv-
ing real world data, we have demonstrated that our approach
consistently produces lower cost, higher utility decisions
than competing approaches. We also demonstrated that the
framework by decoupling posterior inference from decision-
making provides computational advantages at training time,
and through amortization provides fast test-time decisions.
Future directions include extensions to continuous decisions,
more carefully exploring the effect of the choice of an infer-
ence algorithm on the quality of the correction, exploring
post-hoc corrections under distribution shift, and studying
the connections to generalized Bayesian inference [Bissiri
et al., 2016, Knoblauch et al., 2019].
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