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Abstract

A butterfly network consists of logarithmically
many layers, each with a linear number of non-
zero weights (pre-specified). The fast Johnson-
Lindenstrauss transform (FJLT) can be represented
as a butterfly network followed by a projection
onto a random subset of the coordinates. Moreover,
a random matrix based on FJLT with high prob-
ability approximates the action of any matrix on
a vector. Motivated by these facts, we propose to
replace a dense linear layer in any neural network
by an architecture based on the butterfly network.
The proposed architecture significantly improves
upon the quadratic number of weights required in
a standard dense layer to nearly linear with little
compromise in expressibility of the resulting oper-
ator. In a collection of wide variety of experiments,
including supervised prediction on both the NLP
and vision data, we show that this not only pro-
duces results that match and at times outperform
existing well-known architectures, but it also of-
fers faster training and prediction in deployment.
To understand the optimization problems posed by
neural networks with a butterfly network, we also
study the optimization landscape of the encoder-
decoder network, where the encoder is replaced by
a butterfly network followed by a dense linear layer
in smaller dimension. Theoretical result presented
in the paper explains why the training speed and
outcome are not compromised by our proposed
approach.

1 INTRODUCTION

A butterfly network (see Figure 1 in Appendix 1) is a lay-
ered graph connecting a layer of n inputs to a layer of n
outputs with O(log n) layers, where each layer contains 2n

edges. The edges connecting adjacent layers are organized
in disjoint gadgets, each gadget connecting a pair of nodes
in one layer with a corresponding pair in the next layer by a
complete graph. The distance between pairs doubles from
layer to layer. This network structure represents the exe-
cution graph of the Fast Fourier Transform (FFT) [Cooley
and Tukey, 1965], Walsh-Hadamard transform, and many
important transforms in signal processing that are known to
have fast algorithms to compute matrix-vector products.

Ailon and Chazelle [2009] showed how to use the Fourier
(or Hadamard) transform to perform fast Euclidean dimen-
sionality reduction with Johnson and Lindenstrauss [1984]
guarantees. The resulting transformation, called Fast John-
son Lindenstrauss Transform (FJLT), was improved in sub-
sequent work [Ailon and Liberty, 2009, Krahmer and Ward,
2011]. The common theme in this line of work is to define a
fast randomized linear transformation that is composed of
a random diagonal matrix, followed by a dense orthogonal
transformation which can be represented via a butterfly net-
work, followed by a random projection onto a subset of the
coordinates (this research is still active, see e.g. Jain et al.
[2020]). In particular, an FJLT matrix can be represented
(explicitly) by a butterfly network followed by projection
onto a random subset of coordinates (a truncation operator).
We refer to such a representation as a truncated butterfly
network (see Section 3).

Simple Johnson-Lindenstrauss like arguments show that
with high probability for any W ∈ Rn2×n1 and any
x ∈ Rn1 , Wx is close to (JT2 J2)W (JT1 J1)x where
J1 ∈ Rk1×n1 and J2 ∈ Rk2×n2 are both FJLT, and
k1 = log n1, k2 = log n2 (see Section 3.2 for details).
Motivated by this, we propose to replace a dense (fully-
connected) linear layer of size n2×n1 in any neural network
by the following architecture: JT1 W

′J2, where J1, J2 can
be represented by a truncated butterfly network and W ′ is a
k2 × k1 dense linear layer. The clear advantages of such
a strategy are: (1) almost all choices of the weights from
a specific distribution, namely the one mimicking FJLT,
preserve accuracy while reducing the number of parameters,
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 and (2) the number of weights is nearly linear in the layer
width of W (the original matrix). Our empirical results
demonstrate that this offers faster training and prediction in
deployment while producing results that match and often
outperform existing known architectures. Compressing
neural networks by replacing linear layers with structured
linear transforms that are expressed by fewer parame-
ters have been studied extensively in the recent past. We
compare our approach with these related papers in Section 2.

Since the butterfly structure adds logarithmic depth
to the architecture, it might pose optimization related
issues. Moreover, the sparse structure of the matrices
connecting the layers in a butterfly network defies the
general theoretical analysis of convergence of deep linear
networks. We take a small step towards understanding
these issues by studying the optimization landscape of
an encoder-decoder network (two layer linear neural
network), where the encoder layer is replaced by a truncated
butterfly network followed by a dense linear layer in fewer
parameters. This replacement is motivated by the result of
Sarlós [2006], related to fast randomized low-rank approx-
imation of matrices using FJLT (see Section 3.2 for details).1

The encoder-decoder network computes the best low-rank
approximation of the input matrix. It is well-known that with
high probability a close to optimal low-rank approximation
of a matrix is obtained by either pre-processing the matrix
with an FJLT [Sarlós, 2006] or a random sparse matrix
structured as given in Clarkson and Woodruff [2009], and
then computing the best low-rank approximation from the
rows of the resulting matrix.2 A recent work by Indyk et al.
[2019] studies this problem in the supervised setting, where
they find the best pre-processing matrix structured as given
in Clarkson and Woodruff [2009] from a sample of matrices
(instead of using a random sparse matrix). Since an FJLT can
be represented by a truncated butterfly network, we emulate
the setting of Indyk et al. [2019] but learn the pre-processing
matrix structured as a truncated butterfly network.

1.1 OUR CONTRIBUTION AND POTENTIAL
IMPACT

We provide a theoretical analysis together with an empir-
ical report to justify our main idea of using sparse linear
layers with a fixed butterfly network in deep learning. Our

1We could also have replaced the encoder matrix with the
proposed architecture in Section 3.2, but in order to study the
optimization issues posed by the truncated butterfly network we
chose to study this simpler replacement. Moreover, even in this
case the new network after replacing the encoder has very little
loss in representation compared to the encoder-decoder network
Sarlós [2006].

2The pre-processing matrix is multiplied from the left.

findings indicate that this approach, which is well rooted in
the theory of matrix approximation and optimization, can
offer significant speedup and energy saving in deep learning
applications. Additionally, we believe that this work would
encourage more experiments and theoretical analysis to bet-
ter understand the optimization and generalization of our
proposed architecture (see Section 7).

On the theoretical side – The optimization landscape of
linear neural networks with dense matrices have been stud-
ied by Baldi and Hornik [1989], and Kawaguchi [2016]. The
theoretical part of this work studies the optimization land-
scape of the linear encoder-decoder network in which the en-
coder is replaced by a truncated butterfly network followed
by a dense linear layer in smaller dimension. We call such
a network as the encoder-decoder butterfly network. We
give an overview of our main result, Theorem 1, here. Let
X ∈ Rn×d and Y ∈ Rm×d be the data and output matrices
respectively. Then the encoder-decoder butterfly network is
given as Y = DEBX , where D ∈ Rm×k and E ∈ Rk×`
are dense layers, B is an `× n truncated butterfly network
(product of log n sparse matrices) and k ≤ ` ≤ m ≤ n
(see Section 4). The objective is to learn D,E and B that
minimizes ||Y −Y ||2F. Theorem 1 shows how the loss at the
critical points of such a network depends on the eigenvalues
of the matrix Σ = Y XTBT (BXXTBT )−1BXY T 3. In
comparison, the loss at the critical points of the encoder-
decoder network (without the butterfly network) depends on
the eigenvalues of the matrix Σ′ = Y XT (XXT )−1XY T

[Baldi and Hornik, 1989]. In particular, the loss depends on
how the learned matrix B changes the eigenvalues of Σ′.
If we learn only for an optimal D and E, keeping B fixed
(as done in the experiment in Section 5.3) then it follows
from Theorem 1 that every local minimum is a global mini-
mum and that the loss at the local/global minima depends
on how B changes the top k eigenvalues of Σ′. This infer-
ence together with a result by Sarlós [2006] is used to give
a worst-case guarantee in the special case when Y = X
(called auto-encoders that capture PCA; see below Theorem
1).

On the empirical side – The outcomes of the following
experiments are reported:

(1) In Section 5.1, we replace a dense linear layer in the stan-
dard state-of-the-art networks, for both image and language
data, with an architecture that constitutes the composition
of (a) truncated butterfly network, (b) dense linear layer in
smaller dimension, and (c) transposed truncated butterfly
network (see Section 3.2). The structure parameters are cho-
sen so as to keep the number of weights near linear (instead
of quadratic).

(2) In Sections 5.2 and 5.3, we train a linear encoder-decoder
network in which the encoder is replaced by a truncated but-

3At a critical point the gradient of the loss function with respect
to the parameters in the network is zero.



 terfly network followed by a dense linear layer in smaller
dimension. These experiments support our theoretical result.
The network structure parameters are chosen so as to keep
the number of weights in the (replaced) encoder near lin-
ear in the input dimension. Our results (also theoretically)
demonstrate that this has little to no effect on the perfor-
mance compared to the standard encoder-decoder network.

(3) In Section 6, we learn the best pre-processing matrix
structured as a truncated butterfly network to perform low-
rank matrix approximation from a given sample of matrices.
We compare our results to that of Indyk et al. [2019], which
learn the pre-processing matrix structured as given in Clark-
son and Woodruff [2009].

2 RELATED WORK

Important transforms like discrete Fourier, discrete cosine,
Hadamard and many more satisfy a property called com-
plementary low-rank property, recently defined by Li et al.
[2015]. For an n× n matrix satisfying this property related
to approximation of specific sub-matrices by low-rank matri-
ces, Michielssen and Boag [1996] and O’Neil et al. [2010]
developed the butterfly algorithm to compute the product of
such a matrix with a vector in O(n log n) time. The butter-
fly algorithm factorizes such a matrix into O(log n) many
matrices, each with O(n) sparsity. In general, the butter-
fly algorithm has a pre-computation stage which requires
O(n2) time [O’Neil et al., 2010, Seljebotn, 2012]. With
the objective of reducing the pre-computation cost Li et al.
[2015], Li and Yang [2017] compute the butterfly factor-
ization for an n × n matrix satisfying the complementary
low-rank property in O(n

3
2 ) time. This line of work does

not learn butterfly representations for matrices or apply it in
neural networks, and is incomparable to our work.

A few papers in the past have used deep learning models
with structured matrices (as hidden layers). Such structured
matrices can be described using fewer parameters compared
to a dense matrix, and hence a representation can be learned
by optimizing over a fewer number of parameters. Exam-
ples of structured matrices used include low-rank matrices
[Denil et al., 2013, Sainath et al., 2013], circulant matrices
[Cheng et al., 2015, Ding et al., 2017], low-distortion projec-
tions [Yang et al., 2015], Toeplitz like matrices [Sindhwani
et al., 2015, Lu et al., 2016, Ye et al., 2018], Fourier-related
transforms [Moczulski et al., 2016] and matrices with low-
displacement rank [Thomas et al., 2018]. It was shown by
Li et al. [2018] that any band-limited function of an input
signal can be approximated by applying first a stack of but-
terfly layers on the signal (giving an approximation of the
relevant frequencies of the signal). Our work relies on a
different theoretical result (FJLT) that allows approximating
any linear mapping by a composition of a truncated butter-
fly, a (small) dense layer and a transposition of a truncated
butterfly. Recently, Alizadeh et al. [2020] demonstrated the

benefits of replacing the pointwise convolutional layer in
CNN’s by a butterfly network. Other works by Mocanu et al.
[2018], Lee et al. [2019], Wang et al. [2020], Verdenius
et al. [2020] consider a different approach to sparsify neural
networks. The work closest to ours are by Yang et al. [2015],
Moczulski et al. [2016], and Dao et al. [2020].

Yang et al. [2015] and Moczulski et al. [2016] attempt to re-
place dense linear layers with a stack of structured matrices,
including a butterfly structure (the Hadamard or the Cosine
transform), but they do not place trainable weights on the
edges of the butterfly structure as we do. Note that adding
these trainable weights does not compromise the run time
benefits in prediction, while adding to the expressiveness
of the network in our case. Dao et al. [2020] replace hand-
crafted structured sub-networks in machine learning models
by a kaleidoscope layer, which consists of compositions of
butterfly matrices. This is motivated by the fact that the kalei-
doscope hierarchy captures a structured matrix exactly and
optimally in terms of multiplication operations required to
perform the matrix vector product operation. Their work dif-
fers from us as we propose to replace any dense linear layer
in a neural network (instead of a structured sub-network)
by the architecture proposed in Section 3.2. Our approach
is motivated by theoretical results which establish that this
can be done with almost no loss in representation.

Finally, Dao et al. [2019] show that butterfly representa-
tions of standard transformations like discrete Fourier, dis-
crete cosine, Hadamard mentioned above can be learnt ef-
ficiently. They additionally show the following: a) for the
benchmark task of compressing a single hidden layer model
they compare the network constituting of a composition
of butterfly networks with the classification accuracy of a
fully-connected linear layer and b) in ResNet a butterfly sub-
network is added to get an improved result. In comparison,
our approach to replace a dense linear layer by the proposed
architecture in Section 3.2 is motivated by well-known theo-
retical results as mentioned previously, and the results of the
comprehensive list of experiments in Section 5.1 support
our proposed method.

3 PROPOSED REPLACEMENT FOR A
DENSE LINEAR LAYER

In Section 3.1, we define a truncated butterfly network, and
in Section 3.2 we motivate and state our proposed architec-
ture based on truncated butterfly network to replace a dense
linear layer in any neural network. All logarithms are in
base 2, and [n] denotes the set {1, . . . , n}.

3.1 TRUNCATED BUTTERFLY NETWORK

Definition 3.1 (Butterfly Network). Let n be an integral
power of 2. Then an n×n butterfly networkB (see Figure 1)



 is a stack of of log n linear layers, where in each layer i ∈
{0, . . . , log n−1}, a bipartite clique connects between pairs
of nodes j1, j2 ∈ [n], for which the binary representation of
j1 − 1 and j2 − 1 differs only in the i’th bit. In particular,
the number of edges in each layer is 2n.

In what follows, a truncated butterfly network is a butterfly
network in which the deepest layer is truncated, namely,
only a subset of ` neurons are kept and the remaining n− `
are discarded. The integer ` is a tunable parameter, and the
choice of neurons is always assumed to be sampled uni-
formly at random and fixed throughout training in what fol-
lows. The effective number of parameters (trainable weights)
in a truncated butterfly network is at most 2n log ` + 6n,
for any ` and any choice of neurons selected from the last
layer.4 We include a proof of this simple upper bound in Ap-
pendix 6 for lack of space (also, refer to Ailon and Liberty
[2009] for a similar result related to computation time of
truncated FFT). The reason for studying a truncated butter-
fly network follows (for example) from the works [Ailon
and Chazelle, 2009, Ailon and Liberty, 2009, Krahmer and
Ward, 2011]. These papers define randomized linear trans-
formations with the Johnson-Lindenstrauss property and
an efficient computational graph which essentially defines
the truncated butterfly network. In what follows, we will
collectively denote these constructions by FJLT. 5

3.2 MATRIX APPROXIMATION USING
BUTTERFLY NETWORKS

We begin with the following proposition, following known
results on matrix approximation (proof in Appendix 2).

Proposition 1. Suppose J1 ∈ Rk1×n1 and J2 ∈
Rk2×n2 are matrices sampled from FJLT distribution,
and let W ∈ Rn2×n1 . Then for the random matrix
W ′ = (JT2 J2)W (JT1 J1), any unit vector x ∈ Rn1

and any ε ∈ (0, 1), Pr [‖W ′x−Wx‖ ≤ ε‖W‖] ≥ 1 −
e−Ω(min{k1,k2}ε2) .

Proposed Replacement: From Proposition 1 it follows that
W ′ approximates the action of W with high probability on
any given input vector. Now observe that W ′ is equal to
JT2 W̃J1, where W̃ = J2WJT1 . Since J1 and J2 are FJLT,
they can be represented by a truncated butterfly network,
and hence it is conceivable to replace a dense linear layer
connecting n1 neurons to n2 neurons (containing n1n2 vari-
ables) in any neural network with a composition of three

4Note that if n is not a power of 2 then we work with the first
n columns of the `× n′ truncated butterfly network, where n′ is
the closest number to n that is greater than n and is a power of 2.

5To be precise, the construction in Ailon and Chazelle [2009],
Ailon and Liberty [2009], and Krahmer and Ward [2011] also uses
a random diagonal matrix, but the values of the diagonal entries can
be ‘absorbed’ inside the weights of the first layer of the butterfly
network.

gadgets: a truncated butterfly network of size k1 × n1, fol-
lowed by a dense linear layer of size k2×k1, followed by the
transpose of a truncated butterfly network of size k2×n2. In
Section 5.1, we replace dense linear layers in common deep
learning networks with our proposed architecture, where
ki << ni, i = 1, 2.

4 ENCODER-DECODER BUTTERFLY
NETWORK

LetX ∈ Rn×d, and Y ∈ Rm×d be data and output matrices
respectively, and k ≤ m ≤ n. Then the encoder-decoder
network for X is given as

Y = DEX

where E ∈ Rk×n, and D ∈ Rm×k are called the encoder
and decoder matrices respectively. For the special case when
Y = X , it is called auto-encoders. The optimization prob-
lem is to learn matrices D and E such that ||Y − Y ||2F is
minimized. The optimal solution is denoted as Y ∗, D∗ and
E∗6. In the case of auto-encoders X∗ = Xk, where Xk is
the best rank k approximation ofX . In this section, we study
the optimization landscape of the encoder-decoder butterfly
network : an encoder-decoder network, where the encoder
is replaced by a truncated butterfly network followed by a
dense linear layer in smaller dimension. Such a replacement
is motivated by the following result from Sarlós [2006], in
which ∆k = ||Xk −X||2F.

Proposition 2. Let X ∈ Rn×d. Then with probability at
least 1/2, the best rank k approximation of X from the
rows of JX (denoted Jk(X)), where J is sampled from an
` × n FJLT distribution and ` = (k log k + k/ε) satisfies
||Jk(X)−X||2F ≤ (1 + ε)∆k.

Proposition 2 suggests that in the case of auto-encoders
we could replace the encoder with a truncated butterfly
network of size ` × n followed by a dense linear layer of
size k × `, and obtain a network with fewer parameters
but loose very little in terms of representation. Hence, it is
worthwhile investigating the representational power of the
encoder-decoder butterfly network

Y = DEBX . (1)

Here, X , Y and D are as in the encoder-decoder network,
E ∈ Rk×` is a dense matrix, and B is an ` × n truncated
butterfly network. In the encoder-decoder butterfly network
the encoding is done using EB, and decoding is done using
D. This reduces the number of parameters in the encod-
ing matrix from kn (as in the encoder-decoder network) to
k` + O(n log `). Again the objective is to learn matrices
D and E, and the truncated butterfly network B such that

6Possibly multiple D∗ and E∗ exist such that Y ∗ = D∗E∗X .



 
Dataset Name Task Model

Cifar-10 Krizhevsky [2012] Image classification EfficientNet Tan and Le [2019]
Cifar-10 Krizhevsky [2012] Image classification PreActResNet18 He et al. [2016]
Cifar-100 Krizhevsky [2012] Image classification seresnet152 Hu et al. [2020]
Imagenet Deng et al. [2009] Image classification senet154 Hu et al. [2020]

CoNLL-03 Tjong Kim Sang and De Meulder [2003] Named Entity Recognition (English) Flair’s Sequence Tagger Akbik et al. [2018] Akbik et al. [2019]
CoNLL-03 Tjong Kim Sang and De Meulder [2003] Named Entity Recognition (German) Flair’s Sequence Tagger Akbik et al. [2018] Akbik et al. [2019]

Penn Treebank (English) Marcus et al. [1993] Part-of-Speech Tagging Flair’s Sequence Tagger Akbik et al. [2018] Akbik et al. [2019]

Table 1: Data and the corresponding architectures used in the fast matrix multiplication using butterfly matrices experiments.

||Y − Y ||2F is minimized. The optimal solution is denoted
as Y ∗, D∗, E∗, and B∗. Theorem 1 shows that the loss at
a critical point of such a network depends on the eigen-
values of Σ(B) = Y XTBT (BXXTBT )−1XY T , when
BXXTBT is invertible and Σ(B) has ` distinct positive
eigenvalues.The loss L is defined as ||Y − Y ||2F.

Theorem 1. Let D,E and B be a point of the encoder-
decoder network with a truncated butterfly network satisfy-
ing the following: a) BXXTBT is invertible, b) Σ(B) has
` distinct positive eigenvalues λ1 > . . . > λ`, and c) the
gradient of L(Y ) with respect to the parameters inD andE
matrix is zero. Then corresponding to this point (and hence
corresponding to every critical point) there is an I ⊆ [`]
such that L(Y ) at this point is equal to tr(Y Y T )−

∑
i∈I λi.

Moreover if the point is a local minima then I = [k].

The proof of Theorem 1 is given in Appendix 3. As dis-
cussed in [Kawaguchi, 2016], the assumptions of having
full rank and distinct eigenvalues in the training data matrix
X (see Theorem 2.3 in Kawaguchi [2016]) are realistic and
practically easy to satisfy. We require the same assumptions
on BX (instead), where B is sampled from an FJLT dis-
tribution. We also compare our result with that of Baldi
and Hornik [1989] and Kawaguchi [2016], which study the
optimization landscape of dense linear neural networks in
Appendix 3. From Theorem 1 it follows that if B is fixed
and only D and E are trained then a local minima is in-
deed a global minima. We use this to claim a worst-case
guarantee using a two-phase learning approach to train an
auto-encoder. In this case the optimal solution is denoted as
Bk(Y ), DB , and EB . Observe that when Y = X , Bk(X)
is the best rank k approximation of X computed from the
rows of BX .

Two phase learning for auto-encoder: Let ` = k log k +
k/ε and consider a two phase learning strategy for auto-
encoders, as follows: In phase one B is sampled from an
FJLT distribution, and then only D and E are trained keep-
ing B fixed. Suppose the algorithm learns D′ and E′ at
the end of phase one, and X ′ = D′E′B. Then Theorem 1
guarantees that, assuming Σ(B) has ` distinct positive eigen-
values and D′, E′ are a local minima, D′ = DB , E′ = EB ,
andX ′ = Bk(X). NamelyX ′ is the best rank k approxima-
tion of X from the rows of BX . From Proposition 2 with
probability at least 1

2 , L(X ′) ≤ (1 + ε)∆k. In the second
phase all three matrices are trained to improve the loss. In
Sections 5.2 and 5.3 we train an encoder-decoder butter-

fly network using the standard gradient descent method. In
these experiments the truncated butterfly network is initial-
ized by sampling it from an FJLT distribution, and D and E
are initialized randomly as in Pytorch.

5 EXPERIMENTS

In this section we report the experimental results based on
the ideas presented in Sections 3.2 and 4. The code for our
experiments is publicly available (see Ailon et al. [2021]).

5.1 REPLACING DENSE LINEAR LAYERS BY
THE PROPOSED ARCHITECTURE

This experiment replaces a dense linear layer of size n2×n1

in common deep learning architectures with the network
proposed in Section 3.2.7 The truncated butterfly networks
are initialized by sampling it from the FJLT distribution, and
the dense matrices are initialized randomly as in Pytorch.
We set k1 = log n1 and k2 = log n2. The datasets and the
corresponding architectures considered are summarized in
Table 1.

For each dataset and model, the objective function is the
same as defined in the model, and the generalization and
convergence speed between the original model and the mod-
ified one (called the butterfly model for convenience) are
compared. Figure 1 reports the number of parameters in
the dense linear layer of the original model, and in the re-
placed network, and Figure 2 in Appendix 4.1 displays the
number of parameter in the original model and the butterfly
model. In particular, Figure 1 shows the significant reduc-
tion in the number of parameters obtained by the proposed
replacement.

Figure 2 reports the test accuracy of the original model and
the butterfly model. The black vertical lines in Figures 2
denote the error bars corresponding to standard deviation,
and the values above the rectangles denote the average ac-
curacy. In Figure 3 observe that the test accuracy for the
butterfly model trained with stochastic gradient descent is
even better than the original model trained with Adam in
the first few epochs. Figure 6 in Appendix 4.1 compares

7In all the architectures considered the final linear layer be-
fore the output layer is replaced, and n1 and n2 depend on the
architecture.



 

Figure 1: Number of parameters in the dense linear layer of the original model and in the replaced butterfly based architecture;
Left: Vision data, Right: NLP

Figure 2: Comparison of final test accuracy with different
image classification models and data sets

Figure 3: Comparison of test accuracy in the first few epochs
with different models and optimizers on CIFAR-10 with
PreActResNet18

the test accuracy in the the first 20 epochs of the original
and butterfly model. The results for the NLP tasks in the
interest of space are reported in Figure 3, Appendix 4.1. The
training and inference times required for the original model

and the butterfly model in each of these experiments are
reported in Figures 4 and 5 in Appendix 4.1. We remark that
the modified architecture is also trained for fewer epochs.
In almost all the cases the modified architecture does better
than the normal architecture, both in the rate of convergence
and in the final accuracy/F1 score. Moreover, the training
time for the modified architecture is less.

5.2 ENCODER-DECODER BUTTERFLY
NETWORK WITH SYNTHETIC GAUSSIAN
AND REAL DATA

This experiment tests whether gradient descent based tech-
niques can be used to train an auto-encoder with a truncated
butterfly gadget (see Section 4). Five types of data matrices
are tested: two are random and three are constructed using
standard public real image datasets. For the matrices con-
structed from the image datasets, the input coordinates are
randomly permuted, which ensures the network cannot take
advantage of the spatial structure in the data.

Table 2 summarizes the data attributes. Gaussian 1 and Gaus-
sian 2 are Gaussian matrices with rank 32 and 64 respec-
tively. A Rank r Gaussian matrix is constructed as follows: r
orthogonal vectors of size 1024 are sampled at random and
the columns of the matrix are determined by taking random
linear combinations of these vectors, where the coefficients
are chosen independently and uniformly at random from
the Gaussian distribution with mean 0 and variance 0.01.
The data matrix for MNIST is constructed as follows: each
row corresponds to an image represented as a 28× 28 ma-
trix (pixels) sampled uniformly at random from the MNIST
database of handwritten digits LeCun and Cortes [2010]
which is extended to a 32× 32 matrix by padding numbers
close to zero and then represented as a vector of size 1024
in column-first ordering8. Similar to the MNIST every row

8Close to zero entries are sampled uniformly at random ac-
cording to a Gaussian distribution with mean zero and variance



 of the data matrix for Olivetti corresponds to an image rep-
resented as a 64× 64 matrix sampled uniformly at random
from the Olivetti faces data set Cambridge [1994], which is
represented as a vector of size 4096 in column-first ordering.
Finally, for HS-SOD the data matrix is a 1024× 768 matrix
sampled uniformly at random from HS-SOD – a dataset for
hyperspectral images from natural scenes Imamoglu et al.
[2018].

Name n d rank
Gaussian 1 1024 1024 32
Gaussian 2 1024 1024 64

MNIST 1024 1024 1024
Olivetti 1024 4096 1024

HS-SOD 1024 768 768

Table 2: Data used in the truncated butterfly auto-encoder
reconstruction experiments

For each of the data matrices the loss obtained via training
the truncated butterfly network with the Adam optimizer
is compared to ∆k (denoted as PCA) and ||Jk(X)−X||2F
where J is an `× n matrix sampled from the FJLT distribu-
tion (denoted as FJLT+PCA).9 Figures 4 and 5 reports the
loss on Gaussian 1 and MNIST respectively, whereas Figure
7 in Appendix 4.2 reports the loss for the remaining data
matrices. Observe that for all values of k the loss for the
encoder-decoder butterfly network is almost equal to ∆k,
and is in fact ∆k for small and large values of k.

Figure 4: Approximation error on data matrix with various
methods for various values of k (Gaussian 1)

5.3 TWO-PHASE LEARNING

This experiment is similar to the experiment in Section 5.2
but the training in this case is done in two phases. In the first

0.01.
9PCA stands for principal component analysis which is a stan-

dard way to compute Xk.

Figure 5: Approximation error on data matrix with various
methods for various values of k (MNIST)

phase, B is fixed and the network is trained to determine
an optimal D and E. In the second phase, the optimal D
and E determined in phase one are used as the initialization,
and the network is trained over D,E and B to minimize the
loss. Theorem 1 ensures worst-case guarantees for this two
phase training (see below the theorem). Figure 6 reports the
approximation error of an image from Imagenet. The red
and green lines in Figure 6 correspond to the approximation
error at the end of phase one and two respectively.

Figure 6: Approximation error on data matrix with various
methods for various values of k (Gaussian 1)

6 SKETCHING FOR LOW-RANK
MATRIX DECOMPOSITION

This experiment was inspired by the recent influential work
by Indyk et al. [2019], which considers a supervised learning
approach to compute an `× n pre-conditioning matrix B,
where ` � n, such that for X ∈ Rn×d, the best rank k
approximation ofX from the rows ofBX (denotedBk(X))
is optimized. The matrix B has a fixed sparse structure



 determined a priory as in [Clarkson and Woodruff, 2009],
and the non-zero entries are learned to minimize the loss
over a training set of matrices. The results in [Indyk et al.,
2019] suggest that a learned matrixB significantly improves
the guarantee compared to a random sketching matrix as
in [Clarkson and Woodruff, 2009]. Our setting is similar to
that in [Indyk et al., 2019], except that B is now represented
as an ` × n truncated butterfly gadget. Our experiments
on several datasets show that indeed a learned truncated
butterfly gadget does better than a random matrix, and even
a learned B as in [Indyk et al., 2019].

Setup: Suppose X1, . . . , Xt ∈ Rn×d are training matrices
sampled from a distribution D. Then a B is computed that
minimizes the following empirical loss∑

i∈[t]

||Xi −Bk(Xi)||2F (2)

We compute Bk(Xi) using truncated SVD of BXi (as in
Algorithm 1, [Indyk et al., 2019]). The matrix B is learned
by the back-propagation algorithm that uses a differentiable
SVD implementation to calculate the gradients, followed
by optimization with Adam such that the butterfly structure
of B is maintained. The learned B can be used as the pre-
processing matrix for any matrix in the future. The test error
for a matrix B and a test set Te is defined as follows:

ErrTe(B) = EX∼Te
[
||X −Bk(X)||2F

]
− AppTe,

where AppTe = EX∼Te[ ||X −Xk||2F ].

Experiments and Results: The experiments are performed
on the datasets shown in Table 3. In HS-SOD [Imamoglu
et al., 2018] and CIFAR-10 [Krizhevsky, 2012] 400 training
matrices (t = 400), and 100 test matrices are sampled,
while in Tech 200 [Davido et al., 2004], training matrices
(t = 200), and 95 test matrices are sampled. In Tech, each
matrix has 835,422 rows but on average only 25,389 rows
and 195 columns contain non-zero entries. For the same
reason as in Section 5.2 in each dataset, the coordinates
of each row are randomly permuted. Some of the matrices
in the datasets have much larger singular values than the
others, and to avoid imbalance in the dataset, the matrices
are normalized so that their top singular values are all equal,
as done in [Indyk et al., 2019]. For each of the datasets,

Name n d
HS-SOD 1 1024 768
CIFAR-10 32 32

Tech 25,389 195

Table 3: Data used in the Sketching algorithm for low-rank
matrix decomposition experiments.

the test error for the learned B via our truncated butterfly
structure is compared to the test errors for the following
three cases: 1) B is a learned as a sparse sketching matrix

as in Indyk et al. [2019], b) B is a random sketching matrix
as in Clarkson and Woodruff [2009], and c) B is an `× n
Gaussian matrix. Figure 7 compares the test error for ` = 20,
and k = 10, where AppTe = 10.56. Figure 8 in Appendix
5 compares the test errors of the different methods in the
extreme case when k = 1, and Figure 9 in Appendix 5
compares the test errors of the different methods for various
values of `. Table 1 in Appendix 5 reports the test error
for different values of ` and k. Figure 10 in Appendix 5
shows the test error for ` = 20 and k = 10 during the
training phase on HS-SOD. In Figure 10 it is observed that
the butterfly learned is able to surpass sparse learned after
merely a few iterations.

Figure 7: Test error by different sketching matrices on
different data sets

Figure 8: Test errors for various values of N and a
learned butterfly matrix

Figure 8 compares the test error for the learned B via our
truncated butterfly structure to a learned matrix B with N
non-zero entries in each column – the N non-zero location
for each column are chosen uniformly at random. The re-
ported test errors are on HS-SOD, when ` = 20 and k = 10.
Interestingly, the error for butterfly learned is not only less
than the error for sparse learned (N = 1 as in [Indyk et al.,
2019]) but also less than than the error for dense learned
(N = 20). In particular, our results indicate that using a
learned butterfly sketch can significantly reduce the approx-
imation loss compared to using a learned sparse sketching
matrix.



 7 CONCLUSION

Discussion: Among other things, this work showed that it
is beneficial to replace dense linear layer in deep learning
architectures with a more compact architecture (in terms of
number of parameters), using truncated butterfly networks.
This approach is justified using ideas from efficient matrix
approximation theory from the last two decades. however,
results in additional logarithmic depth to the network. This
issue raises the question of whether the extra depth may
harm convergence of gradient descent optimization. To start
answering this question, we show, both empirically and
theoretically, that in linear encoder-decoder networks in
which the encoding is done using a butterfly network, this
typically does not happen. To further demonstrate the utility
of truncated butterfly networks, we consider a supervised
learning approach as in Indyk et al. [2019], where we learn
how to derive low rank approximations of a distribution of
matrices by multiplying a pre-processing linear operator
represented as a butterfly network, with weights trained
using a sample of the distribution.

Future Work: The main open questions arising from the
work are related to better understanding the optimization
landscape of butterfly networks. The current tools for analy-
sis of deep linear networks do not apply for these structures,
and more theory is necessary. It would be interesting to
determine whether replacing dense linear layers in any net-
work, with butterfly networks as in Section 3.2 harms the
convergence of the original matrix. Another direction would
be to check empirically whether adding non-linear gates
between the layers (logarithmically many) of a butterfly
network improves the performance of the network. In the
experiments in Section 5.1, we have replaced a single dense
layer by our proposed architecture. It would be worthwhile
to check whether replacing multiple dense linear layers in
the different architectures harms the final accuracy. Simi-
larly, it might be insightful to replace a convolutional layer
by an architecture based on truncated butterfly network. Fi-
nally, since our proposed replacement reduces the number
of parameters in the network, it might be possible to em-
pirically show that the new network is more resilient to
over-fitting.
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